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The Elliptic Curves y2 = x3 − t2x over Fp

Ahmet Tekcan

Abstract—Let p be a prime number, Fp be a finite field and t ∈
F∗

p = Fp − {0}. In this paper we obtain some properties of elliptic
curves Ep,t : y2 = y2 = x3 − t2x over Fp. In the first section
we give some notations and preliminaries from elliptic curves. In the
second section we consider the rational points (x, y) on Ep,t. We
give a formula for the number of rational points on Ep,t over Fn

p for
an integer n ≥ 1. We also give some formulas for the sum of x−and
y−coordinates of the points (x, y) on Ep,t. In the third section we
consider the rank of Et : y2 = x3 − t2x and its 2−isogenous curve
Et over Q. We proved that the rank of Et and Et is 2 over Q. In
the last section we obtain some formulas for the sums

∑
t∈F∗

p
an

p,t

for an integer n ≥ 1, where ap,t denote the trace of Frobenius.

Keywords—elliptic curves over finite fields, rational points on
elliptic curves, rank, trace of Frobenius.

I. INTRODUCTION

Mordell began his famous paper [13] with the words
Mathematicians have been familiar with very few questions
for so long a period with so little accomplished in the way
of general results, as that of finding the rational points on
elliptic curves. The history of elliptic curves is a long one,
and exciting applications for elliptic curves continue to be
discovered. Recently, important and useful applications of
elliptic curves have been found for cryptography [6,11,12], for
factoring large integers [9], and for primality proving [1,5].The
mathematical theory of elliptic curves was also crucial in the
proof of Fermat’s Last Theorem [19].

Let q be a positive integer, Fq be a finite field and let Fq

denote the algebraic closure of Fq with char(Fq) �= 2, 3. An
elliptic curve E over Fq is defined by an equation

Eq,a,b : y2 = x3 + ax + b,

where a, b ∈ Fq and 4a3 + 27b2 �= 0. We can view an
elliptic curve Eq,a,b as a curve in projective plane P2, with a
homogeneous equation y2z = x3 +axz2 + bz3, and one point
at infinity, namely (0, 1, 0). This point ∞ is the point where
all vertical lines meet. We denote this point by O. Let

Eq,a,b(Fq) = {(x, y) ∈ Fq × Fq : y2 = x3 + ax + b}
∪{O}

denote the set of rational points (x, y) on Eq,a,b. Then it is
a subgroup of Eq,a,b. The order of Eq,a,b(Fq), denoted by
#Eq,a,b(Fq), is defined as the number of the rational points
on Eq,a,b (for further details see [15,17,18]), and is given by

#Eq,a,b(Fq) = 1 +
∑

x∈Fq

(
1 +

x3 + ax + b

Fq

)
(1)

= q + 1 +
∑

x∈Fq

(
x3 + ax + b

Fq

)
,
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where ( .
Fq

) denotes the Legendre symbol.
Let

#Eq,a,b(Fq) = q + 1 − aq,a,b. (2)

Then aq,a,b is called the trace of Frobenius and satisfies the
inequality

|aq,a,b| ≤ 2
√

q

known as the Hasse interval [18, p.91]. The formula (1) can be
generalized to any field Fqn for an integer n ≥ 2 [18, p.97].
Let #Eq,a,b(Fq) = q + 1 − aq,a,b and let

X2 − aq,a,bX + q = (X − α)(X − β). (3)

Then the order of Eq,a,b over Fqn is

#Eq,a,b(Fqn) = qn + 1 − (αn + βn). (4)

II. RATIONAL POINTS ON ELLIPTIC CURVES

Ep,t : y2 = x3 − t2x OVER Fp.

In [16], we consider the elliptic curves Ep,λ : y2 = x(x−1)
(x−λ) over Fp for λ �= 0, 1, where p is a prime number and
Fp is a finite field. We consider the rational points on Ep,λ

and also its rank over Q. In the present paper we consider the
elliptic curves

Ep,t : y2 = x3 − t2x (5)

over Fp for an integer t ∈ F∗
p. This elliptic curve was studied

by Lemmermeyer and Mollin [8] in the sense of its Tate-
Shafarevich group. Here we only consider its rational points,
rank and trace of Forbenius.

Let Qp denote the set of quadratic residues. Let Q4,+
p denote

the set of 4th power of elements of F∗
p and let Q4,−

p = F∗
p −

Q4,+
p . Set Q4

p = Q4,+
p ∪Q4,−

p . Then #Q4,+
p = #Q4,−

p = p−1
4

and #Q4
p = p−1

2 . Recall that the order of Ep,t : y2 = x3−t2x
over Fp is given in [18, p.105] by

1. If p ≡ 3 (mod 4), then #Ep,t(Fp) = p + 1.
2. If p ≡ 1 (mod 4), write p = a2 + b2, where a and b are

integers with b is even and a + b ≡ 1 (mod 4), then

#Ep,t(Fp) =

⎧⎨
⎩

p + 1 − 2a if k ∈ Q4,+
p

p + 1 + 2a if k ∈ Q4,−
p

p + 1 ± 2b if k /∈ Qp.

First we generalize this result to any field Fpn for an integer
n ≥ 2.

Theorem 2.1: Let Ep,t : y2 = x3 − t2x be an elliptic curve
over Fp.

1) If p ≡ 3(mod 4), then

#Ep,t(Fpn) =

⎧⎨
⎩

(p
n
2 − 1)2 if n ≡ 0 (mod 4)

pn + 1 if n ≡ 1, 3 (mod 4)
(p

n
2 + 1)2 if n ≡ 2 (mod 4).
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2) If p ≡ 1(mod 4), then #Ep,t(Fpn) = pn + 1−⎧⎨
⎩

(a + ib)n + (a − ib)n if t2 ∈ Q4,+
p

(−a + ib)n + (−a − ib)n if t2 ∈ Q4,−
p .

Proof: 1. Let p ≡ 3(mod 4). Then #Ep,t(Fp) = p + 1.
Hence ap,t = 0 by (2). Let

X2 + p = (X − α)(X − β)

for α = i
√

p and β = −i
√

p by (3).
Let n ≡ 0 (mod 4), i.e. n = 4m for an integer m ≥ 1. Then

we get

αn + βn = (i
√

p)4m + (−i
√

p)4m

= i4m(
√

p)4m + (−i)4m(
√

p)4m

= p2m + p2m

= 2p2m

= 2p
n
2 .

Therefore #Ep,t(Fpn) = pn+1−(αn+βn) = pn+1−2p
n
2 =

(p
n
2 − 1)2 by (4).
Let n ≡ 1(mod 4), say n = 1 + 4m. Then we get

αn + βn = (i
√

p)n + (−i
√

p)n

= i4m+1(
√

p)4m+1 + (−i)4m+1(
√

p)4m+1

= i(
√

p)4m+1 + (−i)(
√

p)4m+1

= 0.

Therefore #Ep,t(Fpn) = pn + 1 − (αn + βn) = pn + 1.
Let n ≡ 2(mod 4), say n = 2 + 4m. Then we get

αn + βn = (i
√

p)n + (−i
√

p)n

= i4m+2(
√

p)4m+2 + (−i)4m+2(
√

p)4m+2

= (−1)p2m+1 + (−1)p2m+1

= −2p2m+1

= −2p
n
2 .

Therefore #Ep,t(Fpn) = pn+1−(αn+βn) = pn+1+2p
n
2 =

(p
n
2 + 1)2.
Finally, let n ≡ 3(mod 4), say n = 3 + 4m. Then we get

αn + βn = (i
√

p)n + (−i
√

p)n

= i4m+3(
√

p)4m+3 + (−i)4m+3(
√

p)4m+3

= (−i)(
√

p)4m+3 + i(
√

p)4m+3

= 0.

Therefore #Ep,t(Fpn) = pn + 1 − (αn + βn) = pn + 1.
2. Let p ≡ 1(mod 4), and let t2 ∈ Q4,+

p . Then #Ep,t(Fp) =
p + 1 − 2a and hence ap,t = 2a by (2). Let

X2 − 2aX + p = (X − α)(X − β)
= X2 − X(α + β) + αβ.

Then 2a = α + β and p = αβ. Hence we get

2a = α +
p

α
⇔ α2 − 2aα + p = 0

⇔ α1,2 =
2a ±

√
4a2 − 4p

2
⇔ α1,2 = a ± ib.

Therefore

α1 = a + ib ⇒ β1 =
p

α1
= a − ib

or

α2 = a − ib ⇒ β2 =
p

α2
= a + ib.

Consequently in both cases, the order of Ep,t over Fpn is

#Ep,t(Fpn) = pn + 1 − (αn + βn)
= pn + 1 − [(a + ib)n + (a − ib)n] .

Let t2 ∈ Q4,−
p . Then #Ep,t(Fp) = p + 1 + 2a and hence

ap,t = −2a by (2). Let

X2 + 2aX + p = (X − α)(X − β)
= X2 − X(α + β) + αβ.

Then −2a = α + β and p = αβ. Hence we get

−2a = α +
p

α
⇔ α2 + 2aα + p = 0

⇔ α1,2 =
−2a ±

√
4a2 − 4p

2
⇔ α1,2 = −a ± ib.

Therefore

α1 = −a + ib ⇒ β1 =
p

α1
= −a − ib

or

α2 = −a − ib ⇒ β2 =
p

α2
= −a + ib.

Consequently the order of Ep,t over Fpn is

#Ep,t(Fpn) = pn + 1 − (αn + βn)
= pn + 1 − [(−a + ib)n + (−a − ib)n] .

This completes the proof.
In the following table some values of p, a and b is given.

p a b p a b

5 1 2 229 15 2

13 3 2 233 13 8

17 1 4 241 15 4

29 5 2 257 1 16

37 1 6 269 13 10

41 5 4 277 9 14

53 7 2 281 5 16

61 5 6 293 17 2

73 3 8 313 13 12

89 5 8 317 11 14

97 9 4 337 9 16

101 1 10 349 5 18

109 3 10 353 17 8

113 7 8 373 7 18

137 11 4 389 17 10

149 7 10 397 19 6

157 11 6 401 1 20

173 13 2 409 3 20

181 9 10 421 15 14

193 7 12 433 17 12

197 1 14 449 7 20
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In the following examples the orders of Ep,t : y2 = x3−t2x
over Fpn are given for 2 ≤ n ≤ 15.

Example 2.1: Let p = 23 and t = 2. Then the order of
E23,2 : y2 = x3 − 4x over F23n is

n F23n

2 576

3 12168

4 278784

5 6436344

6 148060224

7 3404825448

8 78310425600

9 1801152661464

10 41426524086336

11 952809757913928

12 21914624135948544

13 504036361936467384

14 11592836331348400704

15 266635235464391245608

Example 2.2: Let p = 13. Then a = 3 and b = 2. Let
t = 4. Then t2 ≡ 3(mod 13). So t2 ∈ Q4,+

13 = {1, 3, 9}. Then
the order of E13,4 : y2 = x3 − 3x over F13n is

n F13n

2 160

3 2216

4 28800

5 372488

6 4830880

7 62757416

8 815731200

9 10604386564

10 137857808810

11 1792157762000

12 23298078210000

13 302875099300000

14 3937376432000000

15 51185893380000000

Similarly let p = 13 and t = 11. Then t2 ≡ 4(mod 13). So
t2 ∈ Q4,−

13 . Therefore the order of E13,11 : y2 = x3 − 4x over
F13n is

n F13n

2 160

3 2180

4 28800

5 370100

6 4830880

7 62739620

8 815731200

9 106041612184

10 137857808810

11 1792163026000

12 23298078210000

13 302875113900000

14 3937376432000000

15 51185892640000000

Now we consider some properties of rational points on
elliptic curve Ep,t.

Theorem 2.2: Let [x] denote the x−coordinates of (x, y)
on Ep,t. Then sum of [x] on Ep,t is

∑
[x]

Ep,t(Fp) =
∑(

1 +
(

x3 − t2x

Fp

))
.x

for all primes p
Proof: We know that

(
x3 − t2x

Fp

)
=

⎧⎨
⎩

0 if x3 − t2x is zero
1 if x3 − t2x is a square
−1 if x3 − t2x is not a square.

Let
(

x3−t2x
Fp

)
= 0. Then x3 − t2x = 0, and hence this

equation has three solutions x = 0, x = t and x = −t. Then
y2 ≡ 0 (mod p) ⇔ y ≡ 0 (mod p). So for such a point x, we
have a point (x, 0) on Ep,t. Therefore we get (x + 0).x = x
is added to the sum.

Let
(

x3−t2x
Fp

)
= 1. Then x3−t2x is a square in Fp. Let x3−

t2x = k2 for any k ∈ F∗
p. Then y2 ≡ k2 (mod p) ⇔ y = ±k,

that is, for any point (x, k) on Ep,t, the point (x,−k) is also
on Ep,t. Therefore for each point x we have (1 + 1).x = 2x
is added to the sum.

Finally, let
(

x3−t2x
Fp

)
= −1. Then x3 − t2x is not a square

in Fp. Therefore the equation y2 ≡ x3 − t2x(mod p) has no
solution. Therefore for each point x, we have (1+(−1)).x = 0
as we claimed.

Theorem 2.3: Let [y] denote the y−coordinates of (x, y) on
Ep,t.

1) If p ≡ 3(mod 4), then the sum of [y] on Ep,t is

∑
[y]

Ep,t(Fp) =
p2 − 3p

2
.

2) If p ≡ 1(mod 4), then the sum of [y] on Ep,t is

∑
[y]

Ep,t(Fp) =

⎧⎪⎨
⎪⎩

p2−(2a+3)p
2 if t2 ∈ Q4,+

p

p2+(2a−3)p
2 if t2 ∈ Q4,−

p .

Proof: 1. Let p ≡ 3(mod 4). Note that the cubic equation
x3 − t2x = 0 has three solutions x = 0, x = t and x = −t.
For the other values of x, we have both x and −x. One of
these gives two points. The one makes x3 − t2x a square. So
there are two values of y since y2 = x3 − t2x is square. Let
x3 − t2x = k2 for any k ∈ F∗

p. Then we have y2 = k2 if
and only if y = k and y = −k = p − k. So the sum of these
values of y is k + (p − k) = p. We know that there are p−3

2
points x such that y2 = x3 − t2x is a square. Therefore the
sum of y−coordinates of all points (x, y) is

p

(
p − 3

2

)
=

p2 − 3p

2
.

2. Let p ≡ 3(mod 4). If t2 ∈ Q4,+
p , then Ep,t(Fp) = p+1−

2a. We know that the cubic equation x3 − t2x = 0 has three
solutions x = 0, x = t and x = −t, that is, there are three
points (0, 0), (t, 0), (−t, 0) on Ep,t. The sum of y-coordinates
of these points is 0. Further we have to disregard the point ∞.
Then there are (p + 1− 2a)− 4 = p− 2a− 3 points (x, y) on
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Ep,t such that y �= 0. Half of these points make x3 − t2x a
square, that is, there are p−2a−3

2 points x such that x3 − t2x
is a square. Let x3 − t2x = k2 for any k ∈ F∗

p. Then we have
y2 = k2 if and only if y = k and y = −k = p − k. So the
sum of these values of y is k + (p − k) = p. Hence the sum
of y−coordinates of all points (x, y) on Ep,t is

p

(
p − 2a − 3

2

)
=

p2 − (2a + 3)p
2

.

If t2 ∈ Q4,−
p , then Ep,t(Fp) = p + 1 + 2a. The cubic

equation x3 − t2x = 0 has three solutions x = 0, x = t and
x = −t, that is, there are three points (0, 0), (t, 0), (−t, 0)
on Ep,t and the sum of y-coordinates of these points is 0.
Further we have to disregard the point ∞. Then there are
(p + 1 + 2a)− 4 = p + 2a− 3 points (x, y) on Ep,t such that
y �= 0. Half of these points make x3 − t2x a square, that is,
there are p+2a−3

2 points x such that x3 − t2x is a square. Let
x3 − t2x = k2 for any k ∈ F∗

p. Then we have y2 = k2 if and
only if y = k and y = −k = p−k. So the sum of these values
of y is k + (p − k) = p. Hence the sum of y−coordinates of
all points (x, y) on Ep,t is

p

(
p + 2a − 3

2

)
=

p2 + (2a − 3)p
2

.

Theorem 2.4: Let Ep,t =
{
Ep,t : t ∈ F∗

p

}
denote the set of

all elliptic curves Ep,t over Fp. Then

∑
t∈F∗

p

#Ep,t(Fp) =
p2 − 1

2

for all primes p.
Proof: Note that there are p−1

2 elliptic curves Ep,t in Ep,t

over Fp. We know that the order of Ep,t over Fp is p+1 when
p ≡ 3(mod 4). Therefore the total number of the points (x, y)
on all elliptic curves Ep,t in Ep,t over Fp is

(p + 1)
(

p − 1
2

)
=

p2 − 1
2

.

Let p ≡ 1(mod 4). If t2 ∈ Q4,+
p , then the order of Ep,t over

Fp is p + 1 − 2a, and if t2 ∈ Q4,−, then the order of Ep,t

over Fp is p + 1 + 2a. Further the order of Q4,+
p and Q4,−

p

is p−1
4 . Therefore the total number of the points (x, y) on all

elliptic curves Ep,t in Ep,t over Fp is

p − 1
4

(p + 1 − 2a) +
p − 1

4
(p + 1 + 2a)

=
p − 1

4
(p + 1 − 2a + p + 1 + 2a)

=
p − 1

4
(2p + 2)

=
p2 − 1

2
.

as we claimed.

Theorem 2.5: The sum of [y] in Ep,t(Fp) is

∑
t∈F∗

p

Ep,t(Fp) =
p3 − 4p2 + 3p

4

for all primes p.
Proof: Let p ≡ 3(mod 4). We know that the sum of [y] is

p2−3p
2 . Further there are p−1

2 elliptic curves in Ep,t. Therefore
the sum of [y] of all points (x, y) on all elliptic curves Ep,t

in Ep,t(Fp) is
(

p − 1
2

) (
p2 − 3p

2

)
=

p3 − 4p2 + 3p

4
.

Let p ≡ 1(mod 4). We know that there are p−1
4 elements in

both Q4,+
p and Q4,−

p . Further by Theorem 2.3, if t2 ∈ Q4,+
p ,

then the the sum of [y] of all points on elliptic curves Ep,t

is p2−(2a+3)p
2 , and if t2 ∈ Q4,−

p , then the the sum of [y] of

all points on elliptic curves Ep,t is p2+(2a−3)p
2 . Therefore the

sum of [y] of all points on elliptic curves Ep,t is
(

p − 1
4

)[
p2 − (2a + 3)p

2
+

p2 + (2a − 3)p
2

]

=
(

p − 1
4

)(
2p2 − 6p

2

)

=
p3 − 4p2 + 3p

4
.

III. RANK OF Et : y2 = x3 − t2x OVER Q.

Let E be an elliptic curve over Q. By Mordell’s theorem,
we know that E(Q) is a finitely generated abelian group, that
is, E(Q) = E(Q)tors × Zr. Further by Mazur’s theorem,

E(Q)tors
∼= Z/nZ for 1 ≤ n ≤ 10 or n = 12

or

E(Q)tors
∼= Z/2Z × Z/2nZ for 1 ≤ n ≤ 4.

On the other hand, it is not known that what values of rank
r are possible for elliptic curves over Q. The main idea is that
a rank can be arbitrary large. The current record is an example
of elliptic curve with rank ≥ 28, found by Elkies [3] in 2006.
The previous record one with rank ≥ 24, found by Martin
and McMillen [10] in 2000. The highest rank of an elliptic
curve which is known exactly (not only a lower bound for
rank) is equal to 18, and it was found by Elkies [3] in 2006.
It improves previous records due to Kretschmer [7](rank =
10), Schneiders-Zimmer [14](rank = 11), Fermigier [4](rank
= 14), Dujella [2](rank = 15) and Elkies [3](rank = 17).

Recall that the 2−isogenous curve of an elliptic curve

Ea,b : y2 = x3 + ax2 + bx

is given by

Ea,b : y2 = x3 + ax2 + bx, (6)

where a = −2a and b = a2 − 4b. Then there exists a 2−
isogeny φ from Ea,b to Ea,b given by

φ : Ea,b → Ea,b, φ(x, y) =
(

y2

x2
,
y(b − x2)

x2

)
.
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Conversely, there exists a dual isogeny ψ from Ea,b to Ea,b

given by

ψ : Ea,b → Ea,b, ψ(x, y) =
(

y2

4x2
,
y(a2 − 4b − x2)

8x2

)
.

Let

2r =
#α(Ea,b(Q))#α(Ea,b(Q))

4
, (7)

where α is a homomorphism

α : Ea,b(Q) → Q∗/Q∗2

such that

0 → 1 (modQ∗2)
(0, 0) → b (modQ∗2)
(x, y) → x (modQ∗2),

where Q∗ is the multiplicative group of rational units, and
Q∗2 is the subgroup consisting of perfect squares. So Q∗/Q∗2

is like the non-zero rational numbers, with two elements
identified if their quotient is the square of a rational number.
We shall call α the Weil map (in fact it is actually a group
homomorphism). We found the Weil map from the group of
rational points on Ea,b to the group Q∗/Q∗2 by studying the
rational points on torsors

T (ψ)(b1) : N2 = b1M
4 + aM2e2 + b2e

4, (8)

where b1 runs through the square free divisors of b = b1b2.
Then α(Ea,b(Q)) consists of b(modQ∗2), together with those
b1(modQ∗2) such that (8) has a solution (N,M, e).

Similarly, α is an Weil map, which is from the group of
rational points on Ea,b to the group Q∗/Q∗2 by studying the
rational points on torsors

T (φ)(b1) : N2 = b1M
4 + aM2e2 + b2e

4, (9)

where b1 runs through the square free divisors of b = b1b2.
Then α(Ea,b(Q)) consists of b(modQ∗2), together with those
b1(modQ∗2) such that (9) has a solution (N,M, e).

Note that the 2−isogenous curve of our curve Et : y2 =
x3 − t2x is

Et : y2 = x3 + 4t2x (10)

if t is odd, or

Et : y2 = x3 +
t2

4
x (11)

if t is even by (6). Now we can consider the rank of Et and
Et over Q.

Theorem 3.1: The rank of Et and Et over Q is 2.
Proof: Elliptic curves with a rational point of order 2 like

our curves Et : y2 = x3−t2x come attached with a 2−isogeny
φ : Et → Et (depending of choice of point if Et has three
rational points of order 2) as we mentioned above.

Now consider the our elliptic curve Et : y2 = x3 − t2x.
Then there are four possibilities for b1 = −t2 which are ±1
and ±t.

If b1 = 1, then the equation

N2 = M4 − t2e4

has a solution (N, M, e) = (t2, t, 0). If b1 = −1, then the
equation

N2 = −M4 + t2e4

has a solution (N, M, e) = (t, 0,−1). If b1 = t, then the
equation

N2 = tM4 − te4

has a solution (N, M, e) = (0, t2, t2) and if b1 = −t, then the
equation

N2 = −tM4 + te4

has a solution (N,M, e) = (0, t2,−t2). So

α(Et(Q)) = {±1,±t (modQ∗2)} and (12)

#α(Et(Q)) = 4

by (8).
Now we consider the 2−isogeny of Et. If t is odd, then

the 2−isogenous curve of Et is Et : y2 = x3 + 4t2x by (10).
Then there are four possibilities for b1 = 4t2 which are ±1
and ±2t.

If b1 = 1, then the equation

N2 = M4 + 4t2e4

has a solution (N,M, e) = (2t, 0, 1). If b1 = −1, then the
equation

N2 = −M4 − 4t2e4

has no solution (N,M, e) since its right-hand side is strictly
negative. If b1 = 2t, then the equation

N2 = 2tM4 + 2te4

has no solution (N, M, e) and if b1 = −2t, then the equation

N2 = −2tM4 − 2te4

has no solution (N,M, e) since its right-hand side is strictly
negative. Hence

α(Et(Q)) = {1 (modQ∗2)} and #α(Et(Q)) = 1

by (9).
If t is even, then the 2−isogenous curve of Et is Et : y2 =

x3 + t2

4 x by (11). Let t = 2k for integers k ≥ 1. Then Et

becomes an elliptic curve has the form Et : y2 = x3 + k2x.
Then there are four possibilities for b1 = k2 which are ±1
and ±k.

If b1 = 1, then the equation

N2 = M4 + k2e4

has a solution (N,M, e) = (k, 0, 1). If b1 = −1, then the
equation

N2 = −M4 − k2e4

has no solution (N,M, e) since its right-hand side is strictly
negative. If b1 = k, then the equation

N2 = kM4 + ke4
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has no solution and if b1 = −k, then the equation

N2 = −kM4 − ke4

has no solution since its right-hand side is strictly negative.
Hence

α(Et(Q)) = {1 (modQ∗2)} and #α(Et(Q)) = 1

by (9). So in both cases, i.e. whether t is even or odd, we have

α(Et(Q)) = {1 (modQ∗2)} and (13)

#α(Et(Q)) = 1.

Applying (12) and (13), we get

2r =
#α(Et(Q)).#α(Et(Q))

4

=
4.1
4

= 4
⇔ r = 2.

Consequently, the rank of Et(Q) and Et(Q) over Q is 2 by
(7) as we claimed.

IV. TRACE OF FROBENIUS OF ELLIPTIC CURVES

Ep,t : y2 = x3 − t2x.

Let ap,t denote the trace of Frobenius of elliptic curve Ep,t :
y2 = x3−t2x. Then by (2), we get #Ep,t(Fp) = p+1−ap,t.
In this section we will obtain some relations on the sums∑

t∈F∗
p

an
p,t

for an integer n ≥ 1.
Theorem 4.1: Let ap,t denote the trace of Frobenius of

elliptic curve Ep,t.

1) If p ≡ 3(mod 4), then∑
t∈F∗

p

an
p,t = 0

for all integers n ≥ 1.
2) Let p ≡ 1(mod 4), write p = a2 + b2.

i. If a + b ≡ 1(mod 4), then∑
t2∈Q4,+

an
p,t = 2n−2an(p − 1)

and ∑
t2∈Q4,−an

p,t = (−1)n2n−2an(p − 1).

ii. If a + b ≡ 3(mod 4), then∑
t2∈Q4,+

an
p,t = (−1)n2n−2an(p − 1)

and ∑
t2∈Q4,−an

p,t = 2n−2an(p − 1).

for all integers n ≥ 1.

Proof: 1. Let p ≡ 3(mod 4). Then Ep,t(F) = p + 1. So
ap,t = 0 by (2). Consequently all powers of sums of ap,t = 0
is 0, that is ∑

t∈F∗
p

an
p,t = 0

for all integers n ≥ 1.
2. Let p ≡ 1(mod 4) and let a+b ≡ 1(mod 4). If t2 ∈ Q4,+

p ,
then ap,t = 2a and hence the sum of an

p,t over t2 ∈ Q4,+
p is

∑
t2∈Q4,+

an
p,t = #Q4,+

p .
∑

t2∈Q4,+
an

p,t

= #Q4,+
p .(2a)n

=
p − 1

4
.2nan

= 2n−2(p − 1)an.

If t2 ∈ Q4,−
p , then ap,t = −2a and hence the sum of an

p,t

over t2 ∈ Q4,−
p is

∑
t2∈Q4,−an

p,t = #Q4,−
p .

∑
t2∈Q4,−an

p,t

= #Q4,−
p .(−2a)n

=
p − 1

4
.(−1)n2nan

= (−1)n2n−2(p − 1)an.

Let a + b ≡ 3(mod 4). If t2 ∈ Q4,+
p , then ap,t = −2a and

hence the sum of an
p,t over t2 ∈ Q4,+

p is
∑

t2∈Q4,+
an

p,t = #Q4,+
p .

∑
t2∈Q4,+

an
p,t

= #Q4,+
p .(−2a)n

=
p − 1

4
.(−1)n2nan

= (−1)n2n−2(p − 1)an.

If t2 ∈ Q4,−
p , then ap,t = 2a and hence the sum of an

p,t

over t2 ∈ Q4,−
p is

∑
t2∈Q4,−an

p,t = #Q4,−
p .

∑
t2∈Q4,−an

p,t

= #Q4,−
p .(2a)n

=
p − 1

4
.2nan

= 2n−2(p − 1)an.

Form above theorem we can give the following theorem.

Theorem 4.2: If p ≡ 1(mod 4), then

∑
t∈F∗

p

an
p,t =

⎧⎨
⎩

0 if n is odd

2n−1an(p − 1) if n is even

for all integers n ≥ 1.

Proof: Let p ≡ 1(mod 4) and let a+b ≡ 1(mod 4). Then
we know that∑

t2∈Q4,+
an

p,t = 2n−2an(p − 1)
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and ∑
t2∈Q4,−an

p,t = (−1)n2n−2an(p − 1).

If n is odd, then∑
t∈F∗

p

an
p,t =

∑
t2∈Q4,+

an
p,t +

∑
t2∈Q4,−an

p,t

= 2n−2an(p − 1) − 2n−2an(p − 1)
= 0.

If n is even, then∑
t∈F∗

p

an
p,t =

∑
t2∈Q4,+

an
p,t +

∑
t2∈Q4,−an

p,t

= 2n−2an(p − 1) + 2n−2an(p − 1)
= 2(2n−2an(p − 1))
= 2n−1an(p − 1).

Similarly let a + b ≡ 3(mod 4). Then we know that∑
t2∈Q4,+

an
p,t = (−1)n2n−2an(p − 1)

and ∑
t2∈Q4,−an

p,t = 2n−2an(p − 1).

If n is odd, then∑
t∈F∗

p

an
p,t =

∑
t2∈Q4,+

an
p,t +

∑
t2∈Q4,−an

p,t

= −2n−2an(p − 1) + 2n−2an(p − 1)
= 0.

If n is even, then∑
t∈F∗

p

an
p,t =

∑
t2∈Q4,+

an
p,t +

∑
t2∈Q4,−an

p,t

= 2n−2an(p − 1) + 2n−2an(p − 1)
= 2(2n−2an(p − 1))
= 2n−1an(p − 1).
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