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Globally exponential stability for Hopfield neural

networks with delays and impulsive perturbations
Adnene Arbi, Chaouki Aouiti, and Abderrahmane Touati

Abstract—In this paper, we consider the global exponential stabil-
ity of the equilibrium point of Hopfield neural networks with delays
and impulsive perturbation. Some new exponential stability criteria
of the system are derived by using the Lyapunov functional method
and the linear matrix inequality approach for estimating the upper
bound of the derivative of Lyapunov functional. Finally, we illustrate
two numerical examples showing the effectiveness of our theoretical
results.
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I. INTRODUCTION

S
INCE the American physicist Hopfield brought forward

the Hopfield neural network (HNN) in 1982. It has been

extensively studied and developed in recent years, and it has

attracted much attention in the literature on Hopfield neural

networks with time delays, (see, e.g., [1-4]). They are now

recognized as candidates for information processing systems

and have been successfully applied to associative memory, pat-

tern recognition, automatic control, model identification, opti-

mization problems, etc. (we refer to reader [5-12]). Therefore,

the study of stability of HNN has caught many researchers

attention. HNN with time delays has been extensively investi-

gated over the years, and various sufficient conditions for the

stability of the equilibrium point of such neural networks have

been presented via different approaches. In [7], [15], some

sufficient conditions of stability by utilizing the Lyapunov

functional method, and linear matrix inequality approach

for delayed continuous HNN are derived. In [16], G.Zong

and J.Liu established a novel delay-dependent condition to

guarantee the existence of HNN and its global asymptotic

stability by resorting to the integral inequality and constructing

a Lyapunov-Krasovskii functional. In [18], S.Long and D.Xu

got the sufficient conditions for global exponential stability and

global asymptotic stability by using Lyapunov-Krasovskii-type

functionaly of negative definite matrix and Cauchy criterion.

In this paper, we consider a class of HNN with delays and im-

pulsive perturbations. Some new sufficient conditions for the

global exponential stability of the equilibrium point for such

system are obtained by means of using a Lyapunov functional.

The effects of impulses and delays on the solutions are stressed

here. The conditions on global exponential stability are simpler

and less restrictive versions of some recent results.

This paper is organized as follows: In section II, an impulsive

continuous Hopfield neural network with delays model is

described. In addition, we present some basic definitions and

lemmas. New stability criteria for continuous Hopfield neural

Faculty of sciences of Bizerta, Department of Mathematics, 7021 Jarzouna
Bizerta, Tunisia e-mail : adnen.arbi@enseignant.edunet.tn,
chaouki.aouiti@fsb.rnu.tn, Abder.Touati@fsb.rnu.tn.

network are derived in section III. Two examples are given in

section IV, to illustrate the advantage of the results obtained.

Finally, some conclusions are drawn in section V.

II. PRELIMINARIES

Let R denote the set of real numbers, Z+ denote the

positive integers and R
n denote the n-dimensional real space

equipped with the Euclidean norm ‖.‖.

Consider the following delayed HNN model with impulses























ẋi(t) = −cixi(t) +
n
∑

j=1

aijfj(xj(t))

+
n
∑

j=1

bijgj(xj(t− τ(t))) + Ii si t 6= tk

△xi\t=tk
= xi(tk) − xi(t

−
k ) i = 1, ..., n, n, k ∈ Z+,

(1)

where n ≥ 2 corresponds to the number of units in a neural

network; the impulsive times tk satisfy 0 ≤ t0 < t1 <

... < tk < ..., lim
k−→+∞

tk = +∞; xi corresponds to the

state of the unit i at time t; ci is positive constant; fj , gj ,

denote respectively, the measures of response or activation to

its incoming potentials of the unit j at time t and t − τ(t);
constant aij denotes the synaptic connection weight of the

unit j on the unit i at time t; constant bij denotes the synaptic

connection weight of the unit j on the unit i at time t− τ(t);
Ii is the input of the unit i; τ(t) is the transmission delay

such that 0 < τ(t) ≤ τ and τ̇(t) ≤ ρ < 1; t ≥ t0; τ, ρ are

constants.

The initial conditions associated with system (1) are of the

form:

x(s) = φ(s), s ∈ [t0 − τ, t0], (2)

where x(s) = (x1(s), x2(s), ..., xn(s))T ,

φ(s) = (φ1(s), φ2(s), ..., φn(s))T ∈ PC([−τ, 0],Rn) = {ψ :
[−τ, 0] −→ R

n, is continuous everywhere except at finite

number of points tk, at which ψ(t+k ) and ψ(t−k ) exist and

ψ(t+k ) = ψ(tk)}. For ψ ∈ PC([−τ, 0],Rn), the norm of ψ

is defined by ‖ψ‖τ = sup
−τ≤θ≤0

‖ψ(θ)‖. For any t0 ≥ 0, let

PCδ(t0) = {ψ ∈ PC([−τ, 0],Rn) : ‖ψ‖τ < δ}.

In this paper, we assume that some conditions are satisfied

so that the equilibrium point of system (1) does exist,

see ([7], [13]). Assume that x̄ = (x̄1, x̄2, ..., x̄n) is an

equilibrium point of system (1). Impulsive operator is

viewed as perturbation of the equilibrium point x̄ of

such system without impulsive effects. We assume that

∆xi\t=tk
= xi(tk) − xi(t

−
k ) = d

(i)
k (xi(t

−
k ) − x̄i), d

(i)
k ∈ R,

i = 1, 2, ..., n, k = 1, 2, ....
Since x̄ is an equilibrium point of system (1), one can
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derive from system (1) that the transformation yi = xi − x̄i,

i = 1, 2, ..n transforms such system into the following system:























ẏi(t) = −ciyi(t) +
n
∑

j=1

aijFj(yj(t))

+
n
∑

j=1

bijGj(yj(t− τ(t))) if t 6= tk

yi(tk) = (1 + d
(i)
k )yi(t

−
k ) i = 1, ..., n, n, k ∈ Z+

,

(3)

where

Fj(yj(t)) = fj(x̄j + yj(t)) − fj(x̄j)

Gj(yj(t− τ(t))) = gj(x̄j + yj(t− τ(t))) − gj(x̄j).

To prove the stability of x̄ of system (1), it is sufficient to

prove the stability of the zero solution of system (3).

In this paper, we assume that there exist constants Li,

Mi ≥ 0 such as | Fi(y) |≤ Li | y |, | Gi(y) |≤ Mi | y |,
i ∈ Λ = {1, 2, ...n}
Lmax = max

i∈Λ
Li, Mmax = max

i∈Λ
Mi

cmax = max
i∈Λ

ci, cmin = min
i∈Λ

ci

Dk = diag(1 + d
(1)
k , 1 + d

(2)
k , ..., 1 + d

(n)
k )

Some definitions and lemma of stability for system (1)

at its equilibrium point are introduced as follows:

A. Definition

Assume y(t) = y(t0, ϕ)(t) be the solution of (3) through

(t0, ϕ). then the zero solution of (3) is said to be [14]

P1 stable, if for any ǫ > 0 and t0 ≥ 0, there exists

some δ(ǫ, t0) > 0 such as ϕ ∈ PCδ(t0) implies

‖y(t0, ϕ)(t)‖ < ǫ, t ≥ t0.

P2 globally exponentially stable, if there exists constant

α > 0, β ≥ 1 such that for any initial value ϕ,

‖y(t0, ϕ)(t)‖ ≤ β‖ϕ‖τe
−α(t−t0).

We now need the following basic lemma used in our work.

B. Lemma

For any a, b ∈ R
n, the inequality

±2aT b ≤ aTXa+ bTX−1b

holds, where X is any n× n matrix with X > 0 [17].

III. MAIN RESULTS

Now, we shall establish an theorem which provide sufficient

conditions for global exponential stability of system (1).

A. Theorem

Assumes there are constants ǭ > 0 , σ > 0 and n × n

definite positive matrix Q satisfy:

max
i,j

qij <

e−ǭτ · min
i,j

|bij |

σ · max
i
ci

, ∀i, j ∈ {1, 2, ..., n}

and assume that the following conditions are satisfy:

(i) ǭ
cmin

+ max
1≤i≤n

{ 1
ci

n
∑

j=1

aij} + max
1≤j≤n

{L2
j

n
∑

i=1

aij

ci
}

+ λmax(C−1BQ−1BT C−1)
σ

+ max
1≤j≤n

{M2
j

n
∑

i=1

1
ci
|bij |} <

2

(ii) There exist constants ν ≥ 0, ᾱ ∈ [0, ǭ[ such that:
m
∑

k=1

ln max{ξk.cmax, 1} − ᾱ(tm − t0) < ν,

∀m ∈ Z+,

where ξk is the largest eigenvalue of DkC
−1Dk.

Then, the equilibrium point of system (1) is globally

exponentially stable and approximate exponentially convergent

rate is
(ǭ−ᾱ)

2 .

If more Q = In in this Theorem, then we have this

corollary:

B. Corollary

Assume that there exist constants ǭ > 0, σ > 0 such as:

σ <
e−ǭτ ·min

i,j

|bij |

max
i

ci
and

(i) ǭ
cmin

+ max
1≤i≤n

{ 1
ci

n
∑

j=1

aij} + max
1≤j≤n

{L2
j

n
∑

i=1

aij

ci
}

+ λmax(C−1BBT C−1)
σ

+ max
1≤j≤n

{M2
j

n
∑

i=1

1
ci
|bij |} < 2

(ii) There are constants ν ≥ 0, ᾱ ∈ [0, ǭ] such as

m
∑

k=1

ln max{cmax max
i=1,2,...,n

(1+d
(i)
k )2, 1}−ᾱ(tm−t0) < ν

for all m ∈ Z+ holds.

Then, the equilibrium point of system (1) is globally expo-

nentially stable and the approximate exponentially convergent

rate is
(ǭ−ᾱ)

2 .

IV. NUMERICAL APPLICATIONS

In this section, we present two numerical examples to

illustrate that our conditions are more feasible than that given

in earlier reference ([19],[25]).

A. Example1

Consider the two-neuron delayed neural network with im-

pulses [19] as follows:






































ẋ1(t) = −x1(t) + 1
8f1(x1(t)) + 1

4f2(x2(t))
+ 1

3g1(x1(t− τ)) − 1
6g2(x2(t− τ))

ẋ2(t) = −x2(t) + 1
4f1(x1(t)) + 1

8f2(x2(t))
− 1

6g1(x1(t− τ)) + 1
4g2(x2(t− τ))

x(tk) = γkx(t
−
k ), k = 1, 2, ...

(4)
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where tk − tk−1 = 1, γk = (−1)k

√

e0.224+4
5 , k ∈ Z+. Here

we consider τ = 0.7.

f1(x) = f2(x) = g1(x) = g2(x) = 0.5(|x+ 1| − |x− 1|)

C =

(

1 0
0 1

)

; A =

(

1
8

1
4

1
4

1
8

)

; B =

(

1
3 − 1

6
− 1

6
1
4

)

Next we show that the equilibrium point of system (4) is

globally exponentially stable with τ ≤ 0.7.

It is easy to calculate that L = M = 1, d
(i)
k =

(−1)k

√

e0.224+4
5 − 1. Then, we may choose ǭ = 0.0695,

ᾱ = 0.0495, σ = e−1.15, ν = 0, Q = Id.

It is clear that:

ᾱ ∈ [0, ǭ]

and

σ <
|b| · e−ǭτ

c

Furthermore, we compute

ǭ
cmin

+ max
1≤i≤2

{ 1
ci

2
∑

j=1

|aij |} + max
1≤j≤2

{L2
j

2
∑

i=1

1
ci
|aij |}

+ λmax(C−1BBT C−1)
σ

+ max
1≤j≤2

{M2
j

2
∑

i=1

1
ci
|bij |} < 2

We also get, for any m ∈ Z+,
m
∑

k=1

ln max{maxi=1,2,...n(1 + d
(i)
k )2, 1} − ᾱ(tm − t0)

= m ln
e0.224 + 4

5
− 0.0495m ≃ −m0.0005 < 0 = ν

Then, from Corollary III-B, the equilibrium point of system

(4) (0, 0)T is globally exponentially stable with approximate

exponential convergence rate 0.01. But for any α, A+AT +αI
is not negative definite. Hence, the result in [20] cannot

applied in this case.

Remark: Meantime, the matrices −(A+AT ) is obtained as

−(A+AT ) =





− 1
4 − 1

2

− 1
2 − 1

4





It is obvious that −(A + AT ) is not a positive definite.

Therefore, the condition in ([21]-[24]) does not hold.

B. Example2

Consider the two-neuron delayed neural network with im-

pulses [25] as follows:



































ẋ1(t) = −x1(t) − 0.1f1(x1(t)) + 0.1f2(x2(t))
−0.1g1(x1(t− τ)) + 0.2g2(x2(t− τ))

ẋ2(t) = −x2(t) + 0.1f1(x1(t)) − 0.1f2(x2(t))
+0.2g1(x1(t− τ)) + 0.1g2(x2(t− τ))

x(tk) = γkx(t
−
k ), k = 1, 2, ...

(5)

where tk − tk−1 = 1, γk = (−1)k

√

e0.224+4
5 , k ∈ Z+. Here

we consider τ = 1.

f1(x) = f2(x) = g1(x) = g2(x) = 0.5(|x+ 1| − |x− 1|)

C =

(

1 0
0 1

)

; A =

(

−0.1 0.1
0.1 −0.1

)

B =

(

−0.1 0.2
0.2 0.1

)

Next we show that the equilibrium point of system (5) is

globally exponentially stable with τ ≤ 1.

It is easy to calculate that L = M = 1, d
(i)
k =

(−1)k

√

e0.224+4
5 − 1. Then, we may choose ǭ = 0.8695,

ᾱ = 0.0495, σ = e−3.18, ν = 0, Q = Id.

It is clear that:

ᾱ ∈ [0, ǭ]

and

σ <

e−ǭτ .min
i,j

|bij |

max
i
ci

Furthermore, we compute

ǭ
cmin

+ max
1≤i≤2

{ 1
ci

2
∑

j=1

|aij |} + max
1≤j≤2

{L2
j

2
∑

i=1

1
ci
|aij |}

+ λmax(C−1BBT C−1)
σ

+ max
1≤j≤2

{M2
j

2
∑

i=1

1
ci
|bij |} < 2

We also get, for any m ∈ Z+,
m
∑

k=1

ln max{maxi=1,2,...n(1 + d
(i)
k )2, 1} − ᾱ(tm − t0)

= m ln
e0.224 + 4

5
− 0.0495m ≃ −m0.0005 < 0 = ν

Then, from Corollary III-B, the equilibrium point of system

(5) is globally exponentially stable with approximate

exponential convergence rate 0.41.

Remark: In the work [25], authors proved that equilibrium

point of system (5) is globally exponentially stable.

According to their works, the maximum allowable bound τ

for guaranteeing the exponential stability of system (5) is

0.5 and the convergence rate is 0.19. On the other hand, our

delay-dependent exponential stability criterion in Corollary

III-B presents τ = 1 and the convergence rate is 0.41. It is

clear that for this example our criterion is less conservative

than the existing delay-dependent criteria [25].

V. CONCLUSION

In this paper, a class of HNN with delays and impulsive

perturbations is considered. The problems of exponential sta-

bility and exponential convergence rate for neural networks

with time-varying delays have been studied. We obtain some

new criteria ensuring the global exponential stability of the

equilibrium point for such system by using the Lyapunov

method and linear matrix inequality. Our results show the

effects of delay and impulsive to the stability of HNN. The

results here are discussed from the point of view to its

comparaison with earlier results. In comparison with some
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recent results reported in the literature, the present results

provide new stability criteria for delayed neural networks. As

well as these results can be applied to the case uncovered

in some earlier references. Our criterias are more simpler to

verify. An examples is given to illustrate the feasibility and

efficiency of the results. Has the continuation of this work, we

can refine and generalize our results for high-order Hopfield

type neural networks.

APPENDIX A

PROOF OF THE THEOREMIII-A

Consider the Lyapunov functional as follows:

V (y)(t) =

n
∑

i=1

1

ci
eǭty2

i (t)+

n
∑

i=1

n
∑

j=1

|bij |
ci

∫ t

t−τ(t)

eǭsG2
j(yj(s))ds

It is clear that : V (y)(t) > 0, ∀y 6= 0

We have:

1
cmax

eǭt‖y(t)‖2 < V (y(t))

≤ 1
cmin

eǭt‖y(t)‖2 +
n
∑

i=1

n
∑

j=1

|bij |
ci
M2

j

∫ t

t−τ(t)
eǭs|yj(s)|2ds

≤ 1
cmin

eǭt‖y(t)‖2+
M2

max

cmin
sup

1≤j≤n

n
∑

i=1

|bij |‖y(t)‖2
∫ t

t−τ(t) e
ǭsds

≤ 1
cmin

eǭt‖y(t)‖2 +
M2

max

cmin
‖B‖‖y(t)‖2 1

ǭ
eǭt(1 − e−ǭτ(t))

≤ [ 1
cmin

+
M2

max

cmin
‖B‖( 1

ǭ
(1 − e−ǭτ(t)))]eǭt‖y(t)‖2

Therefore,

V (y)(t) ≤ [
1

cmin

+
M2

max

cmin

‖B‖(1

ǭ
(1−e−ǭτ ))]eǭt‖y(t)‖2 (6)

Besides we have:

∀k ≥ 1

V (y)(tk) =
n
∑

i=1

1
ci
eǭtky2

i (tk)

+
n
∑

i=1

n
∑

j=1

|bij |
ci

∫ tk

tk−τ(tk)
eǭsG2

j(yj(s))ds

= eǭtkyT (tk)C−1y(tk)+
n
∑

i=1

n
∑

j=1

|bij |
ci

∫ tk

tk−τ(tk) e
ǭsG2

j (yj(s))ds

= eǭtkyT (t−k )DkC
−1Dky(t

−
k )

+
n
∑

i=1

n
∑

j=1

|bij |
ci

∫ t
−

k

t
−

k
−τ(t−

k
)
eǭsG2

j (yj(s))ds

≤ eǭtkξky
T (t−k )y(t−k )+

n
∑

i=1

n
∑

j=1

|bij |
ci

∫ t
−

k

t
−

k
−τ(t−

k
)
eǭsG2

j(yj(s))ds

≤ eǭtk ξk

λmin(C−1)y
T (t−k )C−1y(t−k )

+
n
∑

i=1

n
∑

j=1

|bij |
ci

∫ t
−

k

t
−

k
−τ(t−

k
)
eǭsG2

j (yj(s))ds

Therefore,

V (y(tk)) ≤ max{ξk.cmax, 1}V (t−k ) (7)

On the other hand, from (7), we have:

1

cmax

eǭt‖y(t)‖2 ≤ V (t) ≤ V (t0)
∏

t0<tk≤t

max{ξk.cmax, 1}

(8)

And from (6) we have:

V (t0) ≤ [
1

cmin

+
M2

max

cmin

‖B‖(1

ǭ
(1 − e−ǭτ ))]eǭt0‖ϕ‖2

Therefore,

‖y(t)‖2 ≤ [ cmax

cmin
+

cmax.M2

max

cmin
‖B‖( 1

ǭ
(1 − e−ǭτ ))]

e−ǭ(t−t0)‖ϕ‖2 × ∏

t0≤tk≤t

max{ξk.cmax, 1}

From the condition (ii) we will have:

‖y(t)‖2 ≤ [ cmax

cmin
+

cmax.M2

max

cmin
‖B‖( 1

ǭ
(1 − e−ǭτ ))]

e−(ǭ−ᾱ)(t−t0)eν‖ϕ‖2

So,

‖y(t)‖2 ≤M
′‖ϕ‖2e−

1

2
(ǭ−ᾱ)(t−t0), ∀t ≥ t0

Where

M
′

=
√

[ cmax

cmin
+

cmax.M2
max

cmin
‖B‖( 1

ǭ
(1 − e−ǭτ ))]eν ≥ 1

Hence, the zero solution of (1) is globally exponentially stable.

Verify now is function V (t) is Lyapunov function. To

ensure that, it is sufficient to show that:

∂V (y)(t)

∂t
< 0

We have:

∂V (y)(t)
∂t

= ǭeǭt
n
∑

i=1

1
ci
y2

i (t) + eǭt
n
∑

i=1

1
ci

2yi(t)ẏi(t) +

n
∑

i=1

n
∑

j=1

|bij |
ci

[eǭtG2
j (yj(t))

− eǭ(t−τ(t))G2
j (yj(t− τ(t)))(1 − τ̇(t))]

We know that:

ẏi(t) = −ciyi(t) +

n
∑

j=1

aijFj(yj(t)) +

n
∑

j=1

bijGj(yj(t− τ(t))

Therefore,

∂V (y)(t)
∂t

= ǭeǭt
n
∑

i=1

1
ci
y2

i (t)

+ eǭt
n
∑

i=1

1
ci

2yi(t)(−ciyi(t)
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+
n
∑

j=1

aijFj(yj(t)) +
n
∑

j=1

bijGj(yj(t− τ(t)))

+
n
∑

i=1

n
∑

j=1

|bij |
ci

[eǭtG2
j (yj(t))

− eǭ(t−τ(t))G2
j(yj(t− τ(t)))(1 − τ̇(t))]

Therefore,

∂V (y)(t)
∂t

≤ ǭeǭt
n
∑

i=1

1
ci
y2

i (t)

− 2eǭt
n
∑

i=1

y2
i (t)

+ 2eǭt
n
∑

i=1

n
∑

j=1

1
ci
aijyi(t)Fj(yj(t))

+ 2eǭt
n
∑

i=1

n
∑

j=1

1
ci
bijyi(t)Gj(yj(t− τ(t)))

+
n
∑

i=1

n
∑

j=1

|bij |
ci
eǭtG2

j (yj(t))

− eǭ(t−τ(t))
n
∑

i=1

n
∑

j=1

|bij |
ci
G2

j (yj(t− τ(t)))

Therefore,

∂V (y)(t)
∂t

≤ ǭeǭt
n
∑

i=1

1
ci
y2

i (t)

− 2eǭt
n
∑

i=1

y2
i (t)

+ eǭt
n
∑

i=1

n
∑

j=1

1
ci
aijy

2
i (t) + eǭt

n
∑

i=1

n
∑

j=1

1
ci
aijF

2
j (yj(t))

+ 2eǭt
n
∑

i=1

n
∑

j=1

1
ci
bijyi(t)Gj(yj(t− τ(t)))

+
n
∑

i=1

n
∑

j=1

|bij |
ci
eǭtG2

j (yj(t))

−eǭ(t−τ(t))
n

∑

i=1

n
∑

j=1

|bij |
ci

G2
j (yj(t− τ(t))) (9)

We have by LemmaII-B:

2
n
∑

i=1

n
∑

j=1

1
ci
bijyi(t)Gj(yj(t− τ(t)))

= 2yT (t)C−1BG(y(t− τ(t)))

= 2GT (y(t− τ(t)))BTC−1y(t)

= 2[G(y(t− τ(t)))
√
σ]T (BTC−1y(t)

1√
σ

)

≤ σGT (y(t− τ(t)))QG(y(t − τ(t)))

+
1

σ
yT (t)C−1BQ−1BTC−1y(t)

≤ σ

n
∑

i=1

n
∑

j=1

qijG
2
j (yj(t− τ(t)))

+
1

σ
λmax(C−1BQ−1BTC−1)

n
∑

i=1

y2
i (t) (10)

By substituting (10) in (9), we will have this result

∂V (y)(t)
∂t

≤ ǭeǭt
n
∑

i=1

1
ci
y2

i (t) − 2eǭt
n
∑

i=1

y2
i (t)

+ eǭt
n
∑

i=1

n
∑

j=1

1
ci
aijy

2
i (t)

+ eǭt
n
∑

i=1

n
∑

j=1

1
ci
aijF

2
j (yj(t))

+ eǭt[σ
n
∑

i=1

n
∑

j=1

qijG
2
j (yj(t− τ(t)))

+ 1
σ
λmax(C−1BQ−1BTC−1)

∑n
i=1 y

2
i (t)]

+
n
∑

i=1

n
∑

j=1

|bij |
ci
eǭtG2

j (yj(t))

− eǭ(t−τ(t))
n
∑

i=1

n
∑

j=1

|bij |
ci
G2

j (yj(t− τ(t)))

Therefore,

∂V (y)(t)
∂t

≤ [ ǭ
cmin

− 2 + max
1≤i≤n

{ 1
ci

n
∑

j=1

aij}

+ max
1≤j≤n

{L2
j

n
∑

i=1

aij

ci
} + 1

σ
λmax(C−1BQ−1BTC−1)

+ max
1≤j≤n

{M2
j

n
∑

i=1

1
ci
|bij |}]eǭt

n
∑

i=1

y2
i (t)

+ {eǭtσ
n
∑

i=1

n
∑

j=1

qijG
2
j(yj(t− τ(t)))

− eǭ(t−τ(t))
n
∑

i=1

n
∑

j=1

|bij |
ci
G2

j (yj(t− τ(t)))}

Therefore,
∂V (y)(t)

∂t
< 0

Wich completes the proof.
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