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Abstract—This paper presents a method to detect multiple cracks 
based on frequency information. When a structure is subjected to 
dynamic or static loads, cracks may develop and the modal 
frequencies of the cracked structure may change. To detect cracks in a 
structure, we construct a high precision wavelet finite element (EF) 
model of a certain structure using the B-spline wavelet on the interval 
(BSWI).  Cracks can be modeled by rotational springs and added to the 
FE model.  The crack detection database will be obtained by solving 
that model. Then the crack locations and depths can be determined 
based on the frequency information from the database. The 
performance of the proposed method has been numerically verified by 
a rotor example. 

Keywords—Rotor, frequency measurement, multiple cracks, 
wavelet finite element method, identification. 

I. INTRODUCTION

LL metal members that are subjected to vibration and 
cyclic stresses in more or less localized areas, cracks may 
occur. Since cracks cannot be easily seen with the naked 

eyes, the non-destructive testing methods like ultrasonic 
testing, X-ray, etc. can be used to detect them. However, these 
methods are costly and time-consuming for complex or large 
structures. For this reason, the vibration-based structural health 
monitoring methods, especially those based on the change of 
modal parameters (frequencies, shape and damping), have been 
explored for detecting cracks [1-5]. Some results are 
summarized in [6-8].    

However, only the single crack detection methods are well 
established.  These methods involve the prediction of the 
response of structures with a transverse crack and the detection 
of transverse cracks by finite element or other numerical 
methods. Using the linear facture mechanics theory, the local 
flexibility or stiffness introduced by the crack is evaluated, 
neglecting the effects that may be incorporated into the mass 
and damping matrices. There are two procedures to assess the 
progress of crack detection in structures. The first procedure is 
forward problem analysis, which considers the construction of 
a crack stiffness matrix exclusively for the crack section, then 
the finite element model for crack structures is developed to 
obtain modal parameters at various crack locations and depths, 
such as natural frequencies, modal shape,  modal damping, etc.  
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These parameters constitute the so-called crack detection 
database. The second procedure is inverse problem analysis, 
which considers the measurement of dynamic parameters and 
searches for crack location from the results of forward problem 
analysis. 

The most popular approach which is particularly well suited 
for modeling structures is the finite element method. However, 
the traditional FEM cannot obtain satisfactory results for 
eigen-value problems.  Wavelet finite element method [9-11] is 
a relatively new numerical method for analyze structural 
analysis. The numerical simulation precision of this method is 
higher than that of traditional FEM or boundary element 
method (BEM).  

The purpose of the present work is to establish a method for 
predicting the normalized locations and depths of multiple 
transverse cracks in beam-like structures by considering only 
the few lowest frequencies of the cracked structures. We 
combine the BSWI wavelet-based beam element with 
root-mean-square (RMS) to for effective crack detection.  The 
BSWI beam element is employed to obtain a more accurate 
crack detection database. The model-based inverse problems 
are solved by computing RMS value between the measurement 
and calculation frequencies.  The application of the proposed 
method is illustrated by simulating a rotor with two cracks.  

II.BSWI FINITE ELEMENT MODEL

Goswami et al [12] constructed BSWI functions, and 
presented unification formulas. The BSWI is defined on the 
bounded interval [0, 1] and the multilevel interpolating 
functions on a bounded interval have limited dimension 
towards every scaling space, which can be regarded as a set of 
self-contained interpolating basis. Therefore, the BSWI beam 
elements have been successfully applied to detect single crack 
in single cantilever beam.Denote m  and j as the order and 
scale of BSWI respectively. The j scale m th order BSWI 
(simply denoted as BSWImj) scaling functions )(,

j
km and the 

corresponding wavelets )(,
j

km  can be evaluated by the 

following formulas 
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The wavelet compactly supported intervals are 
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The one-dimensional scaling functions  at the lower 
resolution approximation space jV  are given by 
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The semi-orthonormal wavelets  at detail space jW  are 
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To illustrate, the scaling functions )(,
j

km  for order 4m
at scales j=5 and 6 are shown in Fig.1(a) and (b) respectively.  

Applying the BSWI beam element to the discrete beam-like 
structures, the free vibration frequency equation can be 
obtained [13] 

                       02 MK ,                           (6) 

where K  and M  are the global stiffness and mass matrices 
and the detailed  expressions are shown in [13]. 

III. DETECTION OF MULTIPLE CRACKS

As the modal frequencies can be easily and inexpensively 
acquired by frequency measurement and the linear rotational 
spring model can effectively describe open cracks, we develop 
our method based on the open cracks in rotor. 

A Forward problem  

Fig. 2 shows a simply supported rotor system with n cracks 
in the left shaft. The geometry and the cross-section of the 
cracked shaft are shown in Figs. 2(a) and (b) respectively. L,
L1and L2 are the shaft length, the disc width and the right shaft 
length respectively. ),,2,1( niei  denote crack locations, h
is the height and b is the width of cross-section, 

),,2,1( nici  represent crack depths, d1 is the shaft 
diameter, i the depth of the ith crack, and n the number of 
cracks. Referring to Fig. 2, the relative crack location and crack 
depth can then be denoted by 2/ Leii  and 1/ dii ,
respectively 

Fig. 2 Simply supported rotor system with two cracks in the left shaft 

The continuity conditions at crack position indicate that the 
left node and right node have the same transverse displacement 
while their rotations are connected through the crack stiffness 
submatrix SK  as follows [13] 

(a) j=5

Fig. 1 BSWI scaling functions 

(b) j=6
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For a cracked shaft with circular cross-section, tK  is 
calculated by combination of a series of thin strips as [13] 
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where i  is the depth of the ith crack, 1r  radius of the shaft, 
the Possion’s ratio, 12/ rii  denotes normalized crack 

depth, )(2)( 22
111 rrra i  and 22

12 rH  are 
respectively the crack depth and height of a thin strip (Fig. 2(b)), 
and )/( HF  is stress intensity function which is given by the 
following experimental formula [14] 
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According to the crack location i , we can assemble  
stuffiness submatrix of the cracked structure into the global 
stuffiness matrix in the corresponding place. The global mass 
matrix of cracked rotor system is the same as the uncracked 
one. 

To construct an accurate crack detection database, the 
wavelet-based element proposed herein is applied to the 
forward problem analysis. The functions of the lowest 
frequencies of crack locations and depths are obtained as 
follows: 

)2,,2,1(),,,,,,( 11 njFf nnjj    (10) 

where n is the number of cracks in the shaft. 

B Solving the inverse problem 

To detect n cracks in a structure, inverse problem analysis is 
necessary, which considers the measurement of several lowest 
frequencies and searches for locations and depths of the cracks 
from crack detection databases obtained by forward problem 
analysis. Based on the studies of Dilena and Morassi [15], at 
least 2n frequencies are required as the inputs in order to detect 
n cracks. Therefore, the first 2n frequencies should be 
measured to obtain optimum crack parameters. 

Based on Eq.(11), we have 

)2,,2,1(),(),,,,,( 1
11 njfF jjnn   (11) 

From Eq.(12), we can see clearly that the inverse problem of 
multi-crack detection is essentially a discrete optimization 
problem. To evaluate the errors of the input frequencies 

obtained by experimental measurement of real structures, 
Euclidean length (EL) is adopted as 

2
22

2
22

2
11 )()()( nn ffffffEL  (12) 

where nfff 221 ,,  are the 2n frequencies in the crack 

detection database, whereas nfff 221 ,,  stand for the 
measured frequencies by the experimental modal analysis 
(EMA) or operational modal analysis (OMA).  

The commonly used root-mean-square (RMS) value 
obtained from EL is defined by  

nELRMS 2/                              (13) 

From Eq.(14), we can search the optimization value from the 
crack detection database.  

The procedure for multi-crack detection is presented in Fig. 
3.

Fig.3 The multi-crack detection procedure 

IV. NUMERICAL SIMULATION

To examine the performance of the proposed method, we 
present the following numerical simulation analysis. Consider a 
rotor system shown in Fig.(2). Suppose the rotor dimensions 
and the material properties are: L = 1000 mm, L1 = 50 mm, L2 = 
500 mm, d1 = 20 mm, d2 = 100 mm, Young’s modulus E = 
2.06×1011N/m2, material density  = 7860 kg/m3, Poisson’s 
ratio  = 0.3. The crack cases are shown in Table 1. 

Five BSWI43 beam elements with only 49 degrees of 
freedom (DOFs) are used and the frequency results are similar 
to those of 200 traditional beam elements with 402 DOFs, as 
shown in Table 2. The number of DOFs needed for the 
wavelet-based elements is only 1/8 of that for the traditional 
beam element. This shows the wavelet-based element has better 
performance in solving eigenvalue problems. 

Forward problem analysis 

Inverse problem analysis 

Construct wavelet finite 
element model to 
simulate cracked rotor 

Solve for the first 2n
frequencies with 
different crack locations 
and depths  

Obtain the multi-crack 
detection database 

Apply EMA or OMA to 
obtain the first 2n
frequencies from a rotor 
system 

Use RMS to determine 
the minimum value 
between the measured 
and computed frequencies

Determine 2n crack 
parameters (n locations 
and n depths)
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For the cases investigated (Table 1), the first four 
frequencies as functions of 1  and 1 with 1 0.2
and 2 0.4  can be seen in Fig. 4 (a), (b), (c) and (d). 

TABLE I
CRACK CASES

case 2 1 2 1

1 0.3 0.5 0.4 0.2 
2 0.3 0.3 0.3 0.3 
3 0.4 0.3 0.7 0.1 
4 0.2 0.5 0.6 0.2 
5 0.5 0.4 0.5 0.3 
6 0.4 0.5 0.5 0.3 
7 0.2 0.3 0.3 0.1 
8 0.4 0.5 0.8 0.7 
9 0.6 0.3 0.6 0.2 
10 0.3 0.6 0.2 0.1 

Note: 2 , 1 , 2  and 1  denote the crack depths and locations 

TABLE II 
THE COMPARISION BETWEEN THE WAVELET-BASED ELEMENT AND 

TRADITIONAL BEAM ELEMENT

case 
Wavelet-based element Traditional element 

1f 2f 3f 4f 1f 2f 3f 4f

1 23.2 153.5 294.5 588.9 23.2 153.5 294.3 589.1
2 26.0 162.3 315.4 620.2 26.1 162.2 315.4 620.2
3 22.8 155.1 302.8 598.7 22.8 155.0 302.8 598.9
4 23.2 154.8 296.9 589.3 23.1 154.8 297.1 589.5
5 22.7 148.3 292.8 600.2 22.6 148.3 292.9 600.4
6 22.9 149.0 291.5 592.1 23.0 148.9 291.6 592.1
7 23.3 157.5 301.7 610.4 23.4 157.7 301.6 610.5
8 21.9 152.5 301.1 583.0 22.0 152.5 301.1 583.0
9 21.8 144.0 298.4 590.0 21.7 144.2 298.3 590.2
10 23.3 155.6 296.6 583.1 23.2 155.8 296.5 583.0

Fig. 4 The first four frequencies as functions of the cracks’ 1  and 

1  with 1 0.2  and 2 0.4
    Fig. 5 shows the first four frequencies as functions of the 
second crack’s 2  and 2  with 1  and 1  fixed at 0.4 and 
0.1 respectively. When one crack is kept constant, the 
relationships between the first four frequencies and 2  and 

2  are shown in Fig. 5 (a), (b), (c) and (d).It is observed from 
Figs. 4 and 5 that the first four frequencies are different for 
different each crack cases. Therefore, we can detect the two 
cracks based on such differences between different crack cases. 
However, the relationships between the frequencies and the 
corresponding crack locations and depths are very complex. 
Therefore, we need use RMS or other optimization methods to 
detect multiple cracks in rotor systems. In the simulation 
analysis, the measured four frequencies for crack detection are 
replaced by the first four simulated frequencies computed using 
traditional beam element as shown in Table 2. To simulate 
frequency measurement errors, we add some random noise 
whose amplitude is bounded by [-1,1] to each simulation 
frequency. Table III shows the predicted crack locations and 
depths are 100 % accurate (compared to Table 1). It should be 
pointed out that if there exist large measured errors introduced 
by, e.g., measuring systems, structural boundary conditions, 
and material inner damping, the prediction may not be 100 % 
accurate. However, we can select the inimum root-mean-square 
(RMS) values to determine the crack parameters. The results in 
Table 3 can also help to determine the actual number of cracks. 
For example in case 2, 3.021  indicates that there is 
only one crack.  
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Fig.5 The first four frequencies as functions of the second crack’s 2

and 2  with 4.01  and 1.01

The above example clearly demonstrates that the proposed 
method yield results that are comparable to these obtained via 
the traditional beam element with substantially fewer elements. 

The computational time for the forward problem can thus be 
reduced considerably. The inverse problem can also be solved 
to determine the number of cracks, their locations and severity 
based on the minimum RMS values. 

TABLE III
THE PREDICTED RESULTS

case *
2

*
1

*
2

*
1 RMS 

1 0.3 0.5 0.4 0.2 0.8377 
2 0.3 0.3 0.3 0.3 1.1295 
3 0.4 0.3 0.7 0.1 1.0597 
4 0.2 0.5 0.6 0.2 0.5715 
5 0.5 0.4 0.5 0.3 1.0953 
6 0.4 0.5 0.5 0.3 0.9158 
7 0.2 0.3 0.3 0.1 0.9991 
8 0.4 0.5 0.8 0.7 0.8710 
9 0.6 0.3 0.6 0.2 1.2199 
10 0.3 0.6 0.2 0.1 0.8163 

Note: *
2 , *

1 , *
2  and *

1  denote the predicted crack depths and locations

V.CONCLUSION

A new methodology based on BSWI element for the 
detection of the locations and sizes of multiple cracks has been 
developed. The BSWI element presented in this paper is a 
useful tool with high computational efficiency in structural 
crack identification. Our numerical analysis indicates that the 
proposed method can be used to accurately detect locations as 
well as sizes of multiple cracks. 
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