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A Cell-centered Diffusion Finite Volume Scheme
and it’s Application to

Magnetic Flux Compression Generators
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Abstract—A cell-centered finite volume scheme for discretizing
diffusion operators on distorted quadrilateral meshes has recently
been designed and added to APMFCG to enable that code to be used
as a tool for studying explosive magnetic flux compression generators.
This paper describes this scheme. Comparisons with analytic results
for 2-D test cases are presented, as well as 2-D results from a test
of a ”realistic” generator configuration.
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I. INTRODUCTION

INVESTIGATING the numerical schemes with high accu-
racy for diffusion equation on distorted meshes is very

important in Lagrangian hydrodynamics and magnetohydrody-
namics. Lagrangian method is widely used for the reason that
it has a simple structure and keeps clear track of the material
interface. Since the computational mesh in Lagrangian method
is embedded in the fluid, it will follow the movement of the
fluid and consequently, even being orthogonal initially, will
become highly skewed or highly distorted, which will reduce
the accuracy of the corresponding discrete schemes or even
worse, stop the whole computation. If the discrete schemes
have a high adaptability to the Lagrangian mesh, then the
number of the mesh reconstruction will be much reduced or
even better, the whole computation will proceed without any
mesh reconstruction.

Magnetic flux compression generators (MFCGs) power sup-
plies provide compact inexpensive generators of high current
(megamperes), high energy (megajoules), and short current
risetime (microseconds). Applications of these generators in
plasma, solid-state, particle, and optical physics research have
been reviewed by Knoepfel [1] and Fowler [2].

Helically-wound generators, described by Shearer, et al. [3]
and Crawford and Damerow [4], have the advantage of a high
initial inductance, permitting a potentially high amplification
factor. Figure 1 shows a sketch of a typical generator. An
initial pulsed current in the outer helical coil winding estab-
lishes magnetic flux between the coil and the inner metallic
cylinder, referred to as the armature. The armature contains
high explosive, which is detonated from one end, driving the
armature towards the coil at high velocity. The inductance
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decrease in the helical winding is a result both of the decrease
in radial separation between the armature and the coil and of
the decrease in coil axial length as the armature short circuits
successive turns of the coil. This decrease in inductance,
combined with the coil’s tendency to conserve flux, leads to
amplification of the electrical current which can be delivered
to an external load. Chemical energy stored in the explosive
is converted to kinetic energy of the armature. This energy in
turn is transformed by the coil magnetic field into electrical
energy delivered to the external load.

A two-dimensional magnetohydrodynamics (MHD) code
which can be used to study at least isolated sections of the
generator geometry has been constructed. The basic approach
to be taken is to add a magnetic field solver, Joule heating, self-
consistent magnetic forces, and an external circuit equation to
the 2-D material response code.

This paper describes a cell-centered diffusion finite volume
scheme. a two-dimensional finite difference magnetic field
solver has been developed using the scheme to treat the flux
compression and the nonlinear temperature-dependent resistive
diffusion into both conductors.

II. CELL-CENTERED DIFFUSION FINITE VOLUME SCHEME

A. Problem and notations

Let Ω be an open bounded polygonal subset of R2 with
boundary ∂Ω and u = u(x) the solution of the following
steady diffusion problem:

−∇ · (λ∇u) = f, in Ω (1)

where u is homogeneous to a temperature, λ is a scalar
diffusion coefficient, and f denotes a source term.

The domain Ω is paved with a collection of non-overlapping
convex quadrangles: {K,L,. . .} and with each cell K we
associate one point (the so-called collocation point or cell-
centered) denoted also by K: the barycenters is a qualified
candidate but other points can be chosen. Denote the cell
vertex by A, B, . . ., and the cell side by σ. If the cell side
σ is a common edge of cells K and L, and its vertices are
A and B, then we denote σ = K|L = BA and its length is
denoted by |A − B|.

Let J be the set of all cells, E be the set of all cell side, and
EK be the set of all cell side of cell K . Denote Eint = E ∩Ω,
E0

int = {σ ∈ Eint : σ ∩ ∂Ω = ∅}, Eext = E ∩ ∂Ω. Denote h =(
supK∈Jm(K)

)1/2

, where m(K) is the area of cell K . The
distance from the cell-center K (resp. L) to the edge σ is
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Fig. 1. Stencil and notation.

denoted by dK,σ(resp. dL,σ),see Figure 1. I denotes a point
on the line AB which is usually the intersection point of line
segment KL with σ or the midpoint of the edge σ.

We adopt the following notations (see Fig.1). �nK,σ(resp.
�nL,σ) is the outward unit vector normal to the edge σ of cell
K (resp. L). There holds �nK,σ = −�nL,σ for σ = K|L. �tK,σ

denotes the unit vector tangential to σ, see Figure 2.

Fig. 2. Outward unit vector normal to σ and unit vector tangent to σ.

B. Construction of the scheme

By integrating (1) over the cell K , and using Green formula,
one obtains ∑

σ∈EK

FK,σ =

∫
K

f(x)dx, (2)

where the continuous diffusion flux on edge σ is

FK,σ = −

∫
σ

λ(x)∇u(x) · �nK,σdl. (3)

Note that

L − I = �IL = dL,σ�nK,σ + r1�tK,σ,

A − B = �BA = |A − B|�tK,σ,

I − K = �KI = dK,σ�nK,σ + r2�tK,σ,

(4)

where

r1 =
(L − I, A − B)

|A − B|
, r2 =

(I − K, A − B)

|A − B|
. (5)

It is straightforward to express the outward unit vector
normal to σ using the third equation of (4) and the expression
I − K = �KI = |I − K|�tKI , where �tKI is the unit vector
tangential to I−K: �nK,σ = 1

cos θK,σ

�tKI−tan θK,σ�tK,σ , where
θK,σ denotes the angle between �nK,σ and I − K .

The continuous diffusion flux can be written as

F =tan θK,σ

∫
σ

λ(x)∇u(x) · �tK,σdl

−
1

cos θK,σ

∫
σ

λ(x)∇u(x) · �tKIdl.

(6)

In order to discretize the above continuous diffusion flux,
we use the Taylor expansion for the function u, and then obtain

u(I) − u(K) = ∇u(x) · (I − K) +

∫ 1

0

(HI − HK)sds,

u(A) − u(B) = ∇u(x) · (A − B) +

∫ 1

0

(HA − HB)sds,

(7)

where HK =
(
∇2u(sx + (1 − s)K)(K − x), K − x

)
,

∇2u(sx + (1 − s)K) denotes the Hessian matrix of u at the
point sx+(1− s)K . The notations HI , HA and HB have the
similar meaning.

Note that I −K = �KI = |I −K|�tKI and A−B = �BA =
|A−B|�tK,σ. By multiplying the above two equations by λ(x)
and integrating on the edge σ, one obtains
∫

σ

λ(x)(u(I) − u(K))dl =

∫
σ

λ(x)∇u(x)|I − K| · �tKIdl

+

∫
σ

(
λ(x)

∫ 1

0

(HI − HK)sds

)
dl,

∫
σ

λ(x)(u(A) − u(B))dl =

∫
σ

λ(x)∇u(x)|A − B| · �tK,σdl

+

∫
σ

(
λ(x)

∫ 1

0

(HA − HB)sds

)
dl.

(8)

So we have∫
σ

λ(x)∇u(x) · �tKIdl =
|A − B|

|I − K|
λK,σ(u(I) − u(K))

−
1

|I − K|

∫
σ

(
λ(x)

∫ 1

0

(HI − HK)sds

)
dl,

(9)

and similarly
∫

σ

λ(x)∇u(x) · �tK,σdl = λK,σ(u(A) − u(B))

−
1

|A − B|

∫
σ

(
λ(x)

∫ 1

0

(HA − HB)sds

)
dl,

(10)

where λK,σ = 1
|A−B|

∫
σ λ(x)dl is the average value of λ(x)

along σ in the cell K . The second terms of right hand side
in the above two equations are O(h2). Substitute (9) and (10)
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into (6) to obtain

FK,σ = tan θK,σ [λK,σ(u(A) − u(B))

−
1

|A − B|

∫
σ

(
λ(x)

∫ 1

0

(HA − HB)sds

)
dl

]

−
1

cos θK,σ

[
|A − B|

|I − K|
λK,σ(u(I) − u(K))

−
1

|I − K|

∫
σ

(
λ(x)

∫ 1

0

(HI − HK)sds

)
dl

]

= −τK,σ [u(I) − u(K) − DK,σ(u(A) − u(B))]

+ RK,σ

(11)

where

τK,σ =
|A − B|λK,σ

|I − K| cos θK,σ
=

|A − B|λK,σ

dK,σ
,

DK,σ =
sin θK,σ|I − K|

|A − B|
=

r2

|A − B|
,

RK,σ =

∫
σ

∫ 1

0

λ(x)

dK,σ
[HI − HK − DK,σ(HA − HB)] sdsdl

= O(h2).
(12)

Similarly, we have

F = −tauL,σ [u(I) − u(L) − DL,σ(u(B) − u(A))]

+ RL,σ,
(13)

where

τL,σ =
|A − B|λL,σ

dL,σ
, DL,σ =

r1

|A − B|
,

RL,σ =

∫
σ

∫ 1

0

λ(x)

dL,σ
[HI − HL − DL,σ(HB − HA)] sdsdl

= O(h2).
(14)

From the continuity of the normal flux

FK,σ = −FL,σ (15)

we get

u(I) =
1

τK,σ + τL,σ
[τK,σu(K) + τL,σu(L)

+(τK,σDK,σ − τL,σDL,σ)(u(A) − u(B))]

+
1

τK,σ + τL,σ
(RK,σ + RL,σ).

(16)

Substitute (16) into (11) to obtain

FK,σ = −τσ [u(L) − u(K) − Dσ(u(A) − u(B))]

+ R̃K,σ,
(17)

where

τσ =
τK,στL,σ

τK,σ + τL,σ
, Dσ = DK,σ + DL,σ =

(L − K, A − B)

|A − B|2
,

R̃K,σ =
τL,σRK,σ − τK,σRL,σ

τK,σ + τL,σ
.

(18)

Fig. 3. Stencil of cell vertex.

Similarly, we have

FL,σ = −τσ [u(K) − u(L) − Dσ(u(B) − u(A))]

+ R̃L,σ,
(19)

where
R̃K,σ =

τK,σRL,σ − τL,σRK,σ

τK,σ + τL,σ
. (20)

Obviously there holds

R̃K,σ = −R̃L,σ (21)

Let FK,σ be the discrete normal flux on edge σ = K|L =
BA of cell K defined as follows:

FK,σ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− τσ [uL − uK − Dσ(uA − uB)] , ∀σ ∈ E0
int,

− τσ [uL − uK − DσuA] , ∀σ ∈ Eint, B ∈ ∂Ω,

− τσ [uL − uK + DσuB] , ∀σ ∈ Eint, A ∈ ∂Ω,

τK,σuK , ∀σ ∈ Eext.
(22)

With the definition of FK,σ , the finite volume scheme is
constructed as follows:∑

σ∈EK

FK,σ = fKm(K), ∀K ∈ J . (23)

It is obvious that there are the vertex unknowns in addi-
tion to cell-centered unknowns in the expression (17) and
(19) of flux. Now we consider how to eliminate the vertex
unknowns locally, or approximate the vertex unknowns by the
neighboring cell-centered unknowns. Suppose that zigzag line
segment A′AA′′ lies on the discontinuous line (see Fig.3), line
segments BA and AB′ are not discontinuous line. �n′ (resp.
�n′′) denotes unit vector normal to A′A (resp. AA′′) (upward
direction).

Let λ|K(A) denote the limit of λ on cell K to vertex A.
λ|KA

(A), λ|LA
(A) and λ|L(A) have the similar definition. So

we have λ|KA
(A) = λ|LA

(A), λ|K(A) = λ|L(A).
Let ∂u

∂�n′
|K(A) denote the limit of ∂u

∂�n′
on cell K to vertex

A. ∂u
∂�n′

|KA
(A), ∂u

∂�n′′
|LA

(A), and ∂u
∂�n′′

|L(A) have the similar
definition, where ∂u

∂�n′
= ∇u · �n′ and ∂u

∂�n′′
= ∇u · �n′′.

Suppose the following condition is fulfilled:

λ|KA
(A)

∂u

∂�n′
|KA

(A) + λ|LA
(A)

∂u

∂�n′′
|LA

(A)

=λ|K(A)
∂u

∂�n′
|K(A) + λ|L(A)

∂u

∂�n′′
|L(A)

(24)
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Let Ω = Ω1

⋃
Γ

⋃
Ω2, Ω̄1

⋂
Ω̄2 = Γ, where Γ is the

discontinuous line.
Now we distinguish two cases.
Case 1. KA, A and LA are collinear or K , A and L are

collinear.
Firstly, assume K , A and L are collinear. There is

λ|K(A)
∂u

∂ �KA
|K(A) = λ|L(A)

∂u

∂ �AL
|L(A), (25)

where �KA denotes the unit vector tangent to KA and �AL

denotes the unit vector tangent to AL. Note that

λ|K(A) = λ|L(A), λ(K) − λ(L) = O(h),

∂u

∂ �KA
|K(A) =

u(A) − u(K)

|A − K|
+ O(h),

∂u

∂ �AL
|L(A) =

u(L) − u(A)

|L − A|
+ O(h).

(26)

Suppose

λ(K)
uA − uK

|A − K|
= λ(L)

uL − uA

|L − A|
. (27)

A simple calculation shows

uA =
1

λ(K)
|A−K| + λ(L)

|L−A|

[
λ(K)

|A − K|
uK +

λ(L)

|L − A|
uL

]
. (28)

Similarly, when KA, A and LA are collinear, we set

uA =
1

λ(KA)
|A−KA| + λ(LA)

|LA−A|

[
λ(KA)

|A − KA|
uKA

+
λ(LA)

|LA − A|
uLA

]
.

(29)
Case 2. KA, A and LA are not collinear, and K , A and L

are not collinear.
Let �n = �n′ +�n′′. Then there exists α1, α2, β1 and β2, such

that
�n = α1

�AKA + α2
�ALA = β1

�KA + β2
�LA. (30)

Let �t denotes the unit vector normal to �n. The dot products
of (30) with �n and �t, respectively, give

|�n|2 = α1
�AKA · �n + α2

�ALA · �n, 0 = α1
�AKA · �t + α2

�ALA · �t;

|�n|2 = β1
�KA · �n + β2

�LA · �n, 0 = β1
�KA · �t + β2

�LA · �t.
(31)

One obtains the expression of α1, α2, β1 and β2:

α1 =
|�n|2 �ALA · �t∣∣∣∣

�AKA · �n �ALA · �n
�AKA · �t �ALA · �t

∣∣∣∣
, α2 = −

|�n|2 �AKA · �t∣∣∣∣
�AKA · �n �ALA · �n
�AKA · �t �ALA · �t

∣∣∣∣
,

β1 =
|�n|2 �LA · �t∣∣∣∣∣

−−→
KA · �n

−→
LA · �n

−−→
KA · �t

−→
LA · �t

∣∣∣∣∣
, β2 = −

|�n|2 �KA · �t∣∣∣∣∣
−−→
KA · �n

−→
LA · �n

−−→
KA · �t

−→
LA · �t

∣∣∣∣∣
.

(32)

By using expression (30), we have

∂u

∂�n′
|KA

(A) +
∂u

∂�n′′
|LA

(A) =α1
∂u

∂
−−−→
AKA

(A) + α2
∂u

∂
−−→
ALA

(A)

=α1
uKA − uA

|KA − A|
+ α2

u(LA) − u(A)

|LA − A|

+ O(h),
(33)

and

∂u

∂�n′
|K(A) +

∂u

∂�n′′
|L(A) =β1

∂u

∂
−−→
KA

(A) + β2
∂u

∂
−→
LA

(A)

=β1
uA − uK

|A − K|
+ β2

u(A) − u(L)

|A − L|

+ O(h).
(34)

Suppose that

(λ(KA) + λ(LA))

(
α1

uKA
− uA

|KA − A|
+ α2

uLA
− uA

LA − A

)

= (λ(K) + λ(L))

(
β1

uA − uK

|A − K|
+ β2

uA − uL

|A − L|

)
.

(35)

We get

uA =
ζ1uKA

+ ζ2uLA
+ ζ3uK + ζ4uL

ζ1 + ζ2 + ζ3 + ζ4
(36)

where

ζ1 = (λ(KA) + λ(LA))
α1

|KA − A|

ζ2 = (λ(KA) + λ(LA))
α2

|LA − A|

ζ3 = (λ(K) + λ(L))
β1

|A − K|

ζ4 = (λ(K) + λ(L))
β2

|A − L|

Let

ωA1
=

ζ1

ζ1 + ζ2 + ζ3 + ζ4
,

ωA2
=

ζ2

ζ1 + ζ2 + ζ3 + ζ4
,

ωA3
=

ζ3

ζ1 + ζ2 + ζ3 + ζ4
,

ωA4
=

ζ4

ζ1 + ζ2 + ζ3 + ζ4
,

(37)

Similarly, ωB1
(i = 1, 2, 3, 4) can be defined.

From expression (36), we have

uA = ωA1
uKA

+ ωA2
uK + ωA3

uL + ωA4
uLA

,

uB = ωB1
uK + ωB2

uKB
+ ωB3

uLB
+ ωB4

uL.
(38)
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It follows that

FK,σ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− τσ [uL − uK

−Dσ (ωA1
uKA

+ ωA2
uK + ωA3

uL + ωA4
uLA

− (ωB1
uK + ωB2

uKB
+ ωB3

uLB
+ ωB4

uL))] ,

∀σ ∈ E0
int,

− τσ [uL − uK

−Dσ (ωA1
uKA

+ ωA2
uK + ωA3

uL + ωA4
uLA

)] ,

∀σ ∈ Eint, B ∈ ∂Ω,

− τσ [uL − uK

+Dσ (ωB1
uK + ωB2

uKB
+ ωB3

uLB
+ ωB4

uL)] ,

∀σ ∈ E0
int, A ∈ ∂Ω,

τK,σuK , ∀σ ∈ Eext.
(39)

The stability and convergence of the resulting scheme are
proved in [6] as well as the numerical results obtained on
different meshes for several test problems to show the accuracy
and the efficient of the method.

III. THE MAGNETIC FIELD EQUATIONS AND 2-D SOLVER

Figure 4 shows a cross section of the computational re-
gion defined for the model. All three-dimensional effects are
omitted, and a cylindrically symmetric region is considered.
A further approximation made is to neglect coil motion in the
field solver. No field calculations take place in the conductors
in axial regions below the point of contact, primarily because
these regions are decoupled by the turns shorting and do not
affect the generator performance.

Fig. 4. Computational region.

In computing magnetic fields in cylindrical coordinates, it
is often convenient to employ the magnetic stream function
Ψ = rAθ , where Aθ is the azimuthal component of the
vector potential. The use of the stream function insures that

the divergence of the magnetic field is identically zero, and
it is generally simpler to solve a single equation for Ψ (with
Bz = 1

r
∂Ψ
∂r and Br = − 1

r
∂Ψ
∂z ), rather than two equations for

the components of the magnetic field.
The solution for the stream function requires boundary

conditions at all boundaries of the active mesh. Guided by ex-
perimental results, we have assumed that no flux flows through
either the inner armature boundary or the outer boundary of
the coil, so that the stream function is held fixed at the initial
value on those boundaries. Boundary conditions for the axial
boundaries are less well-defined, but we have assumed that a
condition of ∂Ψ

∂z = 0 at the two ends is representative of the
actual device.

To derive the stream function equations we combine
Maxwell’s equations

∇× �E = −
∂ �B

∂t
(40)

∇× �B = μ0
�J (41)

where the displacement current has been dropped in Eq. (41),
with Ohm’s law

�J = σ
[
�E + �v × �B

]
, (42)

where σ is the electrical conductivity. Using the definition
∇× �A = �B and �E = −∂ �A

∂t , one obtains the vector potential
equation

∂ �A

∂t
= −

1

μ0σ
∇× (∇× �A) + �v ×∇× �A, (43)

If we write this in cylindrical coordinates in terms of a
single component Ψ = rAθ , the final result is

∂Ψ

∂t
=

1

μ0σ

(
∂2Ψ

∂r2
+

∂2Ψ

∂z2

)
−

(
vr +

1

μ0σr

)
∂Ψ

∂r
− vz

∂Ψ

∂z
,

(44)
In the vacuum region, the current density is zero, so that

one has
∂2Ψ

∂r2
−

1

r

∂Ψ

∂r
+

∂2Ψ

∂z2
= 0. (45)

The basic sequence of operations in the coupled hy-
dro/magnetic field calculation begins with initialization of all
hydro and field quantities. The hydro variables are advanced
one time step and are used to define the new conductor
configurations and velocities. These new velocities are used
with Eq. (44) to update the stream function in the conductor
regions to the new level. After the conductor regions solution
is updated, the updated vacuum solution is obtained from Eq.
(45). This completes the time step and the process repeats,
again beginning with the hydro variables. The fully self-
consistent version of the code will compute magnetic forces
and Joule heating contributions at the end of the field solver
calculation to be used in the next advancement of the hydro
variables.
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Fig. 5. Schemas of simple winded HMFCG.

TABLE I
PARAMETERS OF TTU-1(SERIES TTU1)

Diameter of coil core: 2mm
Outer radius of coil 33mm
Inner radius of coil 31mm
Conductance of Cu 5.8×107(1/Ω · m)

Pitch of coil 3mm
Width of armature: 3mm

Outer radius of Al-armature 19.05mm
Inner radius of Al-armature 16.05mm

Conductance of Al 3.6×107(1/Ω · m)
Turns 32

IV. NUMERICAL CALCULATION

In this section the results of APMFCG calculation are given.
The basic parameters of MFCG are selected from a simply
winded HMFCG in Texas Tech University [5] mainly.

Figures (6) compare the computed and experimental cur-
rents with two different seed current. It shows an acceptable
agreement.

Figure (7) show the circuit characteristic of the device.

V. CONCLUSION

We have described the construction of a finite volume
scheme for diffusion equations and a 2-D magnetic field solver
designed specifically for the MFCG application.

There are many possible reason for the disagreement in-
cluding turn-to-turn electrical breakdown in the coil, delayed
electrical shorting of the armature and coil caused by the
insulating material, instabilities or three-dimensional behavior
in armature expansion, venting of explosive gases into the
region between the armature and coil, residual inductances
of the generator output and return connections, and three-
dimensional effects at the end of the generator where the
helical coil couples to the output connectors. These and other
effects are under study.
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