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Abstract—The speculative locking (SL) protocol extends the two-
phase locking (2PL) protocol to allow for parallelism among con-
flicting transactions. The adaptive speculative locking (ASL) protocol
provided further enhancements and outperformed SL protocols under
most conditions. Neither of these protocols consider the impact
of network latency on the performance of the distributed database
systems. We have studied the performance of ASL protocol taking
into account the communication overhead. The results indicate that
though system load can counter network latency, it can still become a
bottleneck in many situations. The impact of latency on performance
depends on many factors including the system resources. A flexible
discrete event simulator was used as the testbed for this study.
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I. INTRODUCTION

EAL-TIME database systems are an extension of tra-

ditional database systems that are designed to process
workloads whose state is constantly changing [1]. Such sys-
tems are more realistic because data acquiring and updating
often occur in parallel in many real-time applications such as
e-commerce, stock trading, radar tracking, and mobile com-
puting. Because data in a real-time database system changes
rapidly, one of the top priorities in its design is to respond
to those changes quickly. This may mean that updates should
be immediately available to all subsequent requests for this
data. A transaction in a real-time database system usually
has a deadline, which makes the system response time as
critical as data integrity. As a real-time database system grows
larger, more transactions arriving at geographically distributed
nodes need to be processed in the same period of time thus
degrading system performance. Distributed real-time database
system (DRTDBS) attempt to address this problem by either
replicating or partitioning the data across multiple sites.

A number of techniques have been proposed to increase the
reliability and performance of a DRTDBS. For instance, the
most extensively studied area is transaction scheduling which
focuses on managing and ordering transactions in a specific
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way so that the processing becomes optimal. This also extends
into sub-fields such as concurrency control, priority control,
and deadlock resolution. Other areas include synchronization
of replicated data, fault tolerance and failure recovery, which
keeps the database in a stable state when unexpected situa-
tions occur. A concurrency control protocol is a data-access
scheduling policy that preserves the database’s integrity by
resolving non-serial concurrent executions, in a manner that
includes a serialization order among the conflicting transac-
tions [2]. Examples of concurrency control protocols include
the widely-used 2PL (two-phase locking) protocol [3] and
speculative locking (SL) protocols. Studies have shown that
SL protocols yield better performance than 2PL protocol in
the distributed database systems [4]. The Adaptive Speculative
Locking (ASL) protocol was introduced as an extension of
SL protocols; it improves system performance and utilizes
less system resources than the proposed SL protocols [5], [6].
More details of the ASL protocol are provided in the next
section.

One attribute that could have a significant impact on the
performance of a DRTDBS is network communication. It
is normal for a DRTDBS to have data on nodes that span
a geographically distributed area. The transaction will thus
have to acquire this data from several nodes in order to
complete the required processing. In such a scenario, the
communication overhead cannot be ignored and in fact could
become high enough to seriously effect the performance.
The results reported from previous experiments using ASL
protocol assumed a fully-connected network over which mes-
sages transferred instantly. Though unrealistic, this assumption
allowed to focus the study on effects of underlying system
configuration and concurrency control protocols instead of
the communication overhead. In this paper, we study a more
realistic situation which gives due consideration to the network
communication overhead of DRTDBS while using the ASL
protocol for concurrency control. The message transfers are
no longer assumed to be instant but take a finite amount of
time depending on the network topology.

A distributed real-time transaction processing simulator
(DRTTPS) is used to measure the performance of database
system in this study. DRTTPS is a full-featured, discrete
event, simulation system that is capable of simulating a wide
range of protocols within an environment that represents real-
world scenarios. The simulator is briefly described in the next
section.
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II. LITERATURE REVIEW

This section gives a brief overview of DRTTPS and the
ASL protocol that is used for our study. We also provide
review of other related work that has been done to address
the concurrency control issues in real-time database systems.

A. DRTTPS

DRTTPS is a discrete event, highly configurable simulator
that provides a distributed environment to simulate a real-time
transaction-based database system. The main components of
this simulator are a configuration tool, an interactive runtime
environment and a reporting tool. It provides a testbed with
plug-and-play ease to implement and test the performance of
new protocols. These include concurrency control protocols,
priority protocols, resource allocation protocols, and network
topology protocols. The new protocols can be configured
easily without modifying the simulator itself. Different kinds
of real-time database simulators have been built for previous
studies [7]-[11]. Some are designed for centralized database
systems [11]; some lack flexibility of network topology setting
[71, [8]; some are only designed to test countable protocols
[10]. DRTTPS was designed to provide users a flexible way to
deploy different protocols, policies and parameters. A detailed
description of the underlying model of the simulator can be
found in [12]. In DRTTPS, events are processed in a sequential
manner and are driven by the next event. The event clock
is measured by a unit called a tick. A tick is a discrete
amount of time in which one or more events can be executed.
Samples of events in DRTTPS include: sending a message
from one node to another, a page being processed, queueing
for resources, a transaction arriving at a node, and transaction
commit. Such events are inserted into the execution queue
of simulator based on the order in which they need to be
executed [5]. The network consists of one or more sites
with nodes within each site. Each node represents several
hardware and software components and consists of processor
manager, disk manager, buffer, and (optionally) a workload
generator (transaction generator). A node is also characterized
by policies that provide the basis for transaction processing,
such as concurrency control protocol, preemption protocol,
deadlock resolution protocol, and replication protocol. Nodes
within a site are connected by a local area network. A site
represents a work site in real situation. Sites are connected by
wide area networks. Each site contains a virtual router and
is responsible for all network connections within this site.
All network connections in the simulator are configurable.
Attributes that can be set include latency, bandwidth, and
external use. The percentage of transactions that complete on
time (PCOT) is calculated by dividing the total transactions
that have completed before their deadlines by the total number
of transactions that have been generated till that moment. In
most of the experiments, PCOT has been chosen as a metric
to measure system performance. As mentioned before, time
variables in DRTTPS, such as disk access time and network
latency, are all in the unit of ticks. Using tick as time unit
instead of units such as seconds provide a more general

meaning to the study. This also makes the results machine-
independent unlike those reported by other studies.

B. The ASL and other concurrency control protocols

In comparison with traditional 2PL protocol, SL protocols
decrease the time spent to execute a transaction when some
of the required data has been locked by other transactions.
This is achieved by running multiple speculative executions
on combinations of all, or some possible data outcomes
after the locks are released; one of these outcomes survives.
The Adaptive Speculative Locking (ASL) protocol further
extends the SL protocols. While SL restricts the number of
speculative executions without enforcing a limitation on the
number of previously aborted transactions, ASL provides the
enhancement by using techniques such as hyper-threading,
memory management and transaction queue management. In
previous studies, it was shown that ASL protocol outperforms
SL protocols in most situations, especially in systems with
higher system loads [5]. However, several assumptions were
made in previous experiments. Protocol Assumptions: When
a transaction is created, the resources required (pages) are
known. No rollbacks can occur after a transaction commits.
Local deadlocks cannot occur, however global deadlocks can.
A transaction has the ability to move any of its held pages into
sub-transactions. System Assumptions: No hardware failures
can occur. The network is fully connected. The network is
connected with zero latency. Buffer access is instantaneous.
Disks and Swap Disk are distinct resources. [5] Since the
networks being tested were always assumed to be fully
connected without latency, it left the performance of system
using ASL protocol with network communication overhead
unknown.

In recent years, various concurrency control protocols for
real-time database systems have been proposed. [13] examined
the performance of two alternative locking mechanism of the
2PL protocol, namely static locking and dynamic locking,
under various system conditions. [14] discussed systems using
a nested transaction model. A lock mechanism (2LP-NT-HP)
is implemented to solve the data conflict between nested
transactions. A timestamp vector based optimistic concurrency
control (OCC) protocol is proposed in [15]. It is said to reduce
unnecessary transaction restarts and yields better performance
compared to traditional time interval based OCC protocols.
A role ordering (RO) scheduler that serializes transaction
conflicts is discussed in [16]. The study shows that that
the RO scheduler outperforms the traditional 2PL protocol.
Flexible High Reward (FHR) is another concurrency control
protocol which gives a better consideration to the impact of
communication delay in transferring data over network than
other traditional concurrency control protocols such as earliest
deadline, has a lower miss ratio and thus yields a better
performance than those protocols [17].

III. EFFECT OF SYSTEM PARAMETERS ON DRTDBS WITH
VARYING NETWORK LATENCY

To study the effect of specific attributes on system per-
formance, most of the control parameters are fixed for each
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TABLE I
BASIC PARAMETER SETTINGS FOR MOST EXPERIMENTS

Parameter Value
Node Count 7
Connection Topology Tree
Bandwidth 100 units per tick
Concurrency Control Protocol ASL
Priority Protocol EDF
Preempt Protocol EDF
Max Active Transaction Count 30
Disk Count per Node 1
Max Page Count per Disk 100
Disk Access Time 35 ticks
Cache Size 40 pages
Swap Disk Access Time 35 ticks
Page Process Time 15 ticks
Pages per Transaction 7-21
Slack Time 720 - 2160 ticks
Inter Arrival Time 100 ticks
Page Update Rate 75 percent
Transaction Count 300

simulation. Parameters used in all experiments, if not men-
tioned separately, are configured as in Table I. The network
topology used for this study is shown in Fig. 1 is used for
this set of experiments. Each node is labeled with its ID.
All network connections are full-duplex and assumed to have
the same bandwidth and latency. Without loss of generality,
we assume all nodes within the network to have identical
settings. One of the leaf nodes is selected to contain the only
transaction generator in the network. For reference, nodes are
labeled starting from the root (node 0). A baseline study is
first conducted on a simple network topology, to identify the
attributes that could have major impact on system performance
as network parameters change.

Fig. 1. Network Topology

Experiment A. Effect of cache size under varying network
latency

In this experiment, we study the impact of cache size on
system performance. The percentage of transactions meeting
their deadlines (PCOT) is measured for various cache sizes
and network latency. The network latency is specified in ticks.
The system performance is shown in Fig. 2. Notice that in
systems with low network latency (10 and 35), an increasing
cache size clearly contributes to the increase in number of
transactions that meet their deadlines. In contrast, in situations
with high network latency (greater than 60) increasing cache
size does not help improving system performance even when
all pages stored in hard disks are cached (that is, cache size of
100). This confirms that high latency systems do not benefit
from a boost in cache size.

It is believed that under overload condition, the reason
why systems using traditional locking protocols exhibit poor
performance in high-latency condition is that the earliest
deadline first (EDF) priority protocol progressively increases
the average completion time [18], [19]. This is because in an
overloaded system, more and more newly generated transac-
tions wait in the queue as time progresses. Thus, the average
time need for a transaction to complete will keep increasing
until most transactions become tardy, ultimately resulting in
a very low number of transactions completing before their
deadlines. Other studies have also confirmed that EDF is
not the desirable protocol under heavily loaded systems [18],
[19]. We chose to use EDF in our study because of its better
performance over a wide range of system loads.

100
90 -
3 80
e
5 70 : e
it 60 = o
5 50 | e Latency=10
E 40 e Latency=35
% 30 __,-/"' fffff Latency=60
S 29 e Latency=85
= =
8 10 L Loy
g o

50 60 70 80 90
Cache Size
Fig. 2. Effect of cache size under varying network latency

Fig. 3 shows similar results from a different perspective
using three different cache sizes. Once again, it is observed
that for low network latency, the cache size has a large
impact on the system performance. However, when latency
becomes large, increasing the cache size does not contribute
to performance enhancement. These results are consistent with
the observations made above.

Experiment B. Effect of inter-arrival time under varying
network latency

In this experiment, we study the effect of inter-arrival time
on system performance as the network latency varies. The
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Fig. 3. Effect of Network Latency on Systems with Different Cache Size

percent of transactions that complete on time (PCOT) is once
again used as the performance metric. We vary the inter-
arrival time from 100-380 ticks using the same set of network
latencies as in the previous experiment. All other parameters
are kept fixed as noted in Table I.
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Fig. 4. Effect of inter-arrival time under varying network latency

The results show that in low-network-latency system (la-
tency less than 60), the PCOT increases rapidly as inter-arrival
time increases from 100 to 120 ticks (Fig. 4). Although from
this figure it seems that a further increase in the inter-arrival
time will not provide a better performance in a system with
high network latency, Fig. 5 shows a significant performance
improvement under all system loads even under high latency
conditions. The typical S-shaped performance, demonstrating
a sharp increase in performance with less dense arrivals, is ob-
served under all tested latency values. A latency-related inter-
arrival time can thus be determined for optimal performance
of any system.

Looking at these results from a different perspective, Fig. 6
shows the effect of latency using three different inter-arrival
times. At an inter-arrival time of 100, the arrival of trans-
actions becomes so dense that regardless of network latency,
the number of transactions that complete on time remains very
low. On the other hand, in systems with a longer inter-arrival
time, a (mirrored) S-shape trend is observed.
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Fig. 5. Effect of inter-arrival time under varying network latency (extended
range)
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Fig. 6. Effect of Network Latency on Systems with Varying Inter-Arrival
Time

Experiment C. Effect of number of disks under varying
network latency

This experiment studies whether increasing the number of
disks on each node will affect system performance in high
latency situation. By adding more disks to nodes, the number
of pages that can be read or written simultaneously is also
increased. We use up to four disks while keeping the total
disk capacity per node unchanged.

Fig. 7 shows a significant performance gain when the num-
ber of disks changes from 1 to 2 in low latency situations. For
higher latencies, there is no system performance improvement
when more disks are added and PCOT remains under 10
percent. The relationship between maximum disk utilization
and disk count per node is shown in Fig. 8. For the low latency
situation where there are only one or two disks per node,
the reason of the dramatic improvement in performance can
be attributed to the high disk utilization resulting in queue
buildup when a single disk is used. Adding more disks under
such situations lowers disk utilization implying some idle time
and no waiting in the queues. Beyond a certain point, however,
the bottleneck shifts from the disks to the latency and no
further improvement is observed with additional disks.
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Fig. 7. Effect of disk count on systems with varying network latency
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Fig. 8. Effect of disk count on disk utilization under varying network latency

Experiment D. Effect of update rates under varying net-
work latency

The update rate of a transaction has significant impact on
performance because it reflects the need for resources. A value
of zero implies read-only transactions whereas an update rate
of 100 means that every page that is read will also be written
back to the disk. In this experiment, we observe how network
latency influences transaction completion rate (PCOT) for
various update rates. As shown in Fig. 9, systems with a high
update rate will have an overall low PCOT. There are two
things to be noticed in this figure. First, for low latencies, there
is a significant difference on performance in systems with an
update rate of 0-50 percent and 75 percent. This indicates
that update rate plays a significant role in the performance
when latency is low. Second, when the network latency rises
above 50, it becomes the dominating factor influencing the
performance; the update rate becomes irrelevant beyond this
point. In other words, in all systems, the network latency will
eventually become the bottleneck of the system.

IV. SUMMARY

In this study, the communication overhead of DRTDBS
using ASL protocol is examined using our distributed real-
time transaction processing simulator. Distributed real-time
database systems with different network latencies are simu-
lated, and the effect of network communication on system
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Fig. 9. Effect of page update rate under varying network latency

performance is analyzed. Though some assumptions were
made to model the system, these do not effect the generality
of results. Some of the interesting observations are: Network
latency has very significant effect on system performance
under all conditions. The effect of network latency can be
overcome by increasing inter-arrival time, which decreases the
transaction density in system. Whether it can be overcome by
improving system resources, such as increasing cache size and
number of disks, depends on the specific situation for each
system. Although disk accesses can be decreased by lowering
transaction update rate, it does not always overcome the effect
of network latency on system performance.
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