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Analysis of permanence and extinction of enterprise
cluster based on ecology theory

Ping Liu and Yongkun Li

Abstract—This paper is concerned with the permanence and
extinction problem of enterprises cluster constituted by m satellite
enterprises and a dominant enterprise. We present the model in-
volving impulsive effect based on ecology theory, which effectively
describe the competition and cooperation of enterprises cluster in
real economic environment. Applying comparison theorem of impul-
sive differential equation, we establish sufficient conditions which
ultimately affect the fate of enterprises: permanence, extinction, and
co-existence. Finally, we present numerical examples to explain the
economical significance of mathematical results.

Keywords—Enterprise cluster; Permanence; Extinction; Impulsive;
Comparison theorem

I. INTRODUCTION

ENTERPRISES cluster refer to the concentration of sim-
ilar or related enterprises in a specific area, which form

fixed economic output and have certain economic influence on
outside. Some similarities are exhibited between species pop-
ulation co-exist in nature and enterprises cluster in economic
life such as life period, component, structure inside, openness
and abundance, and so on [1].

In recent years, a few researchers presented some models
about enterprises cluster based on ecology theory, which
arouse growing interest in applying the methods of ecol-
ogy and dynamic system theory to study enterprises cluster,
for example [2-6, 15] and reference cited therein. In [2],
Zhou divided enterprises cluster into two kinds of models:
the concentration of subcontractors around a dominant firm
and the concentration of simple competitors, called center
halfback models and net models. Moreover, two kinds of
models from biology were given and explained by economic
view, and sufficient conditions were obtained to guarantee
the co-existence and stability of enterprises cluster. In [4],
the developing strategy of enterprises was analyzed based on
the logistic model, the suggestions of constructing cooperative
relation and choosing generalization or specialization tactics
for commodity were put forward. In addition, based on the
theoretical model of ecological population science, Wang [5]
made a detailed analysis to the equilibrium mechanism of
enterprises cluster, including the net model and the center
halfback model, and drew a conclusion that: the relationship
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of pierce competition and beneficial cooperation among enter-
prises cluster was the crucial factor for them to keep stability.
More related research about enterprises cluster, one can refer
to literatures [7-10].

As the birth of many species is an annual birth impulse,
impulse is also an unnegligible factor of mathematical models
in economy, such as annual fund regulation, staff adjustment
and so on. In order to give an accurate description of the
model of enterprises cluster in economy, we need consider the
effect of impulse. The research on theory and application of
impulsive differential equations had been made in many nice
works, one can see [11-14]. Our practical interest in economy
is the question of whether or not impulse can cause effect
on the fate of enterprises cluster. Recently, the literature [15]
considered the competition and cooperation system of two
enterprises based on ecosystem:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x′1(t) = r1x1(t)
[
1 − x1(t)

K
− α(x2(t) − c2)2

K

]
,

x′2(t) = r2x2(t)
[
1 − x2(t)

K
+
β(x1(t) − c1)2

K

]
,

(1)

where x1(t), x2(t) represent the output of enterprises A and
B, r1, r2 are the intrinsic growth rate, K denotes the carrying
capacity of market under nature unlimited conditions, α, β
are the competitive coefficient of two enterprises, c1, c2 are
the initial production of two enterprises. If we let a1 =
r1/K, a2 = r2/K, b1 = α/K, b2 = β/K, system (1) becomes{

x′1(t) = x1(t)[r1 − a1x1(t) − b1(x2(t) − c2)2],
x′2(t) = x2(t)[r2 − a2x2(t) + b1(x1(t) − c1)2].

Motivated by the above work, we consider the following
impulsive competitive and cooperation model of m satellite
enterprises and a dominant enterprise under center halfback
model:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x′i(t) = xi(t)
[
ri − aixi(t) −

m∑
j=1,j �=i

bijxj(t)

−di(y(t) − c)2
]
,

y′(t) = y(t)
[
r − ay(t) + d

m∑
i=1

(xi(t) − ci)2
]
,

Δxi(t) = xi(t+) − xi(t) = 0,
Δy(t) = y(t+) − y(t) = −Ey(t),

(2)

where xi(t), y(t) represent the output of satellite enterprises
Axi and core enterprise Ay , respectively; ri, r are the in-
trinsic growth rates, ai, a account for their respective self-
regulations, bij account for the rates of inter-enterprises
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Axi
competition, di represents the rate of intra-enterprise

competition from Ay , d represents the rate of conversion
of commodity into the reproduction of enterprise Ay , ci
and c represent the initial production of the enterprises,
respectively. ri, r, ai, a, bij , ci, c, di, d are positive constants,
i = 1, 2, . . . ,m. For the former two equations, t �= nT, n ∈ N ,
and for the latter two equations, t = nT, n ∈ N , T > 0 is the
period of impulsive, 0 < E < 1 is the proportion of harvest
at fixed moments nT, n ∈ N . Our main purpose of this paper
is by using the comparison theorem of impulsive differential
equation, to establish sufficient conditions for the permanence,
extinction, co-existence of enterprises described by (2).

The organization of the rest of this paper is as follows. In
Section 2, we introduce some preliminary results which are
needed in later sections. In Section 3, we establish some suf-
ficient conditions for the permanence, extinction, co-existence
of enterprises. In Section 4, we give numerical examples to
explain the economical significance of mathematical results
above.

II. PRELIMINARIES

For convenience, we shall introduce some notations, defini-
tions and lemmas which will be useful for the proofs of our
main results.

Let R+ = [0,+∞), Rm+1+ =
{
φ = (x1, . . . , xm, y)|xi >

0, y > 0, i = 1, 2, . . . ,m
}
, V0 =

{
V (t, φ)|V : R+×Rm+1+ →

R+, V (t, φ) is continuous on (nT, (n + 1)T ] × Rm+1+ and
lim

(t,w)→(nT+,φ)

V (t, w) = V (nT+, φ), n = 0, 1, 2, . . .
}

.

Definition 1. [16] Let V ∈ V0, then for (t, φ) ∈ (nT, (n +
1)T ]×Rm+1+ , the upper right derivative of V (t, φ) with respect
to the impulsive differential system (1) is defined as

D+V (t, φ) = lim
h→0+

sup
1
h

[V (t+ h, φ+ hf(t, φ)) − V (t, φ)],

where f = (f1, f2, . . . , fm+1) is defined by the right hand of
the first m+ 1 equations of system (1).

Lemma 1. [17] Let V ∈ V0. Assume that{
D+V (t, φ) ≤ g(t, V (t, φ)), t �= nT, n ∈ N,
V (t, φ(t+)) ≤ ϕn(V (t, φ)), t = nT, n ∈ N,

(3)

where g : R+ × R+ → R is continuous in (nT, (n + 1)T ] ×
R+, n = 0, 1, 2, . . . and lim

(t,v)→(nT+,v0)
g(t, v)

= g(nT+, v0), ϕn : R+ → R+ is non-decreasing. Let h(t)
be the maximal solution of the following scalar impulsive
differential equation⎧⎪⎨

⎪⎩
u′(t) = g(t, u), t �= nT, n ∈ N,

u(t+) = ϕn(u(t)), t = nT, n ∈ N,

u(0+) = u0,

(4)

existing on [0,+∞). Then V (t, φ) ≤ h(t), (t ≥ 0) when
V (0+, φ0) ≤ u0, where φ(t) is any solution of (3), which
satisfies initial condition φ(0+) = φ0.

Remark 1. (i) In Lemma 1, assume that inequality (3) re-
versed. Let h(t) be the minimal solution of (4) existing

on [0,+∞), and ϕn : R+ → R+ is non-increasing, then
V (t, φ) ≥ h(t), (t ≥ 0) when V (0+, φ0) ≥ u0.

(ii) If we have some smooth conditions of g(t) to guarantee
the existence and uniqueness of solution for (4), then h(t)
is exactly the unique solution of (4).

For system (2), the following lemma is obvious:

Lemma 2. Suppose φ(t) = (x1(t), x2(t), . . . , xm(t), y(t)) is
a solution of (2) with φ(0+) ≥ 0, then φ(t) ≥ 0 for all t ≥ 0.
And if φ(0+) > 0, then φ(t) > 0 for all t ≥ 0.

Definition 2. [18] System (2) is said to be permanent if there
exist two positive constants m0,M0 such that each positive
solution (x1(t), x2(t), . . . , xm(t), y(t)) of system (2) satisfies

m0 ≤ lim inf
t→∞ xi(t) ≤ lim sup

t→∞
xi(t) ≤M0, i = 1, 2, . . . ,m,

m0 ≤ lim inf
t→∞ y(t) ≤ lim sup

t→∞
y(t) ≤M0.

Remark 2. System (2) is said to be permanent if there exist
two positive constants m̂, M̂ such that each positive solution
(x1(t), x2(t), . . . , xm(t), y(t)) of system (2) satisfies

m̂ ≤ xi(t) ≤ M̂, m̂ ≤ y(t) ≤ M̂.

Lemma 3. [18] Any positive solution x(t) of the inequality
problem

x′(t) ≤ x(t)[a− bx(t)]

satisfies lim sup
t→∞

x(t) ≤ a
b , if a > 0, b > 0.

Now, we consider the following impulsive system:
{

y′(t) = y(t)[r − ay(t)], t �= nT, n ∈ N,
Δy(t) = y(t+) − y(t) = −Ey(t), t = nT, n ∈ N,

(5)

where notations in above system (5) are the same meaning
as those in system (2). For system (5), we can obtain the
following result:

Lemma 4. System (5) has a positive periodic solution

y∗(t) =
r(1 − E − e−rT )

a(1 − E − e−rT ) + aEe−r(t−nT )
, (6)

where t ∈ (nT, (n+ 1)T ], n = 0, 1, . . . . Moreover,

(1) let y(t) be any solution of system (5) satisfying initial
condition y(0+) = c, then |y(t)−y∗(t)| → 0(t→ +∞);

(2) y(t) ≥ y∗(t) if c ≥ r(1−E−e−rT )
a(1−E−e−rT )+aE

.

Proof: It is not difficult to verify that y∗(t) is a positive
periodic solution of (5), one can refer to [16]. For any
solution y(t) of system (5), which satisfies the initial condition
y(0+) = c, we have

y(t) =
(
c− r(1 − E − e−rT )

a(1 − E − e−rT ) + aE

)
e−rt + y∗(t),

and |y(t) − y∗(t)| → 0(t→ ∞). It is easy to see that y(t) ≥
y∗(t) if c ≥ r(1−E−e−rT )

a(1−E−e−rT )+aE
.
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III. MAIN RESULTS

Theorem 1. Suppose that E > max
1≤i≤m

{
1 − e

( ac
2 − ria

2dic−r)T}
and c2 − ri

di
< 2rc

a , then

xi(t) → 0(i = 1, 2, . . . ,m), y(t) → y∗(t), (t→ +∞)

for any solution (x1(t), x2(t), . . . , xm(t), y(t)) of system (2),
where y∗(t) is defined as (6). That is, enterprises Axi will be
bankruptcy, and enterprise Ay will keep permanence.

Proof: Firstly, we will prove that xi(t) → 0, t→ +∞,
i = 1, 2, . . . ,m.

Since E > max
1≤i≤m

{1−e( ac
2 − ria

2dic−r)T }, we can choose ε0 >

0 such that

δ :=
(

2dicε0 + dic
2 − ri − 2dicr

a

)
T − 2dic

a
ln(1 −E) > 0.

Noting that y′(t) ≥ y(t)[r−ay(t)], we consider the impulsive
differential equation⎧⎪⎨

⎪⎩
y′1(t) = y1(t)[r − ay1(t)]), t �= nT, n ∈ N,

Δy1(t) = −Ey1(t), t = nT, n ∈ N,

y1(0+) = y(0+) > 0.

From Lemma 1 and Lemma 4, we have y(t) ≥ y1(t) and
y1(t) → y∗(t)(t→ +∞). Thus

y(t) ≥ y1(t) > y∗(t) − ε0 (7)

holds for all large enough t. For simplicity, we may assume
that (7) holds for all t ≥ 0.

From the first equation of system (2), we have

x′i(t) ≤ xi(t)
[
ri − aixi(t) −

m∑
j=1,j �=i

bijxj(t)

−di(y∗(t) − ε0 − c)2
]

≤ xi(t)[ri + 2dic(y∗(t) − ε0) − dic
2], i = 1, 2 . . . ,m.

Integrating the above formula on (nT, (n+ 1)T ], we obtain

xi((n+ 1)T ) ≤ xi(nT ) exp
( ∫ (n+1)T

nT

[
ri + 2dic(y∗(t)

−ε0) − dic
2

]
dt

)

= xi(nT ) exp
(
riT − 2dicε0T

−dic2T +
2dic
a

[rT + ln(1 − E)]
)

= xi(nT ) exp(−δ), i = 1, 2 . . . ,m,

then xi(nT ) ≤ xi(0+) exp(−nδ) and lim
n→∞xi(nT ) = 0, i =

1, 2 . . . ,m.
Notice that x′i(t) ≤ xi(t)ri, we have 0 < xi(t) ≤ xi(nT )

× exp[ri(t − nT )] ≤ xi(nT ) exp(riT ), t ∈ (nT, (n + 1)T ],
which yields xi(t) → 0 as t→ +∞, i = 1, 2, . . . ,m.

Now, we will prove that y(t) → y∗(t) when xi(t) → 0(i =
1, 2 . . . ,m), t→ +∞.

For ε1 > 0(ε1 is small enough), there exists a T̃ > 0 such
that

0 < xi(t) < ε1 for all t > T̃ , i = 1, 2 . . . ,m. (8)

For simplicity, we may assume (8) holds for all t ≥ 0. Thus,
we have

y(t)[r − ay(t)] ≤ y′(t) ≤ y(t)[r + dm(ε1)2 − ay(t)].

Considering the following impulsive differential systems⎧⎪⎨
⎪⎩
y′1(t) = y1(t)[r − ay1(t)]), t �= nT, n ∈ N,

Δy1(t) = −Ey1(t), t = nT, n ∈ N,

y1(0+) = y(0+) > 0

and⎧⎪⎨
⎪⎩
y′2(t) = y2(t)[r + dm(ε1)2 − ay2(t)]), t �= nT, n ∈ N,

Δy2(t) = −Ey2(t), t = nT, n ∈ N,

y2(0+) = y(0+) > 0,

we have y1(t) ≤ y(t) ≤ y2(t) and y1(t) → y∗(t)(t →
+∞), y2(t) → y∗(t)(t→ +∞), where

y∗(t) =
r(1 − E − e−rT )

a(1 − E − e−rT ) + aEe−r(t−nT )
,

y∗(t)

=
(r + dm(ε1)2)(1 − E − e−(r+dm(ε1)

2)T )
a(1 − E − e−(r+dm(ε1)2)T ) + aEe−(r+dm(ε1)2)(t−nT )

.

Then, for any ε > 0, there exists a T̄ > 0 such that

y∗(t) − ε < y1(t) ≤ y(t) ≤ y2(t) < y∗(t) + ε

for t > T̄ . Let ε1 → 0, we obtain that y(t) → y∗(t), t→ +∞.
The proof is completed.

Theorem 2. Suppose that

(H1) ri

di
= c2T− 2c

a (rT+ln(1−E))
T , i = 1, 2, . . . ,m;

(H2) c ≥ r(1−E−e−rT )
a(1−E−e−rT )+aE

hold, then any solution (x1(t), x2(t), . . . , xm(t), y(t)) of sys-
tem (2) satisfies

xi(t) → 0(i = 1, 2, . . . ,m), y(t) → y∗(t), (t→ +∞),

where y∗(t) is defined as (6). That is, enterprises Axi
will be

bankruptcy, and the enterprise Ay will keep permanence.

Proof: Noting that y′(t) ≥ y(t)[r − ay(t)], we consider
the impulsive differential system⎧⎪⎨

⎪⎩
y′3(t) = y3(t)[r − ay3(t)]), t �= nT, n ∈ N,

Δy3(t) = −Ey3(t), t = nT, n ∈ N,

y3(0+) = y(0+) > 0.

By condition (H2) and Lemma 4, we get y(t) ≥ y3(t) ≥ y∗(t)
and y3(t) → y∗(t)(t→ +∞), where y∗(t) is defined as (6).

From the first equation of system (2), we have

x′i(t) ≤ xi(t)
[
ri − aixi(t) −

m∑
j=1,j �=i

bijxj(t)
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−di(y∗(t) − c)2
]

≤ xi(t)[ri − aixi(t) + 2dicy∗(t) − dic
2],

where i = 1, 2 . . . ,m. Integrating the above formula over
(nT, (n+ 1)T ] and applying condition (H1), we obtain that

xi[(n+ 1)T ] ≤ xi(nT ) exp
( ∫ (n+1)T

nT

[ri − aixi(t)

+2dicy∗(t) − dic
2]dt

)

= xi(nT ) exp
(
riT − dic

2T

−ai
∫ (n+1)T

nT

xi(t)dt

+
2dic
a

[rT + ln(1 − E)]
)

= xi(nT ) exp(−Xn), i = 1, 2 . . . ,m, (9)

where Xn = ai
∫ (n+1)T
nT

xi(t)dt, i = 1, 2 . . . ,m. We con-
clude that lim

n→∞Xn = 0. If it is not true, we assume that
lim sup

n→∞
Xn = ω > 0, there exists subsequence {Xnk

} of

{Xn} such that lim sup
k→∞

Xnk
= ω. Then, there exists a

K ∈ N such that Xnk
> ω

2 for k > K, which yields
∞∑
n=1

Xn >
∞∑
k=1

Xnk
→ +∞.

From xi[(n+ 1)T ] ≤ xi(nT ) exp(−Xn), i = 1, 2, . . . ,m, we
have

xi(nT ) ≤ xi(0+) exp(−
n∑
j=0

Xj) → 0 (n→ ∞),

where i = 1, 2 . . . ,m.
Notice that x′i(t) ≤ xi(t)ri, we have 0 < xi(t) ≤

xi(nT ) exp(riT ), t ∈ (nT, (n + 1)T ], then xi(t) → 0 as
t → +∞, i = 1, 2 . . . ,m. Moreover, Xn → 0 as n → ∞,
which is a contradiction. Therefore, lim

n→∞Xn = 0. From (9),
it is easy to see that xi(t) → 0(i = 1, 2 . . . ,m), t→ +∞.

Next, similar to the proof of the second part of Theorem3.1,
combined with the above proof of this theorem, we can finally
obtain that y(t) → y∗(t)(t→ +∞), where y∗(t) is defined as
(6). This completes the proof.

One of the most important questions in economy is to find
the permanence conditions for enterprises cluster, which has
received a great deal of attention of many mathematicians and
economists. Now, we will present the result of permanence for
enterprises cluster.

Theorem 3. Suppose that
(H3) 0 < E < 1 − e−rT ;
(H4) min

1≤i≤m
{ ri

di
} > M2, where

M = max
{
M1,

(r + dm(M1)2)(1 − E − e−(r+dm(M1)
2)T )

a(1 − E − e−(r+dm(M1)2)T )

}
,

M1 = max
1≤i≤m

{ ri
ai
}

hold, then system (2) is permanent. That is, the enterprises
Axi

and Ay will be co-existence.

Proof: By condition (H4), there exists a positive constant
ε0 such that

δ := ri − diM
2 −

(
ai +

m∑
j=1,j �=i

bij

)
ε0 > 0.

Since x′i(t) ≤ xi(t)[ri − aixi(t)], i = 1, 2, . . . ,m, by Lemma
3 and Lemma 4, we have

lim sup
t→∞

xi(t) ≤ ri
ai

≤ max
1≤i≤m

{ ri
ai

}
= M1, i = 1, 2, . . . ,m.

Noting that y(t)[r − ay(t)] ≤ y′(t) ≤ y(t)[r + dm(M1)2 −
ay(t)], similar to the proof of Theorem 1, we obtain that

y1(t) ≤ y(t) ≤ y2(t)

and
y1(t) → ỹ∗(t), y2(t) → ỹ∗(t)(t→ +∞),

where y1, y2 are the solutions of the following impulsive
differential equations⎧⎪⎨

⎪⎩
y′1(t) = y1(t)[r − ay1(t)]), t �= nT, n ∈ N,

Δy1(t) = −Ey1(t), t = nT, n ∈ N,

y1(0+) = y(0+) > 0

and⎧⎪⎨
⎪⎩
y′2(t) = y2(t)[r + dm(M1)2 − ay2(t)]), t �= nT, n ∈ N,

Δy2(t) = −Ey2(t), t = nT, n ∈ N,

y2(0+) = y(0+) > 0,

respectively. Moreover, we have

ỹ∗(t) =
r(1 − E − e−rT )

a(1 − E − e−rT ) + aEe−r(t−nT )
,

ỹ∗(t)

=
[r + dm(M1)2][1 − E − e−(r+dm(M1)

2)T ]
a(1 − E − e−(r+dm(M1)2)T ) + aEe−(r+dm(M1)2)(t−nT ) .

It follows that for any ε > 0, there exists a T ′ > 0 such that

ỹ∗(t) − ε < y1(t) ≤ y(t) ≤ y2(t) < ỹ∗(t) + ε, t > T ′.

Since the arbitrariness of ε, we have

ỹ∗(t) ≤ y(t) ≤ ỹ∗(t).

Let

M2 = sup{ỹ∗(t), t ≥ 0}

=
(r + dm(M1)2)(1 − E − e−(r+dm(M1)

2)T )
a(1 − E − e−(r+dm(M1)2)T )

,

m2 = inf{ỹ∗(t), t ≥ 0} =
r(1 − E − e−rT )

a(1 − E − e−rT ) + aEernT
,

then m2 < y(t) < M2, 0 < m2,M2 < +∞, t ≥ 0.
Therefore,

xi(t) < M, y(t) < M, t ≥ 0, i = 1, 2, . . . ,m. (10)
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Now, we will prove that there exists a constant m1 > 0
such that m1 ≤ lim inf

t→∞ xi(t).

Assume that there exists positive constant T̂ such that
xi(t) ≤ ε0 for all t ≥ T̂ , then when n is large enough such
that nT > T̂ , for t ∈ (nT, (n+ 1)T ], we have

xi((n+ 1)T ) > xi(nT ) exp
( ∫ (n+1)T

nT

[
ri − aiε0

−ε0
m∑

j=1,j �=i
bij − di(M2)2

]
dt

)

> xi(nT ) exp
( ∫ (n+1)T

nT

[
ri − diM

2

−
(
ai +

m∑
j=1,j �=i

bij

)
ε0

]
dt

)

= xi(nT ) exp(δT ), i = 1, 2, . . . ,m,

hence xi(nT ) > xi(0+) exp(nδT ) → +∞, n → ∞. Thus,
xi(t) → +∞(i = 1, 2, . . . ,m) as n → ∞, which is a
contradiction.

For i = 1, 2, . . . ,m, suppose that xi(t) are oscillatory about
ε0. Choose two sequences {un} and {ūn} satisfying

0 < u1 < ū1 < u2 < ū2 < . . . < un < ūn < . . .

and limn→∞ un = limn→∞ ūn = +∞, ūn − un ≥ T , and

xi(un) ≥ ε0, xi(u+n ) ≤ ε0, xi(ūn) ≤ ε0, xi(ū+n ) ≥ ε0,

where n = 1, 2, . . . , then

xi(t) ≤ ε0, t ∈ (un, ūn], n = 1, 2, . . . ,
xi(t) ≥ ε0, t ∈ (ūn, un+1], n = 1, 2, . . . .

For t ∈ (un, ūn], we have

x′i(t) > xi(t)
[
ri − aiε0 − ε0

m∑
j=1,j �=i

bij − di(M2)2
]
,

xi(t) > xi(un) exp
( ∫ t

un

[
ri − aiε0

−ε0
m∑

j=1,j �=i
bij − di(M2)2

]
ds

)

> ε0 exp(−ξT ), i = 1, 2, . . . ,m,

where ξ := max
1≤i≤m

{
ri + aiε0 + ε0

m∑
j=1,j �=i

bij + di(M2)2
}

.

Thus,
xi(t) > ε0 exp(−ξT ), t ∈ (un, ūn].

On the other hand, for t ∈ (ūn, un+1], we have xi(t) ≥ ε0 >
ε0 exp(−ξT ). Therefore, xi(t) > ε0 exp(−ξT ) for all t ≥ 0.
Let m1 := ε0 exp(−ξT ), we have xi(t) > m1.

Choose m := min{m1,m2}, we have

xi(t) > m, y(t) > m, t ≥ 0, i = 1, 2, . . . ,m. (11)

From (10) and (11), we conclude that system (2) is permanent.
The proof is completed.

IV. EXAMPLES

In this section, we present three examples to illustrate the
feasibility and effectiveness of our results obtained in Section
3.

Example 1. In system (2), we take T = 1,m = 2, E =
0.8, r1 = 1, r2 = 1.5, a1 = 0.8, a2 = 0.9, b12 = 0.5, b21 =
0.8, d1 = 0.9, d2 = 0.8, r = 1.8, a = 0.8, d = 0.6, c1 =
1.5, c2 = 1.8, c = 2. We consider the following system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x′1(t) = x1(t)[1 − 0.8x1(t) − 0.5x2(t) − 0.9(y(t) − 2)2],
x′2(t) = x2(t)[1.5 − 0.9x2(t) − 0.8x1(t) − 0.8(y(t) − 2)2],
y′(t) = y(t)[1.8 − 0.8y(t) + 0.6(x1(t) − 1.5)2

+0.6(x2(t) − 1.8)2],
Δxi(t) = xi(t+) − xi(t) = 0,
Δy(t) = y(t+) − y(t) = −0.8y(t).

By calculating, it is easy to check that all conditions in
Theorem 1 are fulfilled. Hence, by Theorem 1, we have the
enterprises Axi

do not develop and may be bankruptcy, and
the enterprise Ay keep certain power to be permanent.

Example 2. In system (2), we take T = 1, m = 2, E = 0.8,
r1 = 1.64, r2 = 1.8, a1 = 0.7, a2 = 0.5, b12 = 0.75, b21 =
0.8, d1 = 0.8, d2 = 0.88, r = 2, a = 0.45, d = 0.3, c1 = 1,
c2 = 1.5, c = 2. We consider the following system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x′1(t) = x1(t)[1.64 − 0.7x1(t) − 0.75x2(t) − 0.8(y(t) − 2)2],
x′2(t) = x2(t)[1.8 − 0.5x2(t) − 0.8x1(t) − 0.88(y(t) − 2)2],
y′(t) = y(t)[2 − 0.45y(t) + 0.3(x1(t) − 1)2

+0.3(x2(t) − 1.5)2],
Δxi(t) = xi(t+) − xi(t) = 0,
Δy(t) = y(t+) − y(t) = −0.8y(t).

By calculating, we can check that all conditions in Theorem 2
are fulfilled. Therefore, by Theorem 2, we have the enterprises
Axi

do not develop and may be bankruptcy, and the enterprise
Ay keep certain power to be permanent.

Example 3. In system (2), we take T = 1, m = 2, E = 0.6,
r1 = 2.8, r2 = 3, a1 = 1, a2 = 1, b12 = 0.3, b21 = 0.22,
d1 = 0.1, d2 = 0.12, r = 2.5, a = 0.9, d = 0.1, c1 = 1,
c2 = 1.5, c = 2. We consider the following system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x′1(t) = x1(t)[2.8 − 0.8x1(t) − 0.3x2(t) − 0.125(y(t) − 2)2],
x′2(t) = x2(t)[3 − 0.75x2(t) − 0.22x1(t) − 0.12(y(t) − 2)2],
y′(t) = y(t)[2.5 − 0.6y(t) + 0.3(x1(t) − 1)2

+0.3(x2(t) − 1.5)2],
Δxi(t) = xi(t+) − xi(t) = 0,
Δy(t) = y(t+) − y(t) = −0.6y(t).

We check that all conditions in Theorem 3 are fulfilled. Hence,
by Theorem 3, we have system (2) is permanent, which
indicates that the enterprises Axi and enterprise Ay will be
co-existence.

From examples above, we can see that core enterprise
has certain capability and competitive power, which make
it occupy a certain superiority in center halfback model.
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For satellite enterprise, except for self-development, it has
to face the competition from other satellite enterprises and
dominant enterprise. When intrinsic growth rate decreases and
the competitive power of competitors increase, the fate of
decline even extinction is unavoidable, which is according to
economic rules. In addition, as we can see from theoretical
results, impulsive effect is also an important factor to affect
the fate of enterprises cluster. Therefore, self-development,
market-saturation degree, competition power and impulse per-
turbations are important factors to affect the fate of enterprises
cluster.

The study has some theoretical and practical meanings
and value in a certain extent. However, in real and complex
economic situation, considering into more factors which affect
enterprises cluster, the model will be more complex. The
model we establish is autonomous system and we ignore some
factors such as the effect of time delay and control variables,
and so on, which will or not affect the fate of enterprises
cluster? It is our future work.
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