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The Maximum Likelihood Method of Random
Coefficient Dynamic Regression Model
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Abstract—The Random Coefficient Dynamic Regression (RCDR)
model is to developed from Random Coefficient Autoregressive
(RCA) model and Autoregressive (AR) model. The RCDR model
is considered by adding exogenous variables to RCA model. In this
paper, the concept of the Maximum Likelihood (ML) method is used
to estimate the parameter of RCDR(1,1) model. Simulation results
have shown the AIC and BIC criterion to compare the performance of
the the RCDR(1,1) model. The variables as the stationary and weakly
stationary data are good estimates where the exogenous variables
are weakly stationary. However, the model selection indicated that
variables are nonstationarity data based on the stationary data of the
exogenous variables.

Keywords—Autoregressive, Maximum Likelihood Method, Non-
stationarity, Random Coefficient Dynamic Regression, Stationary.

I. INTRODUCTION

MOST data are collected in the form of time series that
often exhibits nonstationarity and stationary models.

The nonstationarity models might be caused by several aspects
including changes in trend volatility and random walk. The
heteroscedasticity or volatility has been modeled in the litera-
ture by various authors, for instance, [1], [2] evaluated risk in
finance, [3] monitored the reliability of nonlinear prediction.
The stationary process does not change when shifted in time
or space. The stationary models have been widely used in the
time series data modeling such as the AutoRegressive (AR)
model, Moving Average (MA) model and AutoRegressive
Moving Average (ARMA) model.

There are several volatility models in time series, starting by
[4] who introduced AutoRegressive Conditional Heteroscedas-
tic model (ARCH) which was obtained the predictive vari-
ance for U.K. inflation rate. To obtain more flexibility, the
ARCH model has been extended by [5] who produced the
Generalized ARCH (GARCH) model. The GARCH model
is allowed the past data time series and the past volatility
in this model. To overcome some weakness of the GARCH
model, [6] proposed the Exponential GARCH (EGARCH)
model that is used the log condition variance to relax the
positiveness constraint of coefficient model. [7] proposed the
Conditional Heteroscadastic AutoRegressive Moving Average
(CHARMA), in which is not similar to the GARCH model,
but these two models possess similar second-order condition
properties. The special case of CHARMA model that reduced
to the Random Coefficient Autoregressive (RCA) model which
was studied by [8].
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One of the common method is the estimation to practice,
through Maximum Likelihood (ML) method that can be de-
veloped flexible statistics to a point estimation. The estimation
of volatility model, [4] introduced a class of stochastic pro-
cess called ARCH model. He derived the likelihood function
of these processes and described the maximum likelihood
estimators. [9] reviewed the penalized maximum likelihood
estimation in nonparametric regression and density estimation.
[5] extended the Engle’s ARCH processes allowing for a
much more flexible lag structure. [5] derived the conditionals
for stationarity of this class of processes and also discussed
maximum likelihood estimation of the linear regression model
with GARCH errors. [10] presented a methodology for non-
parametric Maximum Likelihood estimation of time-varying
model.

Our research goal is to present the ML method to model
nonstationarity and stationary data. We introduce the new class
of Random Coefficient Dynamic Regression (RCDR) model
that is extended from the RCA model.

In this paper, the RCDR model is developed from RCA
model in Section II. Section III describes the parameter
estimation procedure from the Maximum Likelihood (ML)
method of RCDR(1,1) model and shows the properties of
ML estimators. Section IV illustrates the results of simulation
study and we discuss the results based on AIC and BIC
criterion. A conclusion of the results is presented in Section
V.

II. RCDR MODEL

In the case of univariate time series data, the RCA model
is used the conditional variance to evolve with previous
observations denoted RCA(p). The RCA model is written as

xt = α+

p∑
i=1

βtixt−i + σεt

β
t

= μ
β
+Σ

1/2
β ut (1)

where

β
t

= (βt1, . . . , βtp)
′

μ
β

= (μβ1, . . . , μβp)
′

The εt and μ
β

are the sequences of independent of random
vectors with mean zero and unit variance.

The RCA model consists of one variable but sometime it is
not enough to estimate the coefficient of the time series model
so the disadvantage can be improved the model by adding
exogenous variables. The time series model can produce the
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time series dynamic modeling when the observations of time
series data have correlated with exogenous variables, the
dynamic modeling will help accurate the coefficient model.

Essentially, we will extend the RCA model by adding the
exogenous variables of yt denoted as

xt = αt +

p∑
i=1

βtixt−i + σεt

β
t

= μ
β
+Σ

1/2
β ut

αt =

q∑
j=1

ηjyt−j + εt (2)

The εt and μ
β

are the sequences of independent of random
vectors with mean zero and unit variance, so the model (2)
is called Random Coefficient Dynamic Regression (RCDR)
Model or RCDR(p,q) model.

We will consider the simplified case of RCDR model with
p = q = 1 and σ = 1; denoted by the RCDR(1, 1), and we
can rewrite as

xt = αt + βtxt−1 + εt

βt = μβ + σβut

αt = ηyt−1 + εt (3)

where βt’s are iid random variables with mean μβ and variance
σ2
β , εt’s are iid random variables with mean 0 and variance

σ2, and βt’s and εt’s are independent.
The parameters of RCDR(1, 1) consist of the intercept term

η, the mean μβ and variance σ2
β of the coefficient βt and the

variance σ2 of the εt, or defined as θ = (η, μβ , σ
2
β , σ

2)′. In the
literature, there is the RCA(1) with the slight modifications to
model setup that used the nature of problem at hand might
motivate to assume the two random variables βt and εt to be
correlated, see [11].

III. PARAMETER ESTIMATION FOR RCDR(1, 1)

The method of maximum likelihood has been widely used
in estimation. For any set of observations, x1, . . . , xn, time
series or not, the likelihood function L(θ) is define to be
the joint probability density of obtaining the data actually
observed. However, it is considered as a function of the
unknown parameters in the model with the observed data held
fixed.

To estimate parameter of RCDR(1,1) model, we propose
the maximum likelihood method to estimate parameter θ =
(η, μβ , σ

2
β , σ

2)′. The time series data {xt} and {yt}from (3)
obtain following:

E(xt| xt−1) = αt + μβ xt−1

V ar(xt| xt−1) = (1 + η2)σ2 + σ2
βx

2
t−1

The maximum likelihood method consider the likelihood func-

tion from (3) to estimate μβ as

Ł(θ) = Ł(θ|xt xt−1) =
n∏

t=2

f(xt| xt−1)

=

(
1

2π

)n/2 n∏
t=2

[
(1 + η2)σ2 + σ2

βx
2
t−1

]−1/2

exp

{
−1

2

n∑
t=2

(xt − αt − μβxt−1)
2

(1 + η2)σ2 + σ2
βx

2
t−1

}
(4)

Constructing the new likelihood function by setting parameter,
let η2 = ω, τ =

σ2
β

σ2 and substitute αt = η yt−1, so it show
that

Ł(θ) =

(
1

2π

)n/2 n∏
t=2

[σ2]−1/2
[
(1 + ω) + τx2

t−1

]−1/2

exp

{
−1

2

n∑
t=2

(xt − η yt−1 − μβxt−1)
2

σ2[(1 + ω) + τx2
t−1]

}
(5)

The ln likelihood function following;

lnL(θ) = −n

2
ln (2π)− n

2
lnσ2

−1

2

n∑
t=2

ln
[
(1 + ω) + τx2

t−1

]

−
{
1

2

n∑
t=2

(xt − η yt−1 − μβxt−1)
2

σ2[(1 + ω) + τx2
t−1]

}
(6)

The next step is differentiable from (6) with respect to μβ ,η,
and σ2

∂ lnL(θ)

∂μβ
=

n∑
t=2

(xt − η yt−1 − μβxt−1)xt−1

σ2[(1 + ω) + τx2
t−1]

(7)

∂ lnL(θ)

∂η
=

n∑
t=2

(xt − η yt−1 − μβxt−1)yt−1

σ2[(1 + ω) + τx2
t−1]

(8)

∂ lnL(θ)

∂σ2
= − n

2σ2

+
1

2σ4

n∑
t=2

(xt − η yt−1 − μβxt−1)
2

(1 + ω) + τx2
t−1

(9)

Now we get

∂ lnL(θ)

∂(μβ , η, σ2)
= 0

We obtain the estimators;

μ̂β =
a1 − η̂ a2

a3
(10)

η̂ =
a4 − μ̂β a2

a5
(11)

σ̂2 = (n)−1
n∑

t=2

(xt − η̂ yt−1 − μ̂β xt−1)
2

(1 + ω) + τx2
t−1

(12)
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where

a1 =

n∑
t=2

xtxt−1

(1 + ω) + τx2
t−1

, a2 =

n∑
t=2

xt−1yt−1

(1 + ω) + τx2
t−1

a3 =
n∑

t=2

x2
t−1

(1 + ω) + τx2
t−1

, a4 =
n∑

t=2

xtyt−1

(1 + ω) + τx2
t−1

a5 =
n∑

t=2

y2t−1

(1 + ω) + τx2
t−1

The ML estimates η̂, μ̂β , σ̂
2, and σ̂2

β ca be obtained by calcu-
lating τ̂ , where τ̂ is the minimizer of the following function
of τ ,

g(τ) = ln(σ2) +
n∑

t=2

ln((1 + ω) + τx2
t−1)

That is, we have profiled the log-likelihood as a function of τ
only.

The ML estimates η̂, μ̂β , σ̂
2, and σ̂2

β are obtained by

lnL(θ̂) = − inf
(θ)

lnL(θ)


(η̂, μ̂β , σ̂
2, σ̂2

β) = − inf
(η,μβ ,σ2,σ2

β
)
lnL(η, μβ , σ

2, σ2
β)

σ̂2 = (n)−1
n∑

t=2

(xt − η̂ yt−1 − μ̂βxt−1)
2

(1 + ω̂) + τ̂x2
t−1

σ̂2
β = σ̂2τ̂

and
ω̂ = η̂2

A. The Properties of ML Estimators

For the point estimation, we might consider properties as
if the sample sizes becomes infinite. In this section, we will
look at the properties of ML estimators : consistency and
asymptotic efficiency.

1) Consistency
The consistency of

θ = (η1, . . . , ηq, μβ1, . . . , μβp, σ
2
β1, . . . , σ

2
βp, σ

2)′

will be shown by examining

lim
n→∞Pθ(|Wn − θ| ≥ ε) = 0

where Wn = Wn(x1, . . . , xn) is a consistent sequence
of estimators of parameter θ. Recall that, for an estimator
Wn, Chebychev’s Inequality states

Pθ(|Wn − θ| ≥ ε) ≤ Eθ[(Wn − θ)2]

ε2

For the second term, we have

E

(
(xt −

∑q
j=1 ηj yt−j −

∑p
i=1 μβixt−i)

2

(1 +
∑q

j=1 ωj) +
∑p

i=1 τix
2
t−i

)

=

∣∣∣∣∣E
(xt −

∑q
j=1 ηj yt−j −

∑p
i=1 μβixt−i)

2

(1 +
∑q

j=1 ωj) +
∑p

i=1 τix
2
t−i

∣∣∣∣∣
≤

∣∣∣∣∣E
(xt −

∑q
j=1 ηj yt−j −

∑p
i=1 μβixt−i)

2

(1 +
∑q

j=1 ωj) +
∑p

i=1 τix
2
t−i

∣∣∣∣∣
< ∞

Therefore, we can conclude that(
E
(xt −

∑q
j=1 ηj yt−j −

∑p
i=1 μβixt−i)

2

(1 +
∑q

j=1 ωj) +
∑p

i=1 τix
2
t−i

)
=

σ2

n

< ∞
Moreover, (13) says that the sample size becomes in-
finite, the estimators will be arbitrarily close to the
parameter with zero in probability.

2) Asymptotic Efficiency [12]
Let x1, . . . , xn be iid f(x|θ), let θ̂ denote the ML
estimator of θ, and let Wn be a continuous function
of θ. √

n [Wn − θ] → n[0, υ(θ)],

where υ(θ) is the Cramér-Rao Lower Bound. That is,
Wn is a consistent and asymptotically efficient estimator
of θ.
Under the property of consistency, the variance of esti-
mator is

V ar(θ̂) = Eθ(Wn − θ)2 =
σ2

n

≈ 1

Eθ

(
∂ lnL(θ)

∂θ

)2 (13)

Suppose that

√
n

(
Wn − θ

σ

)
→ Z in distribution

where Z ∼ Normal(0, 1). By applying Slutsky’s Theo-
rem we conclude

Wn−θ =

(
σ√
n

)(√
n
Wn − θ

σ

)
→ lim

n→∞

(
σ√
n

)
Z = 0

so Wn − θ → 0 in distribution. We know that con-
vergence in distribution to a point is equivalent to
convergence in probability, so Wn is consistent estimator
of θ.

IV. A SIMULATION STUDY

The simulation study to estimate parameter θ =
(η, μβ , σ

2
β , σ

2)′ for the performance of ML method. At the
beginning, we generate data yt, t = 1, 2, . . . , n from the AR(1)
model by taking η = 0.1, 0.5 and 0.9 following;

αt = ηyt−1 + εt : AR(1) (14)

To illustrate the implication of AR model, Figure 1 shows the
100 sample sizes for each 3 coefficients (η = 0.1, 0.5 and
0.9). It should be noted that η = 0.1 is stationary, η = 0.5 is
weakly stationary, and η = 0.9 is the nonstationarity case.
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Fig. 1. The time series plot for data generated from AR(1) of yt(η = 0.1, 0.5
and 0.9)

Next, we consider the RCDR(1, 1) model where yt are
generated from the AR(1). Therefore we obtain the xt in term
of RCDR(1, 1) written as

xt = ηyt−1 + βtxt−1 + εt (15)

In Figures 3-4, we present the data generating in 6 cases :
1) σ2 = 1, μβ = 0.5 and σ2

β = 0.25
2) σ2 = 1, μβ = 0.995 and σ2

β = 0.01
3) σ2 = 1, μβ = 0.1 and σ2

β = 0.99
4) σ2 = 1, μβ = −0.995 and σ2

β = 0.01
5) σ2 = 1, μβ = −0.1 and σ2

β = 0.99
6) σ2 = 1, μβ = 0 and σ2

β = 1

It should be noted that Case 2 is the nonstationarity case and
the Case 4 tends to be around its mean value of 0 as the
stationary process. For Case 1, 3, 5, and 6, we can’t define
the character of the time series plot when there are slightly
different figures that depended on the η under yt. In order
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Fig. 2. The time series plot for data generated from RCDR(1,1) of xt(η =
0.1)

to assess the model performance, it is customary to use some
type of model selection criteria such as Akaike Information
Criterion (AIC) introduced by [13] and Bayesian Information
Criterion (BIC) studied by [14]. In our simulation studies we
explore the performance of the RCDR(1,1) model in picking
up the true models. AIC and BIC are defined as,

AIC(θ) = −2 lnL(θ) + 2m

BIC(θ) = −2 lnL(θ) +m ln(n)
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Fig. 3. The time series plot for data generated from RCDR(1,1) of xt(η =
0.5)
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Fig. 4. The time series plot for data generated from RCDR(1,1) of xt(η =
0.9)

where lnL(·) is the log-likelihood function, m is the number
of parameters in the model, and n is the number of the sample
sizes.

The selection of the chosen model is then made by consid-
ering the smallest AIC and BIC in each case.

The results of the simulations were carried out using R
program that was used to generate data and performed the
parameter values from ML method. We simulated data with
the sample sizes n = 100 and 500, and repeated the data
generation for model fitting 500 times. Tables I- III show
various Monte Carlo (MC) of the estimates obtained by taking
η = 0.1, 0.5 and 0.9 in 6 cases.

The third and the fourth columns of these tables represent
the AIC and BIC criterion to perform in picking up the
chosen model when the estimators are fitted. From Tables
I, it appears that both AIC and BIC are performing reason-
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ably well when the data are generated from true parameter
σ2 = 1, μβ = 0, σ2

β = 1 at sample sizes n = 100, and
σ2 = 1, μβ = 0.1, σ2

β = 0.99 at sample sizes n = 500 when
η = 0.1. However, the η = 0.5, model is good fit at parameter
σ2 = 1, μβ = 0.1, σ2

β = 0.99. On the other hand, the η = 0.9,
parameters σ2 = 1, μβ = −0.1, σ2

β = 0.99 prefer RCDR
model at sample sizes n = 100, but the sample sizes n = 500
is fitted in parameter σ2 = 1, μβ = −0.995, σ2

β = 0.01. For
each η, the small sample sizes are fitted better than the large
sample sizes.

TABLE I
THE AVERAGE OF AIC AND BIC FOR DIFFERENT RCDR

MODELS(η = 0.1, SAMPLE SIZES N = 100, 500 AT 500 REPLICATIONS)

Case Parameters n AIC BIC
Case 1 η = 0.1, σ2 = 1 n=100 157.963 168.383

μβ = 0.5, σ2
β = 0.25 n=500 893.249 910.107

Case 2 η = 0.1, σ2 = 1 n=100 159.326 169.745
μβ = 0.995, σ2

β = 0.01 n=500 894.414 911.273
Case 3 η = 0.1, σ2 = 1 n=100 158.258 168.679

μβ = 0.1, σ2
β = 0.99 n=500 892.983 909.841

Case 4 η = 0.1, σ2 = 1 n=100 158.266 168.687
μβ = −0.995, σ2

β = 0.01 n=500 893.110 909.968
Case 5 η = 0.1, σ2 = 1 n=100 158.181 168.602

μβ = −0.1, σ2
β = 0.99 n=500 893.029 909.888

Case 6 η = 0.1, σ2 = 1 n=100 157.920 168.341
μβ = 0, σ2

β = 1 n=500 893.483 990.341

TABLE II
THE AVERAGE OF AIC AND BIC FOR DIFFERENT RCDR

MODELS(η = 0.5, SAMPLE SIZES N = 100, 500 AT 500 REPLICATIONS)

Case Parameters n AIC BIC
Case 1 η = 0.1, σ2 = 1 n=100 158.078 168.498

μβ = 0.5, σ2
β = 0.25 n=500 893.443 910.302

Case 2 η = 0.1, σ2 = 1 n=100 159.341 169.762
μβ = 0.995, σ2

β = 0.01 n=500 893.975 910.833
Case 3 η = 0.1, σ2 = 1 n=100 157.879 168.300

μβ = 0.1, σ2
β = 0.99 n=500 893.264 910.123

Case 4 η = 0.1, σ2 = 1 n=100 158.088 168.509
μβ = −0.995, σ2

β = 0.01 n=500 893.275 910.133
Case 5 η = 0.1, σ2 = 1 n=100 157.940 168.361

μβ = −0.1, σ2
β = 0.99 n=500 893.302 910.161

Case 6 η = 0.1, σ2 = 1 n=100 158.399 168.820
μβ = 0, σ2

β = 1 n=500 893.353 910.211

V. CONCLUSION

We have proposed a new estimators for RCDR(1,1) model
by using ML method. Through a Monte Carlo simulation
study, we evaluated the performance of estimator to fit
RCDR(1,1) model. The proposed estimator of stationary and
weakly stationary data is a good performance when the ex-
ogenous variables are weakly stationary data. However, the
estimator of the nonstationarity data is good fit when the
exogenous variables is stationary process. Therefore, the pro-
posed estimator η, σ2, μβ , and σ2

β are based on the correlation
between 2 variables, so the correlation is changed while the
model fitting is changed too.

TABLE III
THE AVERAGE OF AIC AND BIC FOR DIFFERENT RCDR

MODELS(η = 0.9, SAMPLE SIZES N = 100, 500 AT 500 REPLICATIONS)

Case Parameters n AIC BIC
Case 1 η = 0.1, σ2 = 1 n=100 158.674 169.095

μβ = 0.5, σ2
β = 0.25 n=500 893.654 910.512

Case 2 η = 0.1, σ2 = 1 n=100 159.376 169.796
μβ = 0.995, σ2

β = 0.01 n=500 894.817 911.676
Case 3 η = 0.1, σ2 = 1 n=100 158.571 168.991

μβ = 0.1, σ2
β = 0.99 n=500 893.640 910.499

Case 4 η = 0.1, σ2 = 1 n=100 158.513 168.934
μβ = −0.995, σ2

β = 0.01 n=500 893.496 910.355
Case 5 η = 0.1, σ2 = 1 n=100 158.387 168.808

μβ = −0.1, σ2
β = 0.99 n=500 893.777 910.635

Case 6 η = 0.1, σ2 = 1 n=100 158.419 168.840
μβ = 0, σ2

β = 1 n=500 893.676 910.535

APPENDIX A
THE CONDITION OF ML ESTIMATORS

To use the RCDR(1,1) model to verify that a function of
parameters has a local maximum at estimators, it must be
shown that the following three conditions hold [12].

1) The first-order partial derivatives are 0.

∂ lnL(θ)

∂(μβ , η, σ2)
= 0

2) At least one second-order partial is negative.
This condition can see after the first-order partial deriva-
tives from (7) and (8).

∂2 lnL(θ)

∂η2
= −

n∑
t=2

y2t−1

σ2[(1 + ω) + τx2
t−1]

∂2 lnL(θ)

∂μ2
β

= −
n∑

t=2

x2
t−1

σ2[(1 + ω) + τx2
t−1]

3) The Jacobian of the second-order partial derivatives is
positive.
For the ln likelihood function, the second-order partial
derivatives can be written in the symmetric matrix and
denoted

V =

⎛
⎝ V11 V12 V13

V21 V22 V23

V31 V32 V33

⎞
⎠

where each element Vij of V given by

V11 =
∂2 lnL(θ)

∂η2
= −

n∑
t=2

y2t−1

λt

V12 = V21 =
∂2 lnL(θ)

∂η∂μβ
= −

n∑
t=2

xt−1yt−1

λt

V13 = V31 =
∂2 lnL(θ)

∂η∂σ2
= −

n∑
t=2

yt−1

λ2
t

V22 =
∂2 lnL(θ)

∂μ2
β

= −
n∑

t=2

x2
t−1

λt

V23 = V32 =
∂2 lnL(θ)

∂μβ∂σ2
= −

n∑
t=2

xt−1

λ2
t
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V33 =
∂2 lnL(θ)

∂(σ2)2
=

n∑
t=2

1

λ2
t

− 1

n

n∑
t=2

u2
t

λ3
t

where λt = σ2[(1+ω)+τx2
t−1] and ut = xt−η yt−1−

μβxt−1.

V11V22V33 =
n∑

t=2

y2t−1

λt

n∑
t=2

x2
t−1

λt

[
n∑

t=2

1

λ2
t

− 1

n

n∑
t=2

u2
t

λ3
t

]

V12V23V31 = −
n∑

t=2

xt−1yt−1

λt

n∑
t=2

xt−1

λ2
t

n∑
t=2

yt−1

λ2
t

V13V21V32 = −
n∑

t=2

xt−1yt−1

λt

n∑
t=2

xt−1

λ2
t

n∑
t=2

yt−1

λ2
t

V31V22V13 = −
(

n∑
t=2

yt−1

λ2
t

)2 n∑
t=2

x2
t−1

λt

V32V23V11 = −
(

n∑
t=2

xt−1

λ2
t

)2 n∑
t=2

y2t−1

λt

V12V21V33 =

(
n∑

t=2

xt−1yt−1

λt

)2 [ n∑
t=2

1

λ2
t

− 1

n

n∑
t=2

u2
t

λ3
t

]

Hence, we can compute the Jacobian by

V11V22V33 + V12V23V31 + V13V21V32

−V31V22V13 − V32V23V11 − V12V21V33 > 0
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