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Abstract—A new robust nonlinear control scheme of a
manipulator is proposed in this paper which is robust against
modeling errors and unknown disturbances. It is based on the
principle of variable structure control, with sliding mode control
(SMC) method. The variable structure control method is a robust
method that appears to be well suited for robotic manipulators
because it requers only bounds on the robotic arm parameters. But
there is no single systematic procedure that is guaranteed to
produce a suitable control law. Also, to reduce chattring of the
control signal, we replaced the sgn function in the control law by a
continuous approximation such as tangant function. We can
compute the maximum load with regard to applied torque into
joints. The effectivness of the proposed approach has been
evaluated analitically demonstrated through computer simulations
for the cases of variable load and robot arm parameters.
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I. INTRODUCTION

HE robotic control and its application are very popular

research topics in control field as well as in industry
automation. A robot manipulator is a highly nonlinear and
dynamically coupled system, which is subject to
disturbances and model uncertainties. The general control
methods, such as computed torque method, PD control
method, etc., will not render the expected performance with
the presence of disturbances and model uncertainties. Also,
a number of approaches have been proposed to develop
controllers that are more robust so that their performance is
not sensitive to modeling errors.

The sliding mode control (SMC) theory has been applied
to robot manipulators for the last decade [1-5]. SMC is
commonly favored as a powerful robust control method for
its independence from parametric uncertainties and external
disturbances under matching conditions. In general, SMC
comprises a discontinuous control input that drives the
control system toward a specified sliding surface. Usually, a
large control gain formula is applied to handle the unknown
parametric variations and external disturbances [6].

Here, we develop a class of sliding mode controllers to
the case of two link elbow robot manipulator with variable
structure control method [7, 8].

This paper organized as follows: the basic concept of
sliding mode is presented in section III the manipulator
dynamics is introduced and a new control structure is
proposed developed. Simulation results are presented in
section IV. Section V gives the conclusion.

II. SLIDING MODE CONCEPT

The basic idea behind adaptive control is that the
controller gains gradually changes as parameters of the
system being controlled evolve.[9] It is also possible to
change the control signal abruptly on the basis of the state of
system being controlled. Control systems of this type are
referred to as variable structure systems (VSS)[10-12]. A
block diagram of a variable structure controller for a robotic
arm is shown in Fig. 1.
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Fig. 1 Variable structure control of a robotic arm

To apply variable structure control, we do not have to
know the exact robotic arm parameters, instead only bounds
on these parameters. Variable structure controllers are
robust in the sense that they are insensitive to errors in the
estimates of the parameters as long as reliable bounds on the
parameters are known. To formulate a variable structure
control law, it is helpful to first recast the state equations in
terms of the tracking error and its derivative. Suppose the
reference input r(t) is sufficiently smooth that is has at least

X1

one derivative. Define the state vector as x £ where:

2
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X4
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{x1=91=7”1_‘h y X2 =6 =11
X3 =€ =N —q; , X4=€=T7—q
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Given a reference trajectory r(t), the objective is to findak:3, Nti2,i2@0Bapunov — type function in the sense that Vi, (x) is

variable structure control law t= f(x) such that the
solution of the closed loop system satisfies lim;_,, x(t) = 0.
Consider the following linear constraint on the state
variables:

o(x)2Fe+é=0 2

Here F can be any positive definite matrix. For example, F’
might be a diagonal matrix with positive diagonal elements:

F =diag{fi.fz, . Jn } fi>0 3)
The set of all x such that o(x)=0 is a
(2n-1)_dimensional subspace or "hyperplane" in R?" which
we refer to as the switching surface. The switching surfaces
divide the state space into two regions. If a(x) > 0, then we
are on one side of the switching surface and the control law
will have one form; if o(x) < 0, then we are on the another
side of the switching surface and the control law will have a
different form. Thus the controller changes the structure
when the state of the system crosses the switching surface.
In this paper, the switching surface is a plane for n=2.

Our objective is to devise a control law T = f(x) which will
drive the system to the switching surface in a finite time and
then constrain the system to stay on the switching surface.
When the system is operating on the switching surface, we
say that it is in the sliding mode. The dynamics of the
system simplify substantially in the sliding mode. If 6 = 0,
then from Eq.2 the state equation for é reduced to:
e+Fe=0 )

Thus when the system is in the sliding mode the tracking
error is independent of the robotic arm parameters. The
solution depends only on the matrix F, which is a design
parameter called the sliding mode gain matrix. Recall from
Eq.3 that F is a diagonal matrix with positive diagonal
elements. Consequently, the sliding mode equation is not
only linear but also uncoupled and the solution is:

ex(t) = exp(—fit) . e, (0) Q)

Clearly e(H -0

. not only does the error go to zero by
t—0
sliding down the switching surface, but the rate at which the
error decreases can be controlled through the specification
of the gain F, which controls the slope of the surface. Since
Eq.(5) is totally independent of the robotic arm parameters,
the variable structure control system is robust when it is
operating in the sliding mode. There remains the problem of
developing a control law T = f(x) which will ensure that
the system operates in the sliding mode. To develop a
suitable control law, we make use of liapunov techniques.

Consider, in particular, the following function:

T
V(o) = =8 ©)

. . . Vi(x) =0
continuously differentiable and V,(x) = 0 & a(x) = 0

To show that the solution of the closed loop system
approaches the switching surface, it is sufficient to show
that, along solution of the dynamics robot:

VL(x(t)) <0
V. (x(®) =0 = a(x(t) =0 7

Where V,,(x(t)) = o7 (x).6,,(x) .
However, this would only guarantee that the solution
approaches the switching surface in the limit as t — oo.

III. SYSTEM DYNAMICS AND THE CONTROL STRUCTURE

We must find the control law 1= f(x) such that
o7 (x).0(x) < —yllo(x)|| for some y > 0 . For an n-axis
robot, this is challenging task. To illustrate the derivation of
a control law, we examine a special case, the two-axis robot
in Fig. 2.

Fig. 2 Schematic of two axis robot

The dynamic equation of a rigid robot manipulator is shown
as follows:

Di+H+G=r1
_ [dna dlZ] o [fh] _ [hl] _[91 [
b= [d21 dy; A= 4> H = h, G = [92] > T= [Tz]
()]

Where q(t) € R? and suppose the links mass m; and m, ,
load mass my, links length L; and L,, center of links length
L¢, and L, and moment inertia [; and /:

d11 =a, + a, + 2a3 cosq, , d12 = d21 = a, + as Cos g,
dy2 = @

hy = —a;sinq;(24:42 + 43) , h, = azsing,(47)
91 = g(ascosqy + as cos(qy + q2))

92 = gas cos(qy + q2)

ay =1L +myLZ + (my +my,)L3

ay = I + myL%, +m,L5
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az = Ly(m,L., + myL,) , ay = myL. + (m, +m,)L, YoI3, NCEZJZO (X)] Fedé—=Fxdn=

as = myLc, + myL, ©)
Using the Chang of variables:

(10)

{xlzelzrl_ql y X2 =€ =71 — (1
X3 =€ =1—q; ,

the state space is as follows:

Xy =X
Xy
- _ dyTy + dyphy — dypgr — dipT, + diphy + dizg,
! A
X3 =X, (11)
X4
- —dq57y — diphy +dipg1 +dia T — dighy — diag;
2 A
Where:
hy = (myLyL,, + myLyL,).sin(ry — x3) . [2(F; — x). (7,
—x4) + (7 — x4)2]
h, = (mleLC2 + mleLz)sin (ry — x3)(7 — x,)?
91 = 9o ((mlLC1 +m,L, + mle)) cos(ry —x;) +
(mzLC2 + mpLz) cos(ry —x; + 1, —x3)
g, = go(mch2 + mpLz) +cos(ry —x; + 1, — x3)
A= dyq dy; — d%z (12)

To develop a control law at first, bounds on the values of the
robot parameters must be established, including the rate of
change of the reference trajectory. Suppose:

[71] < Riq [72] < Rpq,s |71l < Riz, |#2] < Ry
ldi| < diy ,ldiz| < diy ,ldya] < djp (13)
Now the follow inequality can be written:

[h1] < hio(2R11R21 + 2Ry11x4] + 2Ry 25| + 2]z || x4
+ R31 + 2Ry |xg| + [x41%)

hip = max{mleLc2 + mleLZ}
[hy| < hyo(REy + 2Ryq|2x5] + |x2|%)
hyo = hyg

[91] < g0 = max{go(mchl +myLy + myLy + myl,
+ mpLz)}

[g2] < G20 = max{go(mchz + mpLZ)}
A< |A] < Ay (14)

Using V(x) = —0'1 2(x) += Gzz(x) as liapunov function and
considerig the shdmg surface as follow:

0 fz][

-1 2

foer + &l L faxz + x4
now V(x) = 0y (x)d;(x) + 0,(x)d,(x) can evaluated along

solution of (11) and it must be negative. In the other hand,
the following inequality must be shown:

V) < —y(x)

Thus:

01(x)61(x) = 01 () [f1 %, + %] = 01 (x) [flxz +7 -

d221'1+d22h1—d2291;d121'2+d12h2+dlzgz] __a® dyyTy +
o1(x) dyyTy + 0, (x) [flxz i — d22h1—d2291zd12h2+d1292]
(16)

. Sy da2 dis .

With  considering —T‘L’l T = " and using

triangular  inequality (|x ¥ y| < |x|+|y|), and Eq.

(13),(14):

01(x)01(x) < 70y (x) + |oy () {p1 22| + p2lxal +

P3lz|? + palxal® + pslxzllxal + pe} (17)

Where:

ds a;
pL=f+ AL:hw(ZRn) + fh20(2R11),

d; 4 %
P2 = 32hi0(2R11 + 2Ra1) .13 = b s = 2 hao

d3;
Ps = 2 A th >
0

ds d;
Ps = Rz + Aiozhlo(ZRnRu +R3) + ALOZgw +
d; di
ﬁhzo(Rﬁ) + A;Ozgzo (18)
And with considering dAﬁTl - %rz =1 and using

triangular

(13),(14):

0, (x)3,(x) < 770, (x) + lo, () [{py|x2| + pglxal +
Dolx2|? + DaolXal? + P11l ]1xa] + 012} (19)

inequality (|x Fy| <|x|+|yl), and Eq.

Where:

a: a;
p; =2 h1o(2R21) T -1 h20(2R11) )

ps = f2 + h10(2R11 +2Ry,) ,

o
11 —

A hyo » P10 =
0

_ di, _ 541z
Do = A hio ,P11 =2 A hio
0 0

P12 = Ry, + h1o(2R11R21 +R3y) + 910

da
fhzo(Rn) ‘|‘A_920 (20)
0 0

Thus in general:
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V() = 01(x)61(x) + 0,(0)0,(x) < T°01(x) + T 0 (x V-3, M92,(@90Yn {0y (x). x,}. x —

|1 () {pa |2 ] + palxal + p3lxz | + palxg|? +
pslxallxal + pe} + lo, () {71 x2| + pglxal + polxa|* +
P1olxal? + pralxallxs| + P12} (21)

Now the virtual control law 7*(x) and 7**(x) must be
selected in such a way that it dominates the other positive
terms. As a candidate, consider the following virtual
variable structure control law:

T(x) = _%71 +dTiZT2 = —ky0:(x).sgn{o (x)} —

ko0, (x). sgn{oy(x).x,}. x5 —

k301 (x). sgn{oy (x). x4}. x4 — k01 (x). sgn{oy (0)}. x5 —
ky01(x). sgn{oy (x)}. xf —

kyo,(x).sgn{o;(x).x5. x4} X5. X4

00 = By — 1y = —ks 0y (). sgn{oy (0} -
keoy(x). sgn{o,(x). x5} x, —
k705(x). sgn{o, (x). x4} x4 — k50, (x). sgn{o, (x)}. x5 —
kso,(x).sgn{o,(x)}. x2 —

kgo, (x). sgn{o,(x). x5. x4} X5. x4 (22)

Here k;> 0 are controller gains that remain to be
determined.

By substiuting Eq. (22) in (21) and using identity
sgn(z).z = |z| yeilds:

V(x) <

—k101(x). sgn{oy (x)} — kp01(x). sgn{o; (x). x,}. x, —
k301 (x). sgn{o; (x). x4}. x4 — ky 0y (x). sgn{o; (x)}. x5 —
k101(x)-59n{01(x)}-xf -

k,o,(x). sgn{oy(x). x5. %4} x5 4 —

k5o, (x).sgn{o, (x)} — ke, (x). sgn{o, (x). x2}. x, —
k70, (x). sgn{oy (x). x4} x4 — ksoz(x).sgn{az(x)}.xzz -
ks, (x). sgn{o, (x)}. x5 —

kgo, (x). sgn{o, (x). x3. x4 }. x5. X4 + |01 () [{p1 || +
Dalxa| + P32 |* + palxg|? + pslxa|lxa] + pe} +

|2 () {7122 | + pglxal + polxz|? + prolxal® +

P11 lx2llxa] + 12} = loy () [{=ky — kyxF — kyxF +
Palxa |2 4+palx4 2 + D6} + loy (0). x5 1{—k, + p1} +

[y (). x4 |[{—ks3 + P2} + |07 (). x5. x4 |{{=ky + ps} +

lo2 () [{=ks — ksx3 — ksxZ + polxz|*+p10|x4|* + P12} +
[o2(x). x5 |{—k¢ + D7} + |02 (). x4 [{—k7 + pg} +
lo1(x). x2. x4 |{—kg + P11} (23)
It is clear from expression (23) that V(x) can be made
negative if the controller gains k; > 0 are sufficiently large,
that is, if :

(ki >ps} n{ky >p} 0 {ky; >ps} , kz>p0 )

ks>p, , ky>ps
{ks > po} N {ks > pio} N {ks > pg,} ) ke >p; ,
k7 > pg, kg > p11 (24)

From Eq. (22), the variable structure control law, is as
follow:

T, =

—dy1[~ky0,(x).sgn{o; (x)} —

k3o (x). sgn{o; (x). x4}. x4 — ky01(x). sgn{oy (x)}. x5 —
kyoy(x). sgn{oy (x)}. x§ —

k,o,(x). sgn{o (x). x5. x4} %5. 4] —

diz[—ks0,(x). sgn{o, (%)} —

keay(x).sgn{o, (x). x2}. x, —

k70, (x). sgn{o, (). x4}. x4 — k50, (x). sgn{o,(x)}. x5 —
k5o, (x).sgn{o, (x)}. x5 —

kgo, (x).sgn{o,(x). x5. x4} X5. X4 ]

T, =

—dyp[—ky0,(x). sgn{o; (x)} —
kyo1(x). sgn{oy (x). x5} x, —

k30, (x). sgn{oy (x). x,}. x4 — klo'l(x).sgn{al(x)}.x% -
klo'l(x).sgn{ol(x)}.xf -

kyo,(x). sgn{og (x). x5. %4} %5. 4] —

dyz[—ks0o,(x). sgn{o, (x)} —

koo, (x).sgn{o,(x). x5} x5 —

k70, (). sgn{o, (x). x4} x4 — ks05(x). sgn{o, (x)}. x22 -
ks, (x). sgn{o, (x)}. x5 —

kgo, (x).sgn{o,(x). x5. x4} X5. x4 ] (25)

Thus if the controller gains satisfy inequalities (24), then the
variable structure control law in Eq. (25) will drive the two
axis robot to the switching surface and then keep it there.
Consequently, x; will track r;(t) and x, will track r,(t)

with a performance that is independent of the robotic arm
parameters.

IV. SIMULATION AND RESULT

Consider the bouds of robotic parameters as follows:

18<m; <22 , 1.8<m, <22 , 04<L, <06,
04<L,<06

02<L, <03 ,02<L, <03, 0024<I <0.066
, 0.024 <1, < 0.066

and suppose the reference trajectory as follows:

s =rl1-em(-9)] = 50 =(ew(-2)
- 10 =%(en ()

w0 =rlt-em(-3] = 0 =(on(-9)
= #(t) = —%(exp (— %))

Then the following bounds can calculated:

7] < Ry = 1.6, |75l < Ry; = 1.6
|#]| <R, =08 , |, <R,, =038
ldi1l <di; =11 , |dipl <di; =5, ldgal <d3, =3
hyo = max{m,L,L, + myL,L,} = 2.56

hyo = hyo

1911 < g10 = max{go(mchl +myLy + myly + mylL,
+myLy)} =97
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1921 < G20 = max{go(mzLCZ + mpLZ)} =42 Vol:3, Mg, 2=200Y

Ap=1.2 reference Input and output(q)

To determine the constraints on the controller gains, first the
slope of the switching surface have to be choosen. Suppose
the sliding mode gains are f; =1 and f, = 1. Then the
constraints on the variable structure controller gains are:

k1=425,k2=55,k3=35,k4=10,
ke =875 , ke =105 , k; =70 , kg =25

Error

By applying the control law, the tracking error, applied
torque and output are simulated at the Fig. 3 for load mass
my, = 4,6,8Kg:

(]
=l
m, =4Kg g
reference Input and output(q)
4
—T | c
, - ©
o Now the values of robotic arm parameters as follows are
o 1 2 3 4 5 6 7 8 9 10 changed:
0.02
P m,=6, my=22,m,=22,L,=06,L,=06,
0
Error L,=03,L,=03,1; =0.066, I, =0.066
-0.0
0.0 reference Input and output(q)
"0 1 2 3 4 5 6 7 8 9 10
100
tor 2
0
N |
-50
0 1 2 3 4 5 6 7 8 9 10
(a)
m, =6Kg
reference Input and output(q)
4
[
2
Oo 1 2 3 4 5 6 7 g 9 10 Fig. 4 Performance with variation of parameters
0.02
Erroro e As shown in Fig. 4, for acceptable values of robotic arm
parameters, the performance is unchanged. In the other
-0.0 — hand, performance is robust against uncertainties and
0.0 modelling error.
0 1 2 3 4 5 6 7 8 9 10
100 V. CONCLUSION
torque :
° The variable structure control method is a robust method
0 [ — that appears to be well suited for robotic manipulators
I I Ny because it requers only bounds on the robotic arm

parameters. However, the variable structure control method
does have its drawback. One is that there is no single
systematic procedure that is guaranteed to produce a suitable
control law. Also, to reduce chattring of the control signal,
we replaced the sgn function in the control law by a
continuous approximation such as tangant function.

(b)

Fig. 3 The tracking error, applied torque and output
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