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Abstract—Nowadays, the challenge in hydraulic turbine design is 

the multi-objective design of turbine runner to reach higher 

efficiency. The hydraulic performance of a turbine is strictly depends 

on runner blades shape. The present paper focuses on the application 

of the multi-objective optimization algorithm to the design of a small 

Francis turbine runner. The optimization exercise focuses on the 

efficiency improvement at the best efficiency operating point (BEP) 

of the GAMM Francis turbine. A global optimization method based 

on artificial neural networks (ANN) and genetic algorithms (GA) 

coupled by 3D Navier-Stokes flow solver has been used to improve 

the performance of an initial geometry of a Francis runner. The 

results show the good ability of optimization algorithm and the final 

geometry has better efficiency with initial geometry. The goal was to 

optimize the geometry of the blades of GAMM turbine runner which 

leads to maximum total efficiency by changing the design parameters 

of camber line in at least 5 sections of a blade. The efficiency of the 

optimized geometry is improved from 90.7% to 92.5%. Finally, 

design parameters and the way of selection have been considered and 

discussed. 
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I. INTRODUCTION 

ERO/HYDRO dynamic shape optimization is one of the 

most popular issues in aero/hydrodynamic design 

procedure in recent decades. Optimization algorithms are 

widely used in turbomachinery design process to achieve 

higher performance of the machines. In this research, 

optimization of blades shape of a reference Francis turbine 

runner namely GAMM has been considered to maximize its 

total efficiency at the best efficiency point of the turbine via a 

numerical optimization package including parameterization, 

CFD, artificial neural networks and genetic algorithms 

modules. The goal was to optimize the geometry of the blades 

of GAMM turbine runner which leads to maximum total 

efficiency by changing the design parameters of camber line in 

at least 5 sections of a blade. The methodology relies on the 

interaction between genetic algorithm, artificial neural 

network, database and user generated objective functions and 

constraints. The optimization is coupled to the FINE
TM

/Turbo 

environment of NUMECA as the solver. The efficiency of the 

initial geometry was improved by various objective functions 

and optimized geometry was obtained. Finally the best 

objective function which was a combination of head and 

torque was selected. It caused increase in the desired 

efficiency which has been discussed in detail in the paper. The 

efficiency of the optimized geometry is improved from 90.7% 

to 92.5% by a robust optimization method. 

 

II. BACKGROUND 

Turbomachinery blades design is a complex task involving 

many different objectives and constraints coming from various 

disciplines. 
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Further improvement of this design cycle is probably one of 

the main challenges of the next decade in the turbomachinery 

community. Major improvements are expected in terms of 

reduced design time, reduced engineering time, better 

performance and increased design complexity. This challenge 

can only be tackled by selecting and further developing 

general and efficient design algorithms integrated into 

software dedicated to this specific design task [1]. 

The optimization problems associated to turbomachinery 

design often involve many constraints and large sets of 

parameters, which in general leads to objective functions 

presenting many extremes. It is well known that optimization 

methods based on gradients techniques are efficient in terms 

of convergence rate, but do not guarantee to produce the 

global optimum [2]. On the other hand, genetic algorithms 

offer the advantage of enhancing the probability of reaching 

the global optimum, but may require thousands of iterations 

[3]. Their coupling with a three-dimensional Navier-Stokes 

solver cannot be considered under the framework of an 

industrial design process. The major idea of the optimization 

system contained in FINE
TM

/Design3D is that the evaluation 

of the successive designs is performed using an artificial 

neural network instead of a flow solver, which permits to use 

the genetic algorithms in an efficient way. The accuracy of the 

optimization depends on the knowledge of the artificial neural 

network, which is fed by design examples stored in a database. 

Demeulenaere et al. [4] used multipoint optimization 

method to have performance improvements over a wide range 

of operating conditions in the case of an industrial pump. 
Significant improvements have been obtained in terms of 

efficiency, pressure rise and NPSH. Kueny and Alanga have 

done optimal design of a Francis turbine distributor to obtain 

new geometry with better efficiency and performance 

compared to the initial design [5].  Kueny et al. [6] have used 

an optimal design technique based on artificial neural network 

and genetic algorithm to improve the design of a small 

hydraulic axial turbine. 

The core of the design system is a database containing the 

results of all Navier-stokes computations performed during the 

previous and present design processes. For each sample the 

geometrical parameters and the fluid properties and flow-field 

boundary conditions used by the Navier-Stokes solver which 

as an inputs and the hydrodynamic performance characterized 

by the efficiency, total pressure rise and other quantities as an 

outputs depending on the configuration. 

An iterative procedure is used, that the first step is a 

"learning process" is used to build the artificial neural network 

on basis of all the examples stored in the database. Learning 

process is performed by back-propagation of the errors. After 

this process, the artificial neural network is able to predict the 

aerodynamic performance of blade geometries under given 

boundary conditions that are not inside the database.  

The next step consists of finding a new design using an 

optimization procedure formed by a genetic algorithm, the 

aerodynamic performance being evaluated by means of the 

trained artificial neural network instead of Navier-Stokes 

Sh. Derakhshan, A. Mostafavi 

Optimization of GAMM Francis Turbine Runner 

A



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:5, No:11, 2011

2255

 

 

solver. The global blade performance is evaluated through an 

objective function, which translates all the user imposed 

constraints into a single number. The result of this 

optimization is a point in the design space that is expected to 

be the optimum of the real problem. The new geometry 

provided by the optimization is then evaluated by means of the 

3D Navier-Stokes flow solver and this new sample is added to 

the database. The comparison of the obtained performance 

with the one predicted by the artificial neural network permits 

to evaluate the accuracy of the network .The obtained 

performance is also compared to the imposed one. If the target 

performance has not been achieved other iteration is started, 

and the same process is repeated until the optimum blade is 

obtained (Fig. 1). Each design iteration starts with the artificial 

neural network learning. As the design proceeds, the database 

grows, leading to improvements of the approximate relation 

and therefore to a better localization of the real optimum [4]. 

III. DESCRIPTION OF THE GAMM FRANCIS TURBINE 

The test model corresponds to a Francis turbine of 

medium/high specific speed. It was designed at IMHEF for 

experimental research study in the hydraulic laboratory. The 

model was used as a test case in the 1989 GAMM workshop, 

where all the geometrical information, including stay and 

guide vanes, runner and draft tube, and the best efficiency 

measurements were available. The runner is also used as a test 

case in the annual ERCOFTAC Seminar and Workshop on 

Turbomachinery flow Predictions. The distributor CONSISTS of 

24 stay vanes and 24 guide vanes.The runner has 13 blades 

and its external diameter is 0.4m, so the reference radius is 

0.2m. The runner angular velocity and flow rate of this turbine 

on best operating condition were 500 rpm and 0.372 m3/s with 

guide vanes opening angle α=25°. The draft tube is simple, 

without any inner pillar. In Fig. 2, a schematic view of the 

GAMM Francis turbine meridian section has been presented 

[7]. 

 

IV.GEOMETRY PARAMETERIZATION 

The geometry parameterization is a critical element in the 

success of any shape optimization method. Ideally, the 

parameterization of the geometry should be able to generate a 

large variety of physically realistic shapes with as few design 

variables as possible. Turbomachinery designers are 

accustomed to work with two-dimensional sections that are 

then stacked to the three-dimensional blade geometry. One 

method in blade construction defines a camber line and adds 

thickness distributions to obtain the suction and the pressure 

sides. The advantage of this method is that the blade thickness 

can be easily maintained during the optimization, by freezing 

the associated parameters. Endwalls can be parameterized by 

making use of Bezier or B-spline curves. 

In this paper, the parametric model that has been adopted in 

Autoblade™ consists of 5 sections at hub, shroud and 

3sections between hub and shroud (Fig. 3), defined by a 

camber line and symmetric thickness distributions. Each 

camber line is a B-spline curve which was defined with 5 

parameters (Fig. 4.a). Bezier curve with 5 parameters was 

used to represent the symmetric blade thickness at each 

section that they were fixed via optimization process (Fig. 

4.b). 

The meridional location of each leading and trailing edges 

traces were imposed using a B-spline with 5 parameters which 

parameters were fixed via optimization process. 

The tangential location law for the leading edge was 

defined using a lean law B-spline curve with 5 parameters. 

The meridional location of each hub and shroud endwall was 

defined by B-spline curve with 8 parameters which parameters 

were fixed via optimization process. 

Finally, in optimization process, we allowed only variation 

of cord lines and leading edge stacking curve. Therefore the 

number of design parameters were limited to 30 (5 control 

points on each section and 5control point for tangential law). 

V. 3D FLOW SIMULATION  

FINE
TM

/Turbo developed by Numeca, is integrated 

software based on finite volume discretization for multi-block 

structured grids. To simulate the turbulent quantities with also 

a good rate of convergence the Spalart-Allmaras model was 

preferred (with turbulent viscosity, µt =1.1e
-6

). The flow 

conditions for each calculus are imposed at boundaries related 

to Mass Flow Rate flow angles at inlet and Averaged Static 

Pressure at the outlet. The multi-block structured grids by 

O4H topology on the blades have been prepared by 

AutoGrid5
TM

 developed by Numeca. The mesh template file 

must be defined to be as robust as possible with respect to the 

blade geometry modification.  

For the near wall treatment, the first cell widths were 

assumed to be 0.1, 0.1 and 0.01milimeter respectively for stay 

vanes, guide vanes and runner blades by assuming y
+
=3.0.  

To confirm the grid independency of the present 

simulations, three grid sizes (340527, 1042131 and 5547915 

grid points) for initial turbine included of stay vanes, guide 

vanes, runner blades and draft tube were used. The computed 

efficiencies were 90.3%, 90.7% and 90.7% respectively, so 

medium grid level was selected. The error of the maximum 

efficiency calculated by present numerical method is less than 

0.22% in comparison with the experimental measurement [8]. 

A blade to blade mesh view at section 4 of an initial runner 

blade has been shown in Fig. 5. As a convergence criterion, 

the computations were continued until the global residual 

decreased to less than 10
-6

 for discretetized equations. 
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Fig. 1 Schematic view of optimization technique 

 

 
Fig. 2 Geometrical information of GAMM runner turbine [7] 

 

 

 
 

Fig. 3 Geometrical information of GAMM runner turbine 

 

 

 

 
 

Fig. 4 a) B-spline curve with 5 parameters for each section, b) Bezier 

curve with 5 parameters for thickness distribution at each section 

 

We also keep unchanged existing stay vane, guide vane and 

draft tube. Thus we separate the runner from other parts of 

turbine for optimization process. The associated computational 

domain has been shown in Fig. 5. 
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Fig. 5 Blade to blade mesh view at section 4 of an initial runner blade 

VI. OPTIMIZATION 

The multi-objective optimization was based on constant 

operating point. A database of 90 geometries has first been 

generated, the 30 geometrical parameters being varied in a 

random way. The optimization objective has imposed to the 

operating point to increase the efficiency in constant total 

pressure difference. In the beginning, the objective function 

has been considered as a combination of head and efficiency 

terms. This objective function is described as follows:  
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Where 0.1=tE  is the target efficiency and 

Pa 54000−=∆ iP  is the initial total pressure difference. 

Optimization results with this objective function has been 

shown in Table I with various 
n

m
Ke =  parameters 

After that the objective function has been considered as a 

combination of torque and total pressure difference terms. 

This objective function is shown in the following. 
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Where: mNTt .420=  is the target torque and 

Pa 54000−=∆ iP  is the initial total pressure difference. 

Optimization results with this objective function are shown 

in Table I with various 
n

m
K t =  parameters. The results of 

optimization with this kind of objective function have been 

shown in Table II. With regard to Tables I and II, the objective 

function which is a combination of total pressure difference 

and torque terms with the value of Kt=0.1 is the best and 

selected as the desired objective function. 

TABLE I 

CFD RESULTS FOR OBJECTIVE FUNCTIONS WHICH ARE A COMBINATION OF 

EFFICIENCY AND HEAD TERMS 

Minimum of 

static pressure 

(Pa) 

Torque 

(N.m) 

Total pressure 

difference (Pa) 

Efficiency 

(%) 
 

62282 386 59900 90.7 
Initial 

turbine 

70960 

(+13.9%) 

401 

(+3.88%) 

61650 

(+2.92%) 

91.7 

(+1.1%) 
Ke=1000 

71057 

(+14%) 

396 

(+2.59%) 

60980 

(+1.8%) 

91.6 

(+0.99%) 
Ke=100 

69717 

(+11.9%) 

392 

(+1.55%) 

60360 

(+0.76%) 

91.6 

(+0.99%) 
Ke=10 

67704 

(+8.7%) 

391 

(+1.29%) 

60210 

(+0.51%) 

91.5 

(+0.88%) 
Ke=0.1 

TABLE II 

CFD RESULTS FOR OBJECTIVE FUNCTIONS WHICH ARE A COMBINATION OF 

TORQUE AND HEAD TERMS 

Minimum of 

static pressure 

(Pa) 

Torque 

(N.m) 

Total pressure 

difference (Pa) 

Efficiency 

(%) 
 

62282 386 59900 90.7 
Initial 

turbine 

66799 

(+7.2%) 

443 

(+14.7%) 

68550 

(+14.44%) 

91 

(+0.33%) 
Kt=10 

70922 

(+13.8%) 

399 

(+3.36%) 

60810 

(+1.51%) 

92.5 

(+1.98%) 
Kt=0.1 

69707 

(+11.9%) 

391 

(+1.29%) 

60390 

(+0.81%) 

91.2 

(+0.55%) 
Kt=0.01 

68180 

(+9.4%) 

390 

(+1.03%) 

60330 

(+0.71%) 

91.1 

(+0.44%) 
Kt=0.001 

VII. RESULTS 

The convergence histories of the optimization procedure 

have been shown in Fig. 6. One can be observed that the error 

between the artificial neural network predictions and the CFD 

results decrease, by iteration increasing and both of curves 

converges after some 30 iterations. 

The approximated time required for one design iteration has 

been presented in Table III. The corresponding required 

computational time was 25 hours for optimization process 

with Intel Core i5, 2.4 GHz and 3GB of RAM memory. 

For improving hydraulic efficiency in constant design point, 

the total pressure difference was added as a state constraint by 

penalty in the objective function.  
As it has been shown in Tables I and II, by increasing Ke 

and Kt parameters, the difference to the design point has also 

been increased. Because when these parameters have been 

increased, the effect of the applied restriction by the head 

penalty for limiting the optimization to the constant design 

point has been decreased. 

The turbine hydraulic efficiency is defined as: 

Qp

T

.

.

∆
=

ω
η                                                                             (3) 

Where T (N.m) is the axial torque from the fluid to the runner, 

ω (rad/s) is the rotational speed of the turbine, ∆p (Pa) is the 



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:5, No:11, 2011

2258

 

 

total pressure difference and Q (m
3
/s) is the volumetric flow 

rate in the turbine. In Eq. (3) increasing the torque improves 

efficiency in constant Q and ∆p. 

For increasing efficiency by the objective function which is 

a combination of the total pressure difference and efficiency 

terms, the torque increasing has been restricted by the applied 

restriction for the head as ∆pt penalty in Eq. (2). 

But in the optimization of the objective function which is a 

combination of the total pressure difference and torque terms, 

just one pressure difference restriction has been applied in the 

head penalty. 

Finally, obtained geometry by the optimization with the 

objective function which is a combination of total pressure 

difference and torque terms with the value of Kt=0.1 is 

selected as the desired optimized runner. We can see that in 

Table II, the efficiency has been increased 1.98% by only 

increasing of 1.51% of the total pressure difference. Also we 

can see the increasing the minimum static pressure in the 

runner outlet (13.8%) that it means the geometry has been 

improved also in point of cavitation phenomena. 

According to incomplete sensitivities theory, when the 

objective function is in term of aero/hydrodynamic force 

coefficients, the objective function is more sensitive to the 

geometry changes than state changes. It means when we 

define the objective function including torque we can expect 

more improved objective function. More detail can be found 

in [9, 10]. Therefore the torque in constant head is better 

objective function than the efficiency for improving the 

machine efficiency. 
 

TABLE III 

TIME REQUIRED FOR ONE DESIGN ITERATION  

Step Time(minutes) 

ANN training 5 

Optimization by GA 4 

Mesh generation 4 

CFD 32 

One design iteration 45 

 

 

 
 

 
 

Fig. 6 Evolution of objective function during optimization a) with the 

objective function which is a combination of head and efficiency 

terms with the value of Ke=0.1 b) with the objective function which is 

a combination of head and torque terms with the value of Kt=0.1 

 

The associated geometrical changes have been shown in 

Fig. 7. We can observe very significant modifications of the 

camber lines at section 3 and section 5.  

Two multi-objectives were grouped into one single 

objective function, built as the summation of two objectives. 

The efficiency of the optimized geometry was improved from 

90.7% to 92.5%. Inlet blade angle has been decreased in 

sections 3 and 5. 

3D views of the initial and optimized blades have been 

shown in Fig. 8. Fig. 9 presents the static pressure 

distributions along the initial and optimized turbine. 
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Fig .7 Initial and optimized geometries Blade-to-blade views for 

5sections (Kt= 0.1) 

 

VIII. CONCLUSION 

An efficient and original approach was developed and 

applied to the design of GAMM Francis runner blades. The 

originality of the approach lies in the use of an artificial neural 

network during the optimization phase, allowing for the using 

of genetic algorithms in an efficient way. The method can 

account for many different geometric, aero/hydrodynamic and 

mechanical objectives. Multi-objective optimization 

guaranties that the efficiency improvements are obtained over 

a best efficiency operating point (BEP), which essential in 

case of a turbine design. Using two difference objective 

functions, first according to efficiency and second on torque in 

constant head. It obtained that the second one is the better than 

first one according to incomplete sensitivities theory. 1.98% 

improvements have been obtained in terms of efficiency for 

GAMM Francis turbine (Kt= 0.1). The new blade geometry 

presents much more changes in the camber line of sections 3 
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and 5. The new optimized turbine has had a 13.8% minimum 

static pressure increase. We noticed that there was 3.36% 

torque improvement and 1.51% head increasing.  

 

 
 

 
Fig. 8 3D View of initial and optimized geometry (Kt= 0.1) 

 
(a) 

 
(b) 

Fig. 9 Static pressure distributions along initial and optimized 

geometry (Kt= 0.1) 
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