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Some Solid Transportation Models With Crisp and
Rough Costs
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Abstract—In this paper, some practical solid transportation mod-
els are formulated considering per trip capacity of each type of
conveyances with crisp and rough unit transportation costs. This is
applicable for the system in which full vehicles, e.g. trucks, rail
coaches are to be booked for transportation of products so that
transportation cost is determined on the full of the conveyances.
The models with unit transportation costs as rough variables are
transformed into deterministic forms using rough chance constrained
programming with the help of trust measure. Numerical examples
are provided to illustrate the proposed models in crisp environment
as well as with unit transportation costs as rough variables.

Keywords—Solid transportation problem, Rough set, Rough vari-
able, Trust measure.

I. INTRODUCTION

THE solid transportation problem (STP), first stated by
Schell [21] is an extension of classical transportation

problem (TP). The STP is a problem of transporting goods
from some sources to some destinations through some con-
veyances (modes of transportation), i.e., the STP deals with
three types of constraints, namely source, destination and
conveyance capacity constraints. Haley [3] described a so-
lution procedure of a solid transportation problem, which
is an extension of the Modi method. Till now, STP [5,12-
15,29] is modeled taking total supply capacity of all the
conveyances and it is assumed that this total capacity is
available for utilization for all source to destination routs
whatever be the amount of product allocated in the routs for
transportation. But in many practical situations this may not
always happen. Practically most of time full vehicles, e.g.,
trucks, rail coaches are to be booked and the availability of
each type of conveyance at each source may not be the same
and vehicles available at one source may not be utilized at
another source due to long distance between them or some
other problems. Also fulfillment of capacity of a vehicle effects
the optimal transportation policy. These practical situations
motivated us to formulate some useful solid transportation
models.

The available data in a transportation system, such as
supplies, demands, conveyance capacities are not always crisp
but are uncertain in nature due to insufficient information, lack
of evidence, fluctuating financial market, etc. Many researchers
studied STP in various uncertain environments. Jiménez and
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Verdegay [5] studied two types of uncertain STP, one with
interval numbers and other with fuzzy numbers. Yang and
Liu [29] presented expected value model, chance-constrained
programming model and dependent-chance programming for
a fixed charge solid transportation problem in fuzzy environ-
ment. Ojha et al. [14] investigated an entropy based STP with
general fuzzy costs and time. Yang and Feng [28] investigated
expected value goal programming, chance-constrained goal
programming and dependent-chance goal programming for a
bicriteria STP with fixed charge under Stochastic environment.
Nagarjan and Jeyaraman [13] formulated and solved chance-
constrained programming model for a multi-objective STP
with the parameters as stochastic intervals.

Though transportation problems in various types of un-
certain environments such as fuzzy, random are studied by
many researchers, there are few research papers about TP
in rough uncertain environment. Since rough set theory is
proposed by Pawlak [16], it is developed by many re-
searchers [11,17,19,20,32] in theoretical aspect and applied
into many practical fields such as data envelopment analysis
(DEA) [22,26], data mining [6], multi-criteria decision anal-
ysis [1,2,18], medical diagnosis [4,24], neural network [7],
signal processing [27], etc. Liu [8] proposed the concept rough
variable which is a measurable function from rough space to
the set of real numbers. Liu [10] discussed some inequalities
of rough variables and convergence concept of sequence of
rough variables. Liu [8,9] studied some rough programming
models with rough variables as parameters. Xu and Yao [25]
studied a two-person zero-sum matrix games with payoffs as
rough variables. Tao and Xu [23] developed a rough multi-
objective programming for dealing with multi-objective solid
transportation problem assuming that the feasible region is
not fixed but flexible due to imprecise parameters. Youness
[31] introduced a rough programming problem considering
the decision set as a rough set. Xu et al. [26] proposed
a rough DEA model to solve a supply chain performance
evaluation problem with rough parameters. Xiao and Lai [27]
considered power-aware VLIW instruction scheduling problem
with power consumption parameters as rough variables. But
at the best of our knowledge none studied STPs with any of
the parameters such as cost coefficients, supplies, demands,
etc as rough variables. In this paper we formulate and solve
STP with vehicle capacity taking unit transportation costs and
unit additional costs as rough variables.

The rest of the paper is organized as follows: In Section
2, we provide some definitions and properties of rough set
and rough variable. Section 3 presents description of our
proposed solid transportation problems and corresponding
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model formulations. Section 4 formulates the problems with
unit transportation and additional costs (penalty) as rough
variables. Rough chance constrained programming models are
formulated for the problems with the help of trust measure and
corresponding deterministic forms are obtained. Numerical
examples are provided in the Section 5 to illustrate the
proposed models in crisp environment and as well as with
rough unit transportation and additional costs. Finally the
paper is concluded in Section 6.

II. PRELIMINARIES

Here we introduced some basic idea of approximation of
a subset of a certain universe by means of lower and upper
approximation and rough set theory. Suppose U is a non-
empty finite set of objects called the universe and A is a
non-empty finite set of attributes, then the pair S = (U,A) is
called information system. For any B ⊆ A there is associated
an equivalence relation I(B) defined as I(B) = {(x, y) ∈
U × U | ∀a ∈ B, a(x) = a(y)}, where a(x) denotes the
value of attribute a for element x. I(B) is called the B-
indiscernibility relation. The equivalence classes of the B-
indiscernibility relation are denoted by [x]B .
For an information system S = (U,A) and B ⊆ A, X ⊆ U
can be approximated using only the information contained in
B by constructing the B-lower and B-upper approximations
[17] of X , denoted BX and BX respectively, where

BX = {x | [x]B ⊆ X} and BX = {x | [x]B ∩X �= φ}.
Clearly, lower approximation BX is the definable (exact) set
contained in X so that the objects in BX can be with certainty
classified as members of X on the basis of knowledge in B,
while the objects in BX can be only classified as possible
members of X on the basis of knowledge in B. The B-
boundary region of X is defined as

BNB = BX −BX

and thus consists of those objects that we cannot decisively
classify into X on the basis of knowledge in B. The boundary
region of a crisp (exact) set is an empty set as the lower and
upper approximation of crisp set are equal. A set is said to be
rough if the boundary region is non-empty, i.e., if BNB �= φ
then X is referred to as rough with respect to B.

A. Rough variable

The concept of of rough variable is introduced by Liu[8].
The following definitions are based on Liu[8,9].
Definition 1.2.1. Let Λ be a nonempty set, A be a σ-algebra of
subsets of Λ, Δ be an element in A, and π be a nonnegative,
real-valued, additive set function on A. Then (Λ,Δ,A, π) is
called a rough space.
Definition 1.2.2. A rough variable ξ on the rough space
(Λ,Δ,A, π) is a measurable function from Λ to the set of
real numbers � such that for every Borel set B of �, we have
{λ ∈ Λ | ξ(λ) ∈ B} ∈ A.
Then the lower and upper approximations of the rough variable
ξ are defined as follows:

ξ = {ξ(λ) | λ ∈ Δ} and ξ = {ξ(λ) | λ ∈ Λ}.

Definition 1.2.3. Let ξ be a rough vector on the rough space
(Λ,Δ,A, π), and fj : �n → � be continuous functions,
j = 1, 2, ...,m. Then the upper trust of the rough event
characterized by fj(ξ) ≤ 0; j = 1, 2, ...,m is defined by

T r̄{fj(ξ) ≤ 0,j=1,2,...,m} =
π{λ ∈ Λ|fj(ξ(λ)) ≤ 0, j = 1, 2, ...,m}

π(Λ)
,

and the lower trust of the rough event characterized by fj(ξ) ≤
0; j = 1, 2, ...,m is defined by

Tr{fj(ξ) ≤ 0,j=1,2,...,m} =
π{λ ∈ Δ|fj(ξ(λ)) ≤ 0, j = 1, 2, ...,m}

π(Δ)
.

If π(Δ) = 0, then T r̄{fj(ξ) ≤ 0,j=1,2,...,m} ≡ Tr{fj(ξ) ≤
0,j=1,2,...,m}.
The trust of the rough event is defined as the average value
of the lower and upper trusts, i.e.,
Tr{fj(ξ) ≤ 0,j=1,2,...,m} = 1

2 (T r̄{fj(ξ) ≤ 0,j=1,2,...,m} +
Tr{fj(ξ) ≤ 0,j=1,2,...,m}).
Definition 1.2.4. Let ξ be a rough variable on the rough space
(Λ,Δ,A, π) and α ∈ (0, 1], then

ξsup(α) = sup{r|Tr{ξ ≥ r} ≥ α}

is called α-optimistic value to ξ; and

ξinf (α) = inf{r|Tr{ξ ≤ r} ≥ α}

is called α-pessimistic value to ξ.
Definition 1.2.5. Let ξ be a rough variable on the rough space
(Λ,Δ,A, π). The expected value of ξ is defined by

E[ξ] =

∫ ∞

0

Tr{ξ ≥ r}dr −
∫ 0

−∞
Tr{ξ ≤ r}dr.

Example 1.2.1. Consider that ξ = ([a, b], [c, d]) be a rough
variable with c ≤ a < b ≤ d, where [a, b] is the lower
approximation and [c, d] is the upper approximation. This
means the elements in [a, b] are certainly members of the
variable and that of [c, d] are possible members of the variable.
Here Δ = {λ|a ≤ λ ≤ b} and Λ = {λ|c ≤ λ ≤ d}, ξ(x) = x
for all x ∈ Λ, A is the Borel algebra on Λ and π is the
Lebesgue measure.
As an practical example consider the possible transportation
cost of unit product to be transported from a source i to certain
destination j through a conveyance k. But as transportation
cost depends upon fuel price, labor charges, tax charges, etc.
and each of which are fluctuate time to time, so it is not always
possible to determine its exact value. Suppose four experts
give the possible unit transportation cost for i − j route via
conveyance k, determined in a certain time period as intervals
[3,5], [4,5], [3.5,6] and [4,6] respectively. Denotes cijk as- ’the
possible value of the unit transportation cost according to the
all experts’. Then cijk is not exact and can be approximated by
means of lower and upper approximation. It is clear that [4,5]
is the lower approximation of cijk as it is the greatest definable
(exact) set that cijk contain, i.e. every member of [4,5] is
certainly a value of cijk. Here [3,6] is the upper approximation.
So cijk can be represented as the rough variable ([4,5],[3,6]).
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Fig. 1. The trust of the rough event characterized by (a) ξ ≤ r and (b)
ξ ≥ r.

For a given value r and ξ = ([a, b], [c, d]),

Tr{ξ ≤ r} =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, if r ≤ c;
r−c

2(d−c) , if c ≤ r ≤ a;
1
2 (

r−a
b−a + r−c

d−c ), if a ≤ r ≤ b;
1
2 (

r−c
d−c + 1), if b ≤ r ≤ d;

1, if r ≥ d.

Tr{ξ ≥ r} =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, if r ≥ d;
d−r

2(d−c) , if b ≤ r ≤ d;
1
2 (

d−r
d−c + b−r

b−a ), if a ≤ r ≤ b;
1
2 (

d−r
d−c + 1), if c ≤ r ≤ a;

1, if r ≤ c.

For rough variable ξ = ([4, 5], [2, 7]), Tr{ξ ≤ r} and Tr{ξ ≥
r} are depicted in Fig. 1.
α-optimistic value to ξ = ([a, b], [c, d]) is

ξsup(α) =

⎧
⎪⎨

⎪⎩

(1− 2α)d+ 2αc, if α ≤ d−b
2(d−c) ;

2(1− α)d+ (2α− 1)c, if α ≥ 2d−a−c
2(d−c) ;

d(b−a)+b(d−c)−2α(b−a)(d−c)
(b−a)+(d−c) , otherwise.

α-pessimistic value to ξ is

ξinf (α) =

⎧
⎪⎨

⎪⎩

(1− 2α)c+ 2αd, if α ≤ a−c
2(d−c) ;

2(1− α)c+ (2α− 1)d, if α ≥ b+d−2c
2(d−c) ;

c(b−a)+a(d−c)+2α(b−a)(d−c)
(b−a)+(d−c) , otherwise.

The expected value of ξ is E(ξ) = 1
4 (a+ b+ c+ d).

III. DESCRIPTION OF THE PROBLEM AND MODEL
FORMULATIONS

In traditional STP total transportation capacity of con-
veyances is taken and the problem is solved assuming that
this total capacity can be utilized for all routes whatever
the allocation of products is in the routes. But in many

real transportation systems, full vehicles (e.g. trucks for road
transportation, coaches for rail transportation, etc.) are to be
booked and number of vehicles required are according to
amount of product to be transported through a particular
route. The difficulty in this case arises when the amount of
allocated product is not sufficient to fill up the capacity of the
vehicle, because then extra cost is incurred despite the unit
transportation cost due to not fulfilling the vehicle capacity.
Here we formulate some solid transportation models with
vehicle capacity to deal with such situations.
Suppose qk be the capacity of singe vehicle of k-th type
conveyance. Let zijk be the frequency (number of required
vehicles) of conveyance k for transporting goods from source
i to destination j via conveyance k and xijk (decision variable)
be the corresponding amount of goods. Then zijk is a decision
variable which takes only positive integer or zero. Also we
have

xijk ≤ zijk · qk.

Now in such vehicle transportation system obviously unit
transportation cost depends upon the utilizes of the capacity
of the vehicle. That is for a particular route i − j − k if the
unit transportation cost cijk is according to full utilization of
the vehicle capacity qk then an extra cost (penalty) will be
added if the capacity qk is not fully utilized. Determination of
additional cost for deficit amount depends upon the relevant
transportation authority. Two cases may arise, either authority
do not want to compromise for deficit amount and so direct
cost cijk is also represent the additional cost for unit deficit
amount, or they agree to compromise and fixed an additional
cost for unit deficit amount. For calculating additional cost
first deficit amount of goods is to be calculated for each route.
This can be done by two ways - calculating deficit amount for
i− j − k route directly as (zijk · qk − xijk) or by calculating
the empty ratio [30] of each vehicle of k-th type conveyance
for transporting goods from source i to destination j as

dijk =

{
0, if xijk

qk
= [

xijk

qk
];

1− (
xijk

qk
− [

xijk

qk
]), otherwise.

Then the amount of deficit amount for i−j−k route is given by
qk ·dijk. Now if uijk represents additional cost for unit amount
of deficit from source i to destination j via conveyance k, then
additional cost for this route is given by

εijk = uijk(zijk · qk − xijk) or εijk = uijk · qk · dijk.

The total additional (penalty) cost for the problem is

C(x) =
m∑

i=1

n∑

j=1

K∑

k=1

εijk.

So the STP model becomes

Min Z =

m∑

i=1

n∑

j=1

K∑

k=1

(cijk xijk + εijk)
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s.t.
n∑

j=1

K∑

k=1

xijk ≤ ai, i = 1, 2, ...,m,

m∑

i=1

K∑

k=1

xijk ≥ bj , j = 1, 2, ..., n, (1)

xijk ≤ zijk ·qk, i = 1, 2, ...,m; j = 1, 2, ..., n; k = 1, 2, ...,K,

m∑

i=1

ai ≥
n∑

j=1

bj , xijk ≥ 0, zijk ∈ Z+, ∀ i, j, k.

In the above model it is assumed that there are sufficient
number of vehicles of each type of conveyance available
to transport the required amount of goods (i.e., there is no
restriction on number of available vehicles of each type of
conveyances). If number of vehicles of conveyances limited
to certain number, suppose Qk for k-th type conveyance then
an another constraint

m∑

i=1

n∑

j=1

zijk ≤ Qk, k = 1, 2, ...,K

is added to the model (1), then the above model becomes

Min Z =
m∑

i=1

n∑

j=1

K∑

k=1

(cijk xijk + εijk)

s.t.

n∑

j=1

K∑

k=1

xijk ≤ ai, i = 1, 2, ...,m,

m∑

i=1

K∑

k=1

xijk ≥ bj , j = 1, 2, ..., n, (2)

xijk ≤ zijk ·qk, i = 1, 2, ...,m; j = 1, 2, ..., n; k = 1, 2, ...,K,

m∑

i=1

n∑

j=1

zijk ≤ Qk, k = 1, 2, ...,K,

m∑

i=1

ai ≥
n∑

j=1

bj , xijk ≥ 0, zijk ∈ Z+, ∀ i, j, k.

This limitation of number of vehicles can effect the optimal
transportation policy. For example unavailability of sufficient
number of vehicles of certain type of conveyance may force
to use another type of conveyance which costs higher than the
previous.

In the above two models it is assumed that total available
vehicles can be utilized in each source as they required. But in
reality in each source, the availability of different vehicles may
not be the same and the vehicles available at one sources may
not be utilized for another source due to long distance between
them. So there may be a situation arise that in a certain source
there are more than sufficient number of particular vehicles
available to transport product to destinations but at the same
time in an another source there are less number of that vehicles
available than the requirement. As a result it may happen that
vehicle having less transportation cost leaving from certain
source to destination without being fully loaded, while vehicle
having comparably high transportation cost leaving with fully
loaded. So it is realistic to develops a solid transportation

          

                                                              

                                                                                                                            

  ………… …… 

        

     

  …………. 

    

                                    Model (2)                                                              

 ………… 

                                                              

                                                                ..………                                                 

     

     

  …………. 

                                    Model (3) 

     No of vehicles   

KkQK ,...,2,1, �

Source 1 Source 2 Source m 

Destination 1  Destination 2  Destination n  

Source 1 Source 2 Source m 

Destination 1  Destination 2  Destin n           

K
kV k

,...,1
,1 �

K
kV k

,...,1
,2 �

K
kV k

m

,...,1
, �

Fig. 2. The hierarchical structures of the models (2) and (3).

model with source-wise vehicle availability. Suppose at source
i, the number of available vehicles of k-th type conveyance
is V k

i and vehicles at each source can not be shared to other
sources. Then the constraints

n∑

j=1

zijk ≤ V k
i , i = 1, 2, ...,m; k = 1, 2, ...,K

is added to the model (1) and so the model becomes

Min Z =

m∑

i=1

n∑

j=1

K∑

k=1

(cijk xijk + εijk)

s.t.
n∑

j=1

K∑

k=1

xijk ≤ ai, i = 1, 2, ...,m,

m∑

i=1

K∑

k=1

xijk ≥ bj , j = 1, 2, ..., n, (3)

xijk ≤ zijk ·qk, i = 1, 2, ...,m; j = 1, 2, ..., n; k = 1, 2, ...,K,

n∑

j=1

zijk ≤ V k
i , i = 1, 2, ...,m; k = 1, 2, ...,K,

m∑

i=1

ai ≥
n∑

j=1

bj , xijk ≥ 0, zijk ∈ Z+, ∀ i, j, k.

The hierarchical structures of the models (2) and (3) are shown
in the Fig. 2.
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IV. PROBLEM WITH UNIT TRANSPORTATION AND
ADDITIONAL COSTS (PENALTY) AS ROUGH VARIABLES

Consider the unit transportation costs cijk and as well as
unit additional costs uijk for the model (1) are rough vari-
ables represented by cijk = ([c2ijk, c

3
ijk], [c

1
ijk, c

4
ijk]), c

1
ijk ≤

c2ijk < c3ijk ≤ c4ijk and uijk = ([u2
ijk, u

3
ijk], [u

1
ijk, u

4
ijk]),

u1
ijk ≤ u2

ijk < u3
ijk ≤ u4

ijk. Then the objective function of
the model (1), Z =

∑m
i=1

∑n
j=1

∑K
k=1 (cijk xijk + εijk),

εijk = uijk(zijk · qk−xijk) becomes a rough variable defined
as Z = ([Z2, Z3], [Z1, Z4]), where

Zr =
m∑

i=1

n∑

j=1

K∑

k=1

(crijk xijk + εrijk), r = 1, 2, 3, 4,

εrijk = ur
ijk(zijk · qk − xijk), r = 1, 2, 3, 4.

Rough chance-constrained programming: We formulate
rough chance-constrained programming (CCP) for the model
(1) with rough costs. Since the problem is a minimization
problem, we minimize the smallest objective Z̄ satisfying
Tr{Z ≤ Z̄} ≥ α, where α ∈ (0, 1] is a specified trust
(confidence) level, i.e., we minimize the α-pessimistic value
Zinf (α) of Z. This implies that the optimum objective value
will below the Z̄ with a trust level at least α. So the rough
CCP becomes

Min (Min Z̄) (4)

s.t. T r{Z ≤ Z̄} ≥ α,
n∑

j=1

K∑

k=1

xijk ≤ ai, i = 1, 2, ...,m, (5)

m∑

i=1

K∑

k=1

xijk ≥ bj , j = 1, 2, ..., n, (6)

xijk ≤ zijk ·qk, i = 1, 2, ...,m; j = 1, 2, ..., n; k = 1, 2, ...,K,
(7)

m∑

i=1

ai ≥
n∑

j=1

bj , xijk ≥ 0, zijk ∈ Z+, ∀ i, j, k. (8)

From the definition of α-pessimistic value, the above CCP
equivalently becomes

Min Z ′

s.t. the constraints (5)− (8), (9)

where

Z ′ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(1− 2α)Z1 + 2αZ4, if α ≤ Z2−Z1

2(Z4−Z1) ;

2(1− α)Z1 + (2α− 1)Z4, if α ≥ Z3+Z4−2Z1

2(Z4−Z1) ;
Z1(Z3−Z2)+Z2(Z4−Z1)+2α(Z3−Z2)(Z4−Z1)

(Z3−Z2)+(Z4−Z1) ,

otherwise.

Now we also formulate another rough CCP for the model
(1) with rough costs, to minimize the greatest objective Z
satisfying Tr{Z ≥ Z} ≥ α, where α ∈ (0, 1] is a specified
trust (confidence) level, i.e., we minimize the α-optimistic
value Zsup(α) of Z. This implies that the optimum objective
value will above the Z with a trust level at least α. So the
rough CCP becomes

Min (Max Z)

s.t. T r{Z ≥ Z} ≥ α, (10)

and the constraints (5)− (8).

From the definition of α-optimistic value, the above CCP
equivalently becomes

Min Z ′′

s.t. the constraints (5)− (8), (11)

where

Z ′′ =

⎧
⎪⎪⎨

⎪⎪⎩

(1− 2α)Z4 + 2αZ1, if α ≤ Z4−Z3

2(Z4−Z1) ;

2(1− α)Z4 + (2α− 1)Z1, if α ≥ 2Z4−Z2−Z1

2(Z4−Z1) ;
Z4(Z3−Z2)+Z3(Z4−Z1)−2α(Z3−Z2)(Z4−Z1)

(Z3−Z2)+(Z4−Z1) , otherwise.

Since for 0.5 < α ≤ 1, Zinf (α) ≥ Zsup(α), so solving
the problems (9) and (11) with trust level α (0.5 < α ≤ 1)
we conclude that optimum objective value lie within the range
[Z ′′, Z ′] with the trust level at least α.
In case of models (2) and (3) with unit transportation and ad-
ditional costs as rough variables, rough CCP can be developed
same way as above.

V. NUMERICAL EXAMPLE

A. Problems with unit transportation and additional costs as
crisp numbers

Consider a problem with three sources (i = 1, 2, 3),
three destinations (j = 1, 2, 3), two types of conveyances
(k = 1, 2). The unit transportation costs are given in Table I.
The availabilities at each source, demands of each destination
and capacity of single vehicle of each type of conveyance are
given in Table II. For convenience suppose additional costs
for unit deficit amount is uijk = 0.8 · cijk.
Now if there are sufficient number of vehicles of each type

TABLE I
UNIT TRANSPORTATION COSTS cijk

i \ j 1 2 3 1 2 3
1 8 11 12 12 9 13
2 8 10 7 11 8 10
3 9 14 9 12 10 9
k 1 2

TABLE II
AVAILABILITIES, DEMANDS AND VEHICLE CAPACITY.

a1 = 25.6, a2 = 16.8, a3 = 32.4, b1 = 14.8, b2 = 26.8,
b3 = 23.8, q1 = 2.48, q2 = 3.78.

conveyance available as required (i.e., there is no restriction
on number of available vehicles of each type of conveyances),
then for the above problem solving the model (1) we have
the following solution (Table III) So total number of required
vehicles of conveyance k = 1 is 10 and that of conveyance
k = 2 is 11.
Now as we say earlier, it may happen that number of vehicles
of certain type of conveyance is so limited that it is not
sufficient to fulfill its requirement for a transportation system.
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TABLE III
OPTIMUM RESULTS FOR MODEL (1)

x111 = 14.8, x121 = 2.44, x221 = 1.68, x331 = 4.96,
x122 = 7.56, x222 = 15.12, x332 = 18.84, Min Z = 572.936,

z111 = 6, z121 = 1, z221 = 1, z331 = 2,
z122 = 2, z222 = 4, z332 = 5.

Suppose in the above example the number of available vehicles
of conveyance k = 1 is 14 and that of conveyance k = 2 is
10, i.e., Q1 = 14 and Q2 = 10. Then with the same data
as given in Tables I and II, solving the model (2) we have
the following solution (Table IV). It should be mentioned that

TABLE IV
OPTIMUM RESULTS FOR MODEL (2)

x111 = 14.8, x121 = 2.48, x221 = 1.64, x231 = 3.82,
x331 = 4.86, x122 = 7.56, x222 = 11.34, x322 = 3.78,
x332 = 15.12, Min Z = 579.536, z111 = 6, z121 = 1,

z221 = 1, z231 = 2, z331 = 2, z122 = 2,
z222 = 3, z322 = 1, z332 = 4.

here in case of model (2), if number of available vehicles of
each type of conveyance at each source are greater or equal to
as required in model (1), i.e., if Q1 ≥ 10 and Q2 ≥ 11 then
model (2) gives the same result as model (1).

Now to demonstrate model (3), consider the same data as
given in Tables I and II and suppose availability of vehicles of
each type conveyances at each sources are V 1

1 = 5, V 2
1 = 3,

V 1
2 = 4, V 2

2 = 6, V 1
3 = 4, V 2

3 = 5. Then solving the model
(3) we have the solution as presented in Table V.

TABLE V
OPTIMUM RESULTS FOR MODEL (3)

x111 = 9.92, x121 = 1.64, x221 = 2.48, x231 = 2.48,
x311 = 4.88, x331 = 2.48, x122 = 11.34, x222 = 11.34,

x332 = 18.9, Min Z = 576.54, z111 = 4, z121 = 1,
z221 = 1, z231 = 1, z311 = 2, z331 = 1,

z122 = 3, z222 = 3, z332 = 5.

B. Problems with unit transportation and additional costs as
rough variables

Consider the model (1) with three sources (i = 1, 2, 3),
three destinations (j = 1, 2, 3), two types of conveyances
(k = 1, 2). The unit transportation costs are rough variables as
given in Tables VI and VII. The availabilities at each sources,
demands of each destinations and capacity of single vehicle
of each type of conveyances are same as in Table II. For
convenience suppose additional costs for unit deficit amount
is uijk = 0.8 · cijk. Now constructing rough CCP as (4)-(8)
with trust level α = 0.9, we have corresponding deterministic
form using (9) as follows:

Min Z ′

TABLE VI
UNIT TRANSPORTATION COSTS cij1

i \ j 1 2 3
1 ([7,9],[6,10]) ([10,11],[8,12]) ([11,13],[10,12])
2 ([6,8],[5,9]) ([9,10],[7,11]) ([5,7],[4,8])
3 ([8,10],[7,11]) ([13,15],[12,16]) ([8,10],[7,11])

TABLE VII
UNIT TRANSPORTATION COSTS cij2

i \ j 1 2 3
1 ([10,12],[9,13]) ([8,10],[7,11]) ([12,14],[11,15])
2 ([11,12],[9,13]) ([6,8],[5,9]) ([9,10],[7,11])
3 ([11,12],[10,13]) ([10,11],[9,12]) ([8,9],[7,11])

s.t.

3∑

j=1

2∑

k=1

xijk ≤ ai, i = 1, 2, 3,

3∑

i=1

2∑

k=1

xijk ≥ bj , j = 1, 2, 3, (12)

xijk ≤ zijk · qk, i = 1, 2, 3; j = 1, 2, 3; k = 1, 2,

xijk ≥ 0, zijk ∈ Z+, ∀ i, j, k.

where,

Z ′ =

⎧
⎪⎪⎨

⎪⎪⎩

−0.8Z1 + 1.8Z4, if 0.9 ≤ Z2−Z1

2(Z4−Z1) ;

0.2Z1 + 0.8Z4, if 0.9 ≥ Z3+Z4−2Z1

2(Z4−Z1) ;
Z1(Z3−Z2)+Z2(Z4−Z1)+1.8(Z3−Z2)(Z4−Z1)

(Z3−Z2)+(Z4−Z1) , otherwise.

Zr =
3∑

i=1

3∑

j=1

2∑

k=1

(crijk xijk + εrijk), r = 1, 2, 3, 4,

εrijk = 0.8crijk(zijk · qk − xijk), r = 1, 2, 3, 4.
Solving this problem we get the solution presented in Table
VIII. From this solution we conclude that the objective value

TABLE VIII
OPTIMUM RESULTS FOR MODEL (1) WITH TRANSPORTATION

COSTS AS ROUGH VARIABLES

x111 = 12.4, x121 = 4.87, x231 = 2.43, x311 = 2.4,
x331 = 2.46, x122 = 7.56, x222 = 14.36, x332 = 18.9,

Min Z′ = 630.2688,, z111 = 5, z121 = 2, z231 = 1,
z311 = 1, z331 = 1, z122 = 2, z222 = 4, z332 = 5.

will less or equal to 630.2688 with trust level at least 0.9.
We now construct rough CCP as (10) with trust level α = 0.9
and then we have corresponding deterministic form using (11)
as follows:

Min Z ′′

s.t.
3∑

j=1

2∑

k=1

xijk ≤ ai, i = 1, 2, 3,

3∑

i=1

2∑

k=1

xijk ≥ bj , j = 1, 2, 3, (13)

xijk ≤ zijk · qk, i = 1, 2, 3; j = 1, 2, 3; k = 1, 2,
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xijk ≥ 0, zijk ∈ Z+, ∀ i, j, k.

where,

Z ′′ =

⎧
⎪⎪⎨

⎪⎪⎩

−0.8Z4 + 1.8Z1, if 0.9 ≤ Z4−Z3

2(Z4−Z1) ;

0.2Z4 + 0.8Z1, if 0.9 ≥ 2Z4−Z2−Z1

2(Z4−Z1) ;
Z4(Z3−Z2)+Z3(Z4−Z1)−1.8(Z3−Z2)(Z4−Z1)

(Z3−Z2)+(Z4−Z1) ,otherwise.

Solving this we get MinZ ′′ = 471.427. So the objective value
will greater or equal to 471.427 with trust level at least 0.9.
As we know for 0.5 < α ≤ 1, Zinf (α) ≥ Zsup(α),
here our results (Z ′ > Z ′′) shows this truth. Finally we
can conclude that the optimum objective value lie within
the range [471.427, 630.2688] with trust level at least 0.9.
To validate these results let us find the optimum expected
objective value E(Z). For the rough objective function Z =
([Z2, Z3], [Z1, Z4]), we have E(Z) = 1/4(Z1 + Z2 + Z3 +
Z4). We find the expected objective value for this problem
547.358. So we see that the expected objective value lie
within the range of objective value as obtained by rough
programming.

VI. CONCLUSION

This paper presents some solid transportation models for
the transportation system where full vehicles are used for
transportation so that unit transportation costs are determined
according to full utilization of the vehicle capacity. To deal
with different situations like availability of each type of
conveyances, whether the available vehicles at one source
can be utilized at another source or not, different solid trans-
portation models are formulated. STP with different types of
uncertain variables such as fuzzy, random, fuzzy random are
discussed by many researchers, but STP with rough variables
is not discussed before. In this paper we only assume the
unit transportation costs as rough variables, the STP with all
the parameters, i.e., costs, availabilities, demands, conveyance
capacities as rough variables may be taken as a future work.
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