ISSN: 2517-9934 Vol:1, No:5, 2007

Some Clopen sets in the Uniform Topology on BCI-algebras

A. Hasankhani, H. saadat, M.M. Zahedi

Abstract— In this paper some properties of the uniformity topology on a BCI-algebras are discussed.

Keywords—(Fuzzy) ideal, (Fuzzy) subalgebra, Uniformity, clopen sets.

I. INTRODUCTION

In 1966, K. Iseki introduced the concept of BCI-algebra [4]. In 1965, L.A. Zadeh [6] defined the concept of a fuzzy set, as a function from a non-empty set to [0,1]. In [1], B. Ahmad, apply this notion to BCI-algebra.

In this paper we will discuss some properties of the uniform topology on a BCI-algebra.

II. PRELIMINARIES

Definition 2.1. By a BCI-algebra we mean an algebra (X;*,0) of type (2,0) satisfying the axioms:

BCI-1)
$$((x * y) * (x * z)) * (z * y) = 0$$
,

BCI-2)
$$(x*(x*y))*y=0$$
,

BCI-3) x * x = 0,

BCI-4) x * y = y * x = 0 implies x = y,

BCI-5) x * 0 = 0 implies x = 0.

For all x, y and z in X.

From now on X = (X; *, 0) is a BCI-algebra.

Definition 2.2 [3]. A subset B of X is called:

i) an ideal if for any x, y in X.

(1) $0 \in B$

(2) x * y, $y \in B$ imply $x \in B$.

ii) a subalgebra if for any x, y in B, $x * y \in B$.

A. Hasankhania and M.M. Zahedia are with Dept. of Math., Shahid Bahonar University of Kerman, Kerman, Iran (e-mails:abhasan@mail.uk.ac.ir, Zahedi_mm@mail.uk.ac.ir).

H. saadatb is with Islamic Azad University Science and Research Computes Kerman, Kerman, Iran (e-mail:Saadat@iauk.ac.ir).

Definition 2.3 [1]. A fuzzy subset μ of X is called:

i) a fuzzy ideal of X if for any $x, y \in X$, we have

(1) $\mu(0) \ge \mu(x)$, for all x in X,

(2) $\mu(x) \ge \min\{\mu(x * y), \mu(y)\}$.

ii) a fuzzy subalgebra of X if for any $x, y \in X$ $\mu(x * y) \ge \min\{\mu(x), \mu(y)\}$.

Notation 2.4. The set of all (non-zero fuzzy) ideal of X is denoted by (FI(X))I(X).

Note that by non-zero fuzzy set of X we mean, there is $x \in X$ such that $\mu(x) > 0$.

Lemma 2.5. (i) $A \in I(X)$ iff $\chi_A \in FI(X)$, where χ_A is the characteristic function of A.

(ii) If $\mu, \eta \in FI(X)$, then $\mu \cap \eta \in FI(X)$, where $\mu \cap \eta$ is a fuzzy subset of X which is defined by $\mu \cap \eta(x) = \min\{\mu(x), \eta(x)\}$, for all $x \in X$.

(iii) If $\mu \in FI(X)$, then

 $\mu(x * y) \ge \min\{\mu(x * z), \mu(z * y)\}, \quad \forall x, y, z \in X.$

(iv) If $\mu \in FI(X)$, then $\mu(0) > 0$.

(v) A is a subalgebra of X if and only if χ_A is a fuzzy subalgebra.

Proof. The proofs of (i), (ii), (iv) and (v), are easy, and the proof of (iii) follows from BCI-1.

Remark 2.6. (i). By BCI-5, $\{0\} \in I(X)$ and hence $\chi_{\{0\}} \in FI(X)$.

(ii) For all $\ x \in X$, $\ A \in I(X)$, $\ \chi_A(x*x) = 1$, by BCI-3.

Definition 2.7 [2]. A BCI-algebra X is called medial if

$$(x * y) * (z * u) = (x * z) * (y * u), \forall x, y, z, u \in X.$$

Definition 2.8 [1]. A BCI-algebra X is called quasi right alternate if

$$x * (y * y) = (x * y) * y, \forall x, y \in X$$
.

Definition 2.8. Let $\mu \in FI(X)$. We define the relation \sim_{μ} on X as follows:

ISSN: 2517-9934 Vol:1, No:5, 2007

 $x \sim_{\mu} y$ if and only if $\min\{\mu(x * y), \mu(y * x)\} > 0$.

Proposition 2.9. The relation \sim_{μ} is an equivalence relation on X.

Notations. Let X be a non-empty set and U, V be subsets of $X \times X$. We let

i)
$$U \circ V = \{(x, y) \in X \times X \mid \exists z \in X \text{ such that } (x, z) \in V \text{ and } (z, y) \in U\}$$
;

ii)
$$U^{-1} = \{(x, y) \in X \times X \mid (y, x) \in U\};$$

iii)
$$\Delta = \{(x, x) \in X \times X \mid x \in X\}.$$

Definition 2.10 [5]. By a uniformity on X we shall mean a non-empty collection K of subsets of $X \times X$ which satisfies the following conditions:

- (U_1) $\Delta \subset U$, for any $U \in K$;
- (U₂) If $U \in K$, then $U^{-1} \in K$;
- (U₃) If $U \in K$, then there exist a $V \in K$, such that $V \circ V \subseteq U$;
 - (U₄) If $U, V \in K$, then $U \cap V \in K$;
 - (U₅) If $U \in K$, and $U \subset V \subset X \times X$, then $V \in K$.

Theorem 2.11. Let $\mu \in FI(X)$ and

$$U_{\mu} = \{(x, y) \in X \times X \mid x \sim_{\mu} y\}.$$

If

$$K^* = \{U_{\mu} \mid \mu \in FI(X)\},\,$$

then K^* satisfies the conditions (U₁)- (U₄).

Theorem 2.12. Let $K = \{U \subseteq X \times X \mid U_u \subseteq U \text{, for } v \in X \mid U_u \subseteq U \text{ and } v \in Y \text{ and }$ some $\mu \in FI(X)$.

Then K satisfies a uniformly on X and the pair (X, K) is a uniform structure.

Notation. Let $x \in X$, and $U \in K$, we define

$$U[x] := \{ y \in X \mid (x, y) \in U \}.$$

Theorem 2.13. Let

 $u = \{G \subseteq X \mid \forall x \in G, \exists U \in K, U[x] \subseteq G\}$. The u is a topology on X.

Remark 2.14. Note that for any x in X, U[x] is an open neighborhood of x.

Definition 2.15. Let (X, K) be a uniform space. Then the topology u is called the uniform topology on X induced by K.

III. MAIN RESULTS

Proposition 3.1. Every ideal I of X is a clopen set in (X, u).

Proof. Let I be an ideal of X. To prove that I is closed, we shall show that $I^{C} = \bigcup U_{\chi_{I}}[x]$. Indeed, assume

 $y \in I^{C}$, then from $y \in U_{\chi_{I}}[y]$ it follows that $y \in \bigcup_{x \notin I} U_{\chi_I}[x]$. Hence

$$I^{c} \subseteq \bigcup_{z_{l}} U_{z_{l}}[x]. \tag{1}$$

Conversely, let $y \in \bigcup_{x \in I} U_{\chi_I}[x]$. Then there is $z \in I^C$ such

that $y \in U_{\gamma}[z]$. Hence y * z and $z * y \in I$. Now we show that $y \notin I$. On the contrary, let $y \in I$. Then from $z * y \in I$, we get that $z \in I$, which is contradiction. Therefore

$$\bigcup_{x \neq I} U_{\chi_I}[x] \subseteq I^C \tag{2}$$

consequently from (1) and (2) we obtain that I is closed. To prove that I is open we show that

$$I = \bigcup_{x \in I} U_{\chi_I}[x]. \tag{3}$$

 $I = \bigcup_{x \in I} U_{\chi_I}[x] \,. \tag{3}$ Clearly $y \in U_{\chi_I}[y]$, $\forall y \in X$. Hence, $I \subseteq \bigcup_{x \in I} U_{\chi_I}[x]$.

On the other hand, let $y \in \bigcup U_{\chi_I}[x]$, then there is $z \in I$

such that $y \in U_{\chi_I}[z]$. Thus $y * z \in I$ and $z * y \in I$. Now by BCI-2 we have

$$(y*(y*z))*z = 0 \in I$$
.

Since $z \in I$ and $z * y \in I$ we get that $y \in I$. Thus

$$\bigcup_{x\in I} U_{\chi_I}[x] \subseteq I.$$

Therefore (3) holds, and hence I is open.

Theorem 3.2. Each $U_{\mu}[x]$ is a clopen set for all $\mu \in FI(X)$.

Proof. Let $\mu \in FI(X)$, $x \in X$. We want to show that $U_{\mu}[x]$ is a closed subset of X. Let $y \in (U_{\mu}[x])^c$. We claim that for the given element y we have

$$U_{\mu}[y] \subseteq (U_{\mu}[x])^{c}. \tag{4}$$

Let $z \in U_{\mu}[y]$, then $\mu(z * y) > 0$ and $\mu(y * z) > 0$. If $z \in U_{\mu}[x]$, then $\mu(x*z) > 0$ and $\mu(z*x) > 0$. By Lemma 2.5 (iii), $\mu(x*y) > 0$ and $\mu(y*x) > 0$. It follows that $y \in U_u[x]$, which is a contradiction. Hence

ISSN: 2517-9934 Vol:1, No:5, 2007

 $z\in (U_\mu[x])^c$, and (4) holds. Therefore $(U_\mu[x])^c$ is open, that is $U_\mu[x]$ is closed.

Theorem 3.3 [1]. In a quasi right alternate BCI-algebra, fuzzy ideals and fuzzy subalgebra coincide.

Corollary 3.4. Let X be a quasi right alternate BCI-algebra, then

- i) Every subalgebra of X is clopen set in (X, u).
- ii) If μ is a fuzzy subalgebra of X , then $U_{\mu}[x]$ is a clopen set in (X, u).

Proof. The proof follows from Theorems 3.12, 3.13 and Proposition 3.11.

Proposition 3.1. *K* is a discrete topology.

Proof. Let x be an arbitrary element of X . Then

$$\{x\} = \{y \in X \mid y = x\}$$

$$= \{ y \in X \mid x * y = 0, y * x = 0 \}$$

$$= \{ y \in X \quad \chi_{\{0\}}(x * y) > 0 \quad \chi_{\{0\}}(y * x) > 0 \}$$

$$=U_{\chi_{(0)}}[x].$$

Now, the proof follows from Theorem 3.2.

Remark. Clearly $(X \times X, \otimes, (0,0))$ is a BCK-algebra, where

$$\otimes : (X \times X) \times (X \times X) \to X \times X$$
$$((x, y), (x', y')) \mapsto (x * x', y * y').$$

Now, by $\mathbf{u}_{X \times X}$ and \mathbf{u}_{X} we mean the uniform Topology on $X \times X$ and X respectively.

Theorem 3.6. Let X be a medial BCI-algebra. Then the operation $*: X \times X \to X$ is continuous.

Proof. Let $f: X \times X \to X$ be defined by

$$f(x, y) = x * y$$
, $\forall x, y \in X$, $G \in \mathbf{u}_X$ and $(x, y) \in f^{-1}(G)$.

Then there is $U \in K_X$ such that $U[x * y] \subseteq G$. Hence

 $U_{\mu} \subseteq U$, for some $\mu \in FI(X)$. Now we define fuzzy

subset η of $X \times X$ by

$$\eta(x, y) = \mu(x * y)$$
.

we show that $\eta \in FI(X \times X)$.

$$\eta(0,0) = \mu(0*0) = \mu(0) \ge \mu(x*y) = \eta(x,y)$$
, for all

 $x, y \in X$. On the other hand

$$\min\{\eta((x, y) * (z, u)), \eta(z, u)\} =$$

$$\min\{\mu((x*z)*(y*u)), \mu(z*u)\}$$

$$= \min\{\mu((x * y) * (z,u)), \mu(z,u)\}\$$

 $\leq \mu(x * y)$

$$= \eta(x, y), \quad \forall x, y, z, u \in X$$
.

Therefore $\eta \in FI(X \times X)$. Now consider U_{η} in $K_{X \times X}^*$.

We show that $U_n[(x, y)] \subseteq f^{-1}(G)$. Let

$$(z,u) \in U_n[(x,y)],$$

then

$$\min \left\{ \eta((x,y) \otimes (z,u)), \eta((z,u) \otimes (x,y)) \right\} > 0.$$

So,

$$\min \{ \eta(x * z, y * u), \eta(z * x, u * y) \} > 0$$
.

In other words,

$$\min\{\mu((x*z)*(y*u)),\mu((z*x)*(u*y))\}>0.$$

Hence

$$\mu((x * y) * (z * u)) > 0$$

and

$$\mu((z*u),(x*y)) > 0$$
.

.It follows that,

$$(x * y, z * u) \in U_u \subseteq U$$
 and so $z * u \in U[x * y] \subseteq G$.

It means that
$$(z * u) = f(z, u) \in G$$
 or $(z, u) \in f^{-1}(G)$.

Consequently, $f^{-1}(G) \in u_{X \times X}$.

REFERENCES

- [1] B. Ahmad, Fuzzy BCI-algebras, Journal of Fuzzy Math. Vol. 1, No. 2 (1993), 445-452.
- [2] W.A. Dudek, On medial BCI-algebra, Prace Naukowe WSP Czestochowie, 1985.
- [3] K. Iseki, On BCI-algebras, Math. Seminar Notes, 8 (1980), 125-130.
- [4] K. Iseki, An algebra related with a propositional calculus, Proc. Japan Acad. 42 (1966), 26-29.
- [5] K.D. Joshi, Introduction to general topology, New Age International Publisher, India, 1997.
- [6] L.A. Zadeh, Fuzzy Sets, Information and Control, 8 (1965), 338-353.