
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:3, 2007

570

Abstract—A major requirement for Grid application developers

is ensuring performance and scalability of their applications.
Predicting the performance of an application demands understanding
its specific features. This paper discusses performance modeling and
prediction of multi-agent based simulation (MABS) applications on
the Grid. An experiment conducted using a synthetic MABS
workload explains the key features to be included in the performance
model. The results obtained from the experiment show that the
prediction model developed for the synthetic workload can be used
as a guideline to understand to estimate the performance
characteristics of real world simulation applications.

Keywords—Grid computing, Performance modeling,
Performance prediction, Multi-agent simulation.

I. INTRODUCTION
HE computational Grid has emerged in the past years as a
key technology to support the execution of applications

with huge resource requirements. One of the fields where the
Grid can provide a unified and powerful execution
environment is simulation. Large scale Multi-Agent Based
Simulation (MABS) applications facilitate the study of
complex scientific problems if they can be deployed in a
distributed computing environment with sufficient resources.

A major challenge to implementing MABS on the Grid is
application performance. MABS applications have unique
features distinguishing them from other applications executed
on the Grid. These features are not as such trivial and their
impact on performance is tremendous. There is thus a need to
study and understand their individual or combined effects.

One of the features commonly recognized as a cause of
performance degradation in MABS applications is the high
communication-to-computation ratio resulting from
interaction between agents participating in the simulation.
Maintaining coherence and causality of events in the
simulation by matching the flow of application execution with
the sequence of events in the real world (time-step
synchronization) is also another problem. Another aspect of
the time problem is that the granularity of the application code
executed (the task executed by the agent in a unit of time)
with in one unit of simulation time is not always fixed. As is
well known, it would be difficult to develop an accurate

Manuscript received March 25, 2007.
The authors are with Blekinge Institute of Technology, Soft Center, 372

25, Ronneby Sweden (e-mail: dawit.mengistu@bth.se, lars.lundberg@bth.se,
paul.davidsson@bth.se).

performance prediction model for such applications. The
purpose of this study is therefore, to gain better understanding
of the performance issues and to develop a prediction model
for load balancing and scheduling decisions.

In this paper, we present a study of MABS application
characteristics and a performance prediction model. Using a
synthetic MABS application as a workload, an experiment is
conducted to investigate the relationship between the MABS
application architectural features and the run-time behaviour.
To verify the validity of the developed model, the experiment
was conducted with a workload that has the features of a real
MABS application. It is observed that our models provide a
better understanding of the underlying process and assist in
the projection/prediction of the performance of similar MABS
applications. The rest of this paper is organized as follows: a
brief overview of MABS applications and the motivations to
use the Grid for MABS is presented next. The methodology
applied in this work is then discussed, followed by the
experimental setup. We then analyze the measurement data
from the experiment and discuss the results. We conclude the
paper by summarizing the findings of our experiment and
citing directions for future work.

II. MULTI-AGENT BASED SIMULATION ON THE GRID

A. Multi-Agent Based Simulation
MABS is a methodology used to study and understand the

dynamics of real world phenomena in domains which involve
cooperative problem solving. The players in these domains are
characterized as entities having autonomous and social
behaviour. The real world entities are modeled as software
agents that interact with each other to achieve a common
objective. In large scale problems, the number of these
entities is very large (millions, in some cases).

A large scale simulation requires the availability of
adequate computing power and a distributed MABS platform
capable of utilizing the availed resources. The Grid offers a
robust distributed computing infrastructure needed for
simulations of this type. In order to deploy MABS
applications on the Grid, one would need to understand the
important features of these applications affecting performance.

B. MABS Features
A detailed list of the features characterizing MABS

applications is discussed in [2]. As some of these features

Performance Prediction of Multi-Agent Based
Simulation Applications on the Grid

Dawit Mengistu, Lars Lundberg, and Paul Davidsson

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:3, 2007

571

bear no impact on the performance of the application per se,
we have omitted them from this discussion.

1. Multi-threading. The autonomous behaviour of each
simulation agent can be modeled using a program code
executed with in its own thread of control. Large-scale
simulations involve a large number of agents and hence, a
high level of multi-threading. The effect of this on
performance is manifested in terms of excess thread setup
time at the launching of the simulation and massive context
switching overhead throughout the course of the simulation.
It may also cause scheduling problems, the extent of which
depends on the run-time environment and operating system
behaviour.

2. High communication-to-computation ratio. The ‘social’
behaviour of agents embodied in MABS requires that agents
communicate with each other or with information directory
services to update their knowledge (beliefs) and accomplish a
collective task. If the MABS is deployed as a distributed
application on several nodes, the communication may involve
frequent cross node data exchange and a lot of idle time for
the communicating agents if the next course of action the
agents take depends on the content of an anticipated message.

3. Time-step synchronization. For the simulation to reflect
the chronological sequence of events in the real world
problem and guarantee causality, a central reference clock
needs to be established. The interval between successive
‘ticks’ of the clock is the smallest possible indivisible period
of time for the simulation [18]. The execution of the
simulation advances in steps of this unit of time. Each agent
executes some task (defined as granularity) corresponding to
what the simulated entity accomplishes in the real world
between two successive clock ticks. Since two real world
tasks accomplishable with in the same unit of time do not
translate into application codes of equal size, the granularity
of the application will be variable. Agents which have a short
task for a given period finish their job before their assigned
quantum expires (voluntary yield of thread) while those with a
long task may not be able to finish their part with in one
quantum of CPU time. The yielding thread will stay in the
wait state until all other agents execute their tasks and be at a
similar temporal status.

These factors usually occur in combination making the
MABS application complex. Deploying such applications on
a dynamic heterogeneous environment like the Grid will make
the problem even more complex. Performance modeling of a
MABS application for prediction, load balancing and
scheduling purposes should therefore make due consideration
of these features.

C. The Grid
The Grid can offer the proper execution environment for

MABS applications for the following reasons:
1. As explained earlier, the computational resources needed

for certain simulations are so large that they cannot be
effectively run on small systems. Simulations may require
that thousands or even millions of agents perform highly

complex and data intensive tasks.
2. Since MABS grew out of distributed artificial

intelligence, a distributed computing platform like the Grid
serves as a natural environment to plan, develop and
implement agent based simulations.

III. METHODOLOGY

A. Workload Modeling
The workload is a multi-threaded application; each agent

has its own thread of execution and communication
capabilities, and a program code that captures the roles and
objectives of the real world entity modeled by the agent. In
common multi-agent applications, the agents execute the task
defined in their roles and perform a messaging operation. The
agents update their beliefs about the environment, and
exchange information with their peers during this messaging
time. The agent code has thus clearly separated computational
and communication components executed in a cycle.
Coincidentally, this arrangement is useful for our work, to
study the earlier discussed features of MABS. An agent
thread thus performs a computation, followed by a messaging
and yields control to enforce the time-step synchronization.

If the application is deployed on a stand-alone machine,
since all threads run on that same machine, the inter-thread
communication is essentially data movement with in the same
physical memory. On the Grid, however, the threads are
launched on separate machines and the communication
involves transfer of data over the network too.

The realization of the Grid workload furthermore involves
partitioning the simulation into equivalent tasks, with each
task to be launched on a node. The ‘social’ relations in the
physical entities involve data transfers within the same
machine (inbound messaging) or across nodes (outbound
messaging). The terms inbound and outbound refer to the
destination of the messages with respect to the location of the
sender. The communication characteristics are of primary
interest and should be well defined in the workload model.
We defined the intensity of outbound communication as a
parameter. We study the effect of time-step synchronization
by defining the application’s granularity as another parameter.

The workload is implemented both as a single-node
(standalone) version and a Grid application to evaluate the
performance.

B. Performance Metrics and Measurement
We have identified the following quantities of interest to be

included in our performance metrics:
- Simulation run time
- Thread setup time
- CPU utilization
Data manipulation and transfer tasks were deferred to the

end of the workload execution not to interfere with the normal
course of the application and to have as little perturbation as
possible to the instrumented code.

In the initial experiment, the workload model consists of

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:3, 2007

572

known and predictable computational and communication
tasks to be carried out by each thread. The effect of known
external factors that would bias the outcome should be
minimized. For this reason, the application does not contain
such tasks as I/O operations other than the communication
explicitly required for inter-agent messaging.

An important requirement of the measurement process in
multi-threaded applications is capturing the desired
performance metrics with minimal overhead. To achieve this,
individual threads maintain their respective copies of
performance data, but share a single instrumentation code
[13].

The validity of the experimental setup was verified to
ensure that the workload and performance metrics chosen
indeed conform to the envisaged objective and are equally
valid for both the stand-alone and Grid environments. One of
the factors important to judge the validity of the experiment is
its repeatability.

C. Performance Modeling
In general, a performance model should take into account

the effect of the various sub systems such as processor,
memory, disk, network, software efficiency, algorithms, etc.
In this experiment, however, the study is reduced to that of the
application’s behaviour, the effect of communication and task
granularity.

The envisaged performance model will have the following
input parameters:

- the number of agents (N),
- the number of Grid nodes (M)
- the granularity (G), and
- the outbound communication rates (OB).
Measurements are taken from the system for several runs

with different values of these parameters. Since the outbound
communication is not applicable in standalone environment, it
will appear in the Grid version only. Furthermore, the number
of nodes in a stand-alone configuration is equal to one (M=1).

The performance model computes the execution times Tst
and TGrid of simulation runs in stand-alone and Grid
environments respectively, as a function of the above
parameters:

 Tst =Tsetup + K. g(N,G) (1a)

 Tgrid = Tsetup + K. f(N,M,G,OB) (1b)

Tsetup is the time required to fully launch the simulation.

This time depends on the number of threads involved in the
simulation and should be studied separately, since it may even
be longer than the useful simulation run-time. K is a
proportionality factor signifying the length of the simulation if
the execution events are assumed to be independent.
Obviously, K has no effect on the set up time.

Since the simulation size is usually given in terms of the
number of agents, it is also possible to write the execution
time as a function of N (the Grid version is shown here, the

stand-alone has also a similar form):

Tgrid (N) = Tsetup + amNm + am-1Nm-1 + … + a1N + a0 (2)

Where a0, a1, …, am are coefficients dependent on the Grid

simulation environment and the architecture of the
application. They are given by:

ai = fi(M, G, OB) (3)

fi is a function that approximates the combined effect of the

three parameters.
To determine the coefficients, data is collected from

repeated runs of the simulation for different values of the
input parameters. The measurement data are then analyzed
using the MATLAB software to build the required
performance models. The obtained models will be validated
with more measurements to be compared with the predictions.

D. Implementation
The stand-alone application version is a java multi-threaded

application written in accordance with the requirements of the
workload model explained in III.a above. On the Grid, it is
implemented as a web service application launched from a
master (client) node where the workload is partitioned into
pieces of balanced sizes distributed to worker nodes.

The Grid version of the experiment was conducted on a
Globus (GT4) Grid testbed with Linux machines having PIII
1000MHZ, 512MB RAM, connected via a 100Mbps switch to
the Internet. The stand-alone version was run on a Linux
machine with identical configuration, OS environment and
load conditions. Since the applications run in both
environments are identical, we only discuss the Grid version
from now on.

As explained earlier, the simulation space is evenly divided
into the number of Grid nodes on which the MABS workload
is to be run. For example, if the real world problem consists
of 100 similar entities modeled by 100 agents and the
simulation is run on 2 Grid nodes, each node will host 50 of
the agents. Communications can take place between agents
residing on the same or different nodes, depending on the
requirements of the real world problem.

The agents are instantiated as individual threads in the Grid
web service when the client node launches the application.
The workload has a fixed size and is executed as
computational loops interleaved with messaging operations.
Since granularity is a parameter, simulation runs are
conducted with different granularity levels. The execution
time of one loop is thus a measure of the application’s
granularity. Inter-thread messaging normally takes place
following this. The product of the granularity and the number
of loops is constant and represents the size of the workload.

If an agent sends out a message and does not receive a reply
immediately or within a reasonable time, it should yield
control and wait until the reply comes instead of advancing
the computational loop. Since all agents take control of the

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:3, 2007

573

CPU turn by turn, the expected reply will arrive any way.
Since the threads need to maintain coherence with respect

to the simulated time, they should advance execution of loops
at a synchronized pace. If a thread finishes a task ahead of the
others, it should stay in a waiting state by yielding control of
the CPU until other threads come to the same level.

The ratio of outbound messages to the total number of
dispatched messages is an important parameter to study the
effect of network latency. It is defined as outbound
communication ratio, OB, the ratio of the number of messages
sent out by an agent to agents residing on other nodes, out of
every 100 messages initiated by that agent.

To launch the application, the master code on the client
machine invokes the Web service on each node by passing the
required parameters of the simulation. This code also
monitors the overall execution of the application, collects
performance data, and facilitates the delivery of outbound
messages in cross node communications.

Several runs of the experiment were conducted with
different values of the model parameters explained earlier, to
understand their individual and combined effects. Analysis of
the measurement data and the performance predictor obtained
from it, are discussed in the next section.

IV. RESULTS

A. Performance Modeling with Synthetic Workload
The execution-time versus number-of-agents relationship is

non linear. Analysis with MATLAB shows that the curves fit
to quadratic equations more accurately. The performance
model will therefore use the value m=2 in equation (2)
presented in Section III. One possibility to use a linear model
is to divide the plot into several piecewise linear sub regions
to have an accurate linear model for a region of interest. The
problem with this approach is however, that the model will be
applicable to only a narrow range of N and models should be
obtained for different sub regions to make it useful.

Analysis of measurement data shows that it is difficult to
find a single equation model in (N,M, G, OB) that can be used
universally. We therefore obtained separate models for
different granularity values as follows.

 Tg(N) = f2(M,OB)N2 + f1(M,OB)N + f0(M,OB) (4)

The subscript g refers to the granularity in milli seconds.
For illustration, the performance model for granularity of
10ms is shown in equation 5.

T (N) = ((-0.0024*M) + (0.0001*OB) + 0.0113) * N2) +
 ((-0.2748*M) + (0.020 *OB) + 1.1535)*N) +

 ((75.2585*M) + (2.7441 * OB) -113.757) (5)

The thread setup time (in seconds) is given by the following
model, valid for 100<N<1000:

 Tsetup = (0.000476 * N2) – (0.03752 * N) + 8.2625 (6)

The coefficients of OB are small indicating that the effect
of outbound communication is minimal for large N (larger
simulations). In large simulations, since the threads spend
more time waiting in a queue than in actual execution, the
network latency component may not be the dominant
component of the over all execution time. The coefficients
of M are negative for the linear and quadratic terms, which
means running the simulation reduces execution time for large
N. The models are validated with additional measurements as
can be seen in the data given in Tables I and II. The chosen
values of the inputs are selected from the model’s valid
ranges.

TABLE I

PERFORMANCE PREDICTION USING MODEL: N=180
Response Time (s) G (ms) M OB (%)

Predict. Measured Dev. (%)
2 2 10 616 483 22%
2 4 10 660 751 14%
2 5 10 682 790 16%
5 2 20 373 320 14%
5 4 20 353 358 1%
5 5 20 405 403 0%
10 2 30 330 368 12%
10 4 30 256 245 4%
10 5 30 292 281 4%

TABLE II
PERFORMANCE PREDICTION USING MODEL: N=550

Response Time (s) G (ms) M OB (%)
Predict. Measured Dev. (%)

2 2 10 3516 3025 13.9%
2 4 10 1874 1572 16.1%
2 5 10 1053 1210 14.9%
5 2 20 2195 1914 12.8%
5 4 20 984 971 1.3%
5 5 20 953 879 7.8%
10 2 30 2087 1761 15.6%
10 4 30 756 790 4.5%
10 5 30 771 742 3.7%

B. Scalability
If the simulation is distributed on M machines, the expected

speed up factor will conventionally be equal to M. For small
size simulations, it is not possible to achieve this figure due to
the presence of inter-node communications and thread
synchronizations which dominate the simulation time. With
large scale simulations, however, it is possible to achieve
scalability greater than M. The performance model also
demonstrates this fact clearly. The speedup factor, the
improvement in execution time by running the simulation on
several Grid nodes compared to that on a single machine is
given by the ratio of two polynomials in N. For large N, the
quadratic term will be dominant, and the speed up factor
asymptotically approaches the ratio a2(M)/a21 where a2(M) is
the coefficient of the quadratic term in (4) and a21 is the
corresponding coefficient for a single machine case. These are
further illustrated in the plots shown in Fig. 2.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:3, 2007

574

Fine-grained applications take longer execution time
because for a fixed work load, fine graining an application
increases overhead and thread context switching due to yields,
to maintain synchronization. If a thread completes a loop
before its assigned quantum is finished, it should be forced to
yield control. However, depending on the scheduling policy
of the JVM implementation, it may always be on top of the
ready queue. From the scheduler view point, this thread did
not get a fair share of the CPU time and should be run before
other threads, while from the application point of view, it has
up-to-date temporal status and should wait until all threads do
likewise. Coarse grained applications are more efficient, with
less frequent involuntary yielding by threads.

Scalability: N=200, G=5ms, OB=30%

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5 6

Number of Nodes

Sp
ee

d
up

 F
ac

to
r

Predicted
Measured

Fig. 1(a) Small simulations may not be always scalable

Scalability: N=550, G=10ms, OB=30%

0

2

4

6

8

10

0 1 2 3 4 5 6

Number of Nodes

Sp
ee

d
up

 F
ac

to
r

Predicted
Measured

Fig. 1(b) Better scalability for large simulations

As can be seen in Fig. 2(b), the determination of M for
maximum performance is not always trivial. For fine-grained
applications, running the simulation over several nodes may
not always yield the desired speed up. In fact, it may have the
opposite effect, (depending on the number of agents). The
performance predictor can determine the arrangement (such as
the number of nodes, the number of agents per node, etc) for
optimized operation.

Scalability: Grid vs stand-alone, G=200ms, OB=20%

0
2
4
6
8

10
12
14

0 100 200 300 400 500 600 700

Number of Agents

S
pe

ed
 u

p

Stand-alone
2-node
3-node
4-node
5-node

Fig. 2(a) Coarse-grained simulations

Scalability: Grd vs Stand-alone, G=2ms, OB=20%

0
1
2
3
4
5
6
7

0 100 200 300 400 500 600 700

Number of Agents

S
pe

ed
 u

p

Stand-alone
2-node
3-node
4-node
5-node

Fig. 2b Fine grained simulations

C. Prediction with Variable application Granualirty
The validity of the predictor was verified using a workload

having the feature of real simulation applications. The
granularity of the new workload is expressed statistically. It
has a uniform distribution given in terms of maximum range
of deviation (d%) from a mean granularity value (µ). The
execution times for different deviation ranges were compared
against the predicted performance for the mean granularity.
Fig. 3 shows that even with 60% deviation range, the
prediction is fairly good. The accuracy of the prediction
improves with N.

0

50

100

150

200

250

300

350

0 200 400 600 800

Number of Agents N

Ex
ec

. T
im

e
(s

) 0% (pred.)
15% Dev. (meas.)
30% Dev. (meas.)
45% Dev. (meas.)
60% Dev. (meas.)

Fig. 3 Effect of granularity variation on prediction (OB=80%, 5-

node) for different deviation vales (µ = 20ms)

D. System Utilization:
The measured CPU utilization data shows that for small

scale simulations, the system is idle for a considerable part of
the time. This idle time is a measure of performance loss
associated with the communication latency. Although
utilization is better for large simulations, a breakdown of the
time into user-thread and system-thread usages shows that a
significant time is spent on system threads too.

0
10
20
30
40
50
60
70
80

0 200 400 600 800 1000

Number of Agents

%
 U

til
iz

at
io

n

User Threads
System Threads
Total

Fig. 4 CPU Utilization for OB=80%, 5-node

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:3, 2007

575

V. DISCUSSION
The overall performance characteristics observable from the

response time and speed up plots match with the predicted
trends. The quadratic behaviour of the response time when the
workload size or the number of threads increases can be
attributed to several factors, among which the following are
more likely [14]:
1. The increase in number of synchronized objects introduces
delays associated with locks.
2. The JVM decision on code optimization, garbage
collection, scheduling policy, etc., is not clearly understood.
3. Operating system behaviour that cannot be adequately
captured to be included into the performance model and the
predictor.

The contribution of each factor is not clearly known, but the
combined effect is clearly visible in the unpredictability of the
threads execution sequence, a major problem causing excess
overheads during time-step synchronization.

Since the Grid is a dynamic environment, the list of factors
contributing to unpredictability is even longer and it would be
necessary to build dynamic performance models and handle
load monitoring and management throughout the execution.

Limitations of the Study

- The performance model built is not general and usable
over a wider range. This requires a larger experiment with
rigorous modeling and analysis techniques.

- The experiment is conducted under a controlled
environment and important factors such as heterogeneity
of resources, communication bottlenecks, load conditions,
etc., are not accounted for.

- The accuracy of the prediction model for variable
granularity cannot be generalized since granularity may
have different stochastic distribution models.

The findings of the experiment will thus need to be further
improved to address the above limitations.

VI. CONCLUSION AND FUTURE WORK
The experiment shows how performance prediction for

MABS application models can be built by incorporating the
prominent features of MABS. Since the performance model is
built for a simplified workload, additional effort is needed to
achieve a more comprehensive model. As it is now, however,
it can provide a general guidance to MABS application
developers and simulation modelers on how to address design
issues related to performance and application modeling.

To make the best use of performance predictor for MABS
applications, it can be placed as a middleware layered between
the MABS application and the standard Grid services. In
practical deployment scenarios, application parameters may
not be well characterized or are not known in advance. Thus,
they should be determined on the fly and the middleware can
prove a useful tool for this. This is particularly essential if
performance prediction for dynamic load management is the
main purpose.

Another issue is the relation between high level simulation
modeling and the architecture of the MABS application to be
deployed. Coarse grained architectures generally provide
better performance and it is important that simulation
modelers can design their application with this factor in mind.
Some MABS application models allow bundling of several
agents into one thread instead of deploying them as separate
threads. The performance trade-off achievable by using this
approach will be seen in future experiments.

REFERENCES
[1] Cioffi-Revilla, C. “Invariance and universality in social.agent-base

simulations,” Proc. National Academy of Science USA, 99 (2002)
Suppl. 3: 7314-6

[2] Davidsson, P. et al. “Applications of multi-agent based simulations,”
Seventh Workshop on Multi-Agent-Based Simulation (2006), Future
University-Hakodate, Japan.

[3] Sansores, C. and Pavon, J. “A framework for agent based social
simulation,” The Second European Workshop on Multi-Agent Systems
(2004), Barcelona, Spain.

[4] Gasser, L. “Smooth scaling ahead: Progressive MAS simulation from
single PCs to Grids,” Joint Workshop on Multi-Agent and Multi-Agent-
Based Simulation (2004) New York

[5] Ferreira L. et. al. “The IBM Red Book. Introduction to Grid Computing
with Globus”, (2003).

[6] Sotomajor, B. “The Globus toolkit 4 Programmer’s Tutorial”, (2005).
[7] Helsinger, A. et al. “Tools and techniques for performance measurement

of large distributed multi-agent systems,” AAMAS’03 (2003) Australia
[8] Xu, Z., Miller, B.P. and Naim, O. “Dynamic instrumentation of

threaded applications,” Proc. 7th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (1999), Georgia USA.

[9] Tirado-Ramos, A., Groen D., Sloot, P. “On-line Application
Performance Monitoring of Blood Flow Simulation in Computational
Grid Architectures,” Proceedings of the 18th IEEE Symposium on
Computer-Based Medical Systems, (2005)

[10] Iskra, K.A., Albada, G.D., Sloot, P.M.A. ”Towards Grid-Aware Time
Warp”, Proceedingsof the 18th Workshop on Parallel and Distributed
Simulation, (2004)

[11] Puppin D., Tonellotto N., and Laforenza D. “Using Web Services to Run
Distributed Numerical Applications”, in LNCS vol. 3241 D.Krazmuller
Springer-verlag Berlin Heidelberg (2004) pp. 207-214.

[12] Timm I.J., Pawlaszczyk D., “Large Scale Multiagent Simulation on the
Grid,” Proceedings of 5th IEEE International Symposium on Cluster
Computing and the Grid. IEEE Computer Society Washington, DC,
USA, (2005).

[13] Barnett J., “The behaviour of Java threads under Linux NPTL” , (2003).
[14] Tichy, W.F. “Should computer scientists experiment more?,” IEEE

Computer, USA. Vol. 31 No. 5 (1998), pp.32-40
[15] Jarvis, S.A. Spooner, D.P. Keung, H.N.L.C. Nudd, G.R.

“Performance prediction and its use in parallel and distributed
computing systems,” Proceedings of the 17th International Symposium
on Parallel and Distributed Processing (2003) .IEEE Computer Society
Washington, DC, USA

[16] Badia, Rosa M., “Performance Prediction in a Grid Environment,” 1st
European Across Grids Conference, Santiago de Compostela July 2003.

[17] Jarvis, S.A. et. al. “performance-responsive middleware for grid
computing”, Proceedings of UK e-Science All Hands Meeting, (2003)
Nottingham, UK.

[18] Collis J., Ndmu D., Buskirk C., “The Zeus Agent Building Toolkit”,
(2000).

