
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:3, 2007

570

 

  
Abstract—A major requirement for Grid application developers 

is ensuring performance and scalability of their applications.  
Predicting the performance of an application demands understanding 
its specific features.  This paper discusses performance modeling and 
prediction of multi-agent based simulation (MABS) applications on 
the Grid.  An experiment conducted using a synthetic MABS 
workload explains the key features to be included in the performance 
model.  The results obtained from the experiment show that the 
prediction model developed for the synthetic workload can be used 
as a guideline to understand to estimate the performance 
characteristics of real world simulation applications.   
 

Keywords—Grid computing, Performance modeling, 
Performance prediction, Multi-agent simulation.  

I. INTRODUCTION 
HE computational Grid has emerged in the past years as a 
key technology to support the execution of applications 

with huge resource requirements.  One of the fields where the 
Grid can provide a unified and powerful execution 
environment is simulation.  Large scale Multi-Agent Based 
Simulation (MABS) applications facilitate the study of 
complex scientific problems if they can be deployed in a 
distributed computing environment with sufficient resources. 

A major challenge to implementing MABS on the Grid is 
application performance.  MABS applications have unique 
features distinguishing them from other applications executed 
on the Grid.  These features are not as such trivial and their 
impact on performance is tremendous.  There is thus a need to 
study and understand their individual or combined effects.  

One of the features commonly recognized as a cause of 
performance degradation in MABS applications is the high 
communication-to-computation ratio resulting from 
interaction between agents participating in the simulation.  
Maintaining coherence and causality of events in the 
simulation by matching the flow of application execution with 
the sequence of events in the real world (time-step 
synchronization) is also another problem.  Another aspect of 
the time problem is that the granularity of the application code 
executed (the task executed by the agent in a unit of time) 
with in one unit of simulation time is not always fixed.  As is 
well known, it would be difficult to develop an accurate 
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performance prediction model for such applications.  The 
purpose of this study is therefore, to gain better understanding 
of the performance issues and to develop a prediction model 
for load balancing and scheduling decisions. 

In this paper, we present a study of MABS application 
characteristics and a performance prediction model.  Using a 
synthetic MABS application as a workload, an experiment is 
conducted to investigate the relationship between the MABS 
application architectural features and the run-time behaviour.  
To verify the validity of the developed model, the experiment 
was conducted with a workload that has the features of a real 
MABS application.  It is observed that our models provide a 
better understanding of the underlying process and assist in 
the projection/prediction of the performance of similar MABS 
applications.  The rest of this paper is organized as follows: a 
brief overview of MABS applications and the motivations to 
use the Grid for MABS is presented next.  The methodology 
applied in this work is then discussed, followed by the 
experimental setup.  We then analyze the measurement data 
from the experiment and discuss the results.  We conclude the 
paper by summarizing the findings of our experiment and 
citing directions for future work. 

II. MULTI-AGENT BASED SIMULATION ON THE GRID 

A. Multi-Agent Based Simulation 
MABS is a methodology used to study and understand the 

dynamics of real world phenomena in domains which involve 
cooperative problem solving. The players in these domains are 
characterized as entities having autonomous and social 
behaviour.   The real world entities are modeled as software 
agents that interact with each other to achieve a common 
objective.  In large scale problems, the number of these 
entities is very large (millions, in some cases).   

A large scale simulation requires the availability of 
adequate computing power and a distributed MABS platform 
capable of utilizing the availed resources.  The Grid offers a 
robust distributed computing infrastructure needed for 
simulations of this type.   In order to deploy MABS 
applications on the Grid, one would need to understand the 
important features of these applications affecting performance.  

B. MABS Features 
A detailed list of the features characterizing MABS 

applications is discussed in [2].  As some of these features 
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bear no impact on the performance of the application per se, 
we have omitted them from this discussion. 

1. Multi-threading. The autonomous behaviour of each 
simulation agent can be modeled using a program code 
executed with in its own thread of control.  Large-scale 
simulations involve a large number of agents and hence, a 
high level of multi-threading.  The effect of this on 
performance is manifested in terms of excess thread setup 
time at the launching of the simulation and massive context 
switching overhead throughout the course of the simulation.  
It may also cause scheduling problems, the extent of which 
depends on the run-time environment and operating system 
behaviour.   

2. High communication-to-computation ratio.  The ‘social’ 
behaviour of agents embodied in MABS requires that agents 
communicate with each other or with information directory 
services to update their knowledge (beliefs) and accomplish a 
collective task.  If the MABS is deployed as a distributed 
application on several nodes, the communication may involve 
frequent cross node data exchange and a lot of idle time for 
the communicating agents if the next course of action the 
agents take depends on the content of an anticipated message.   

3. Time-step synchronization.  For the simulation to reflect 
the chronological sequence of events in the real world 
problem and guarantee causality, a central reference clock 
needs to be established.  The interval between successive 
‘ticks’ of the clock is the smallest possible indivisible period 
of time for the simulation [18].  The execution of the 
simulation advances in steps of this unit of time.  Each agent 
executes some task (defined as granularity) corresponding to 
what the simulated entity accomplishes in the real world 
between two successive clock ticks.  Since two real world 
tasks accomplishable with in the same unit of time do not 
translate into application codes of equal size, the granularity 
of the application will be variable.  Agents which have a short 
task for a given period finish their job before their assigned 
quantum expires (voluntary yield of thread) while those with a 
long task may not be able to finish their part with in one 
quantum of CPU time.  The yielding thread will stay in the 
wait state until all other agents execute their tasks and be at a 
similar temporal status.  

These factors usually occur in combination making the 
MABS application complex.  Deploying such applications on 
a dynamic heterogeneous environment like the Grid will make 
the problem even more complex.  Performance modeling of a 
MABS application for prediction, load balancing and 
scheduling purposes should therefore make due consideration 
of these features. 

C. The Grid 
The Grid can offer the proper execution environment for 

MABS applications for the following reasons: 
1. As explained earlier, the computational resources needed 

for certain simulations are so large that they cannot be 
effectively run on small systems.  Simulations may require 
that thousands or even millions of agents perform highly 

complex and data intensive tasks.  
2. Since MABS grew out of distributed artificial 

intelligence, a distributed computing platform like the Grid 
serves as a natural environment to plan, develop and 
implement agent based simulations.  

III. METHODOLOGY 

A. Workload Modeling 
The workload is a multi-threaded application; each agent 

has its own thread of execution and communication 
capabilities, and a program code that captures the roles and 
objectives of the real world entity modeled by the agent.  In 
common multi-agent applications, the agents execute the task 
defined in their roles and perform a messaging operation.  The 
agents update their beliefs about the environment, and 
exchange information with their peers during this messaging 
time.  The agent code has thus clearly separated computational 
and communication components executed in a cycle.  
Coincidentally, this arrangement is useful for our work, to 
study the earlier discussed features of MABS.  An agent 
thread thus performs a computation, followed by a messaging 
and yields control to enforce the time-step synchronization. 

If the application is deployed on a stand-alone machine, 
since all threads run on that same machine, the inter-thread 
communication is essentially data movement with in the same 
physical memory.  On the Grid, however, the threads are 
launched on separate machines and the communication 
involves transfer of data over the network too.  

The realization of the Grid workload furthermore involves 
partitioning the simulation into equivalent tasks, with each 
task to be launched on a node.  The ‘social’ relations in the 
physical entities involve data transfers within the same 
machine (inbound messaging) or across nodes (outbound 
messaging). The terms inbound and outbound refer to the 
destination of the messages with respect to the location of the 
sender.  The communication characteristics are of primary 
interest and should be well defined in the workload model.  
We defined the intensity of outbound communication as a 
parameter.  We study the effect of time-step synchronization 
by defining the application’s granularity as another parameter.   

The workload is implemented both as a single-node 
(standalone) version and a Grid application to evaluate the 
performance. 

B. Performance Metrics and Measurement 
We have identified the following quantities of interest to be 

included in our performance metrics: 
- Simulation run time 
- Thread setup time 
- CPU utilization 
Data manipulation and transfer tasks were deferred to the 

end of the workload execution not to interfere with the normal 
course of the application and to have as little perturbation as 
possible to the instrumented code.   

In the initial experiment, the workload model consists of 
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known and predictable computational and communication 
tasks to be carried out by each thread.  The effect of known 
external factors that would bias the outcome should be 
minimized.  For this reason, the application does not contain 
such tasks as I/O operations other than the communication 
explicitly required for inter-agent messaging. 

An important requirement of the measurement process in 
multi-threaded applications is capturing the desired 
performance metrics with minimal overhead.  To achieve this, 
individual threads maintain their respective copies of 
performance data, but share a single instrumentation code 
[13].  

The validity of the experimental setup was verified to 
ensure that the workload and performance metrics chosen 
indeed conform to the envisaged objective and are equally 
valid for both the stand-alone and Grid environments.  One of 
the factors important to judge the validity of the experiment is 
its repeatability.   

C. Performance Modeling 
In general, a performance model should take into account 

the effect of the various sub systems such as processor, 
memory, disk, network, software efficiency, algorithms, etc. 
In this experiment, however, the study is reduced to that of the 
application’s behaviour, the effect of communication and task 
granularity.  

The envisaged performance model will have the following 
input parameters:  

- the number of agents (N),  
- the number of Grid nodes (M) 
- the granularity (G), and  
- the outbound communication rates (OB).   
Measurements are taken from the system for several runs 

with different values of these parameters.  Since the outbound 
communication is not applicable in standalone environment, it 
will appear in the Grid version only.  Furthermore, the number 
of nodes in a stand-alone configuration is equal to one (M=1). 

The performance model computes the execution times Tst 
and TGrid of simulation runs in stand-alone and Grid 
environments respectively, as a function of the above 
parameters: 

 
               Tst =Tsetup + K. g(N,G)      (1a) 

 
        Tgrid = Tsetup + K. f(N,M,G,OB)                      (1b) 

 
Tsetup is the time required to fully launch the simulation.  

This time depends on the number of threads involved in the 
simulation and should be studied separately, since it may even 
be longer than the useful simulation run-time. K is a 
proportionality factor signifying the length of the simulation if 
the execution events are assumed to be independent. 
Obviously, K has no effect on the set up time.   

Since the simulation size is usually given in terms of the 
number of agents, it is also possible to write the execution 
time as a function of N (the Grid version is shown here, the 

stand-alone has also a similar form): 
 
Tgrid (N) = Tsetup +  amNm + am-1Nm-1 + … + a1N + a0       (2) 

 
Where a0, a1, …, am are coefficients dependent on the Grid 

simulation environment and the architecture of the 
application.  They are given by: 

 
ai = fi(M, G, OB)                                  (3) 

 
fi is a function that approximates the combined effect of the 

three parameters. 
To determine the coefficients, data is collected from 

repeated runs of the simulation for different values of the 
input parameters.  The measurement data are then analyzed 
using the MATLAB software to build the required 
performance models.  The obtained models will be validated 
with more measurements to be compared with the predictions.  

D.  Implementation 
The stand-alone application version is a java multi-threaded 

application written in accordance with the requirements of the 
workload model explained in III.a above.  On the Grid, it is 
implemented as a web service application launched from a 
master (client) node where the workload is partitioned into 
pieces of balanced sizes distributed to worker nodes.   

The Grid version of the experiment was conducted on a 
Globus (GT4) Grid testbed with Linux machines having PIII 
1000MHZ, 512MB RAM, connected via a 100Mbps switch to 
the Internet.  The stand-alone version was run on a Linux 
machine with identical configuration, OS environment and 
load conditions.  Since the applications run in both 
environments are identical, we only discuss the Grid version 
from now on. 

As explained earlier, the simulation space is evenly divided 
into the number of Grid nodes on which the MABS workload 
is to be run.  For example, if the real world problem consists 
of 100 similar entities modeled by 100 agents and the 
simulation is run on 2 Grid nodes, each node will host 50 of 
the agents.  Communications can take place between agents 
residing on the same or different nodes, depending on the 
requirements of the real world problem.   

The agents are instantiated as individual threads in the Grid 
web service when the client node launches the application.  
The workload has a fixed size and is executed as 
computational loops interleaved with messaging operations.   
Since granularity is a parameter, simulation runs are 
conducted with different granularity levels.  The execution 
time of one loop is thus a measure of the application’s 
granularity.  Inter-thread messaging normally takes place 
following this.  The product of the granularity and the number 
of loops is constant and represents the size of the workload. 

If an agent sends out a message and does not receive a reply 
immediately or within a reasonable time, it should yield 
control and wait until the reply comes instead of advancing 
the computational loop.  Since all agents take control of the 
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CPU turn by turn, the expected reply will arrive any way.  
Since the threads need to maintain coherence with respect 

to the simulated time, they should advance execution of loops 
at a synchronized pace.  If a thread finishes a task ahead of the 
others, it should stay in a waiting state by yielding control of 
the CPU until other threads come to the same level. 

The ratio of outbound messages to the total number of 
dispatched messages is an important parameter to study the 
effect of network latency.  It is defined as outbound 
communication ratio, OB, the ratio of the number of messages 
sent out by an agent to agents residing on other nodes, out of 
every 100 messages initiated by that agent.   

To launch the application, the master code on the client 
machine invokes the Web service on each node by passing the 
required parameters of the simulation.  This code also 
monitors the overall execution of the application, collects 
performance data, and facilitates the delivery of outbound 
messages in cross node communications.   

Several runs of the experiment were conducted with 
different values of the model parameters explained earlier, to 
understand their individual and combined effects.  Analysis of 
the measurement data and the performance predictor obtained 
from it, are discussed in the next section. 

IV. RESULTS  

A. Performance Modeling with Synthetic Workload  
The execution-time versus number-of-agents relationship is 

non linear.  Analysis with MATLAB shows that the curves fit 
to quadratic equations more accurately.  The performance 
model will therefore use the value m=2 in equation (2) 
presented in Section III.  One possibility to use a linear model 
is to divide the plot into several piecewise linear sub regions 
to have an accurate linear model for a region of interest.  The 
problem with this approach is however, that the model will be 
applicable to only a narrow range of N and models should be 
obtained for different sub regions to make it useful. 

Analysis of measurement data shows that it is difficult to 
find a single equation model in (N,M, G, OB) that can be used 
universally.  We therefore obtained separate models for 
different granularity values as follows. 
 

 Tg(N) = f2(M,OB)N2 + f1(M,OB)N +  f0(M,OB)          (4) 
 

The subscript g refers to the granularity in milli seconds.  
For illustration, the performance model for granularity of 
10ms is shown in equation 5. 
 

T (N) = ((-0.0024*M) + (0.0001*OB) +  0.0113) * N2) + 
 ((-0.2748*M) + (0.020 *OB) + 1.1535)*N) +  

 ((75.2585*M) + (2.7441 * OB) -113.757)   (5) 
  

The thread setup time (in seconds) is given by the following 
model, valid for 100<N<1000: 
 
 Tsetup = ( 0.000476 * N2) – (0.03752 * N) + 8.2625     (6) 

 

The coefficients of OB are small indicating that the effect 
of outbound communication is minimal for large N (larger 
simulations).  In large simulations, since the threads spend 
more time waiting in a queue than in actual execution, the 
network latency component may not be the dominant 
component of the over all execution time.   The coefficients 
of M are negative for the linear and quadratic terms, which 
means running the simulation reduces execution time for large 
N.  The models are validated with additional measurements as 
can be seen in the data given in Tables I and II.  The chosen 
values of the inputs are selected from the model’s valid 
ranges. 

 
TABLE I 

PERFORMANCE PREDICTION USING MODEL: N=180 
Response Time (s) G (ms) M OB (%) 

Predict. Measured Dev. (%) 
2 2 10 616 483 22% 
2 4 10 660 751 14% 
2 5 10 682 790 16% 
5 2 20 373 320 14% 
5 4 20 353 358 1% 
5 5 20 405 403 0% 
10 2 30 330 368 12% 
10 4 30 256 245 4% 
10 5 30 292 281 4% 

 
 

TABLE II 
PERFORMANCE PREDICTION USING MODEL: N=550 

Response Time (s) G (ms) M OB (%) 
Predict. Measured Dev. (%) 

2 2 10 3516 3025 13.9% 
2 4 10 1874 1572 16.1% 
2 5 10 1053 1210 14.9% 
5 2 20 2195 1914 12.8% 
5 4 20 984 971 1.3% 
5 5 20 953 879 7.8% 
10 2 30 2087 1761 15.6% 
10 4 30 756 790 4.5% 
10 5 30 771 742 3.7% 

B. Scalability 
If the simulation is distributed on M machines, the expected 

speed up factor will conventionally be equal to M.  For small 
size simulations, it is not possible to achieve this figure due to 
the presence of inter-node communications and thread 
synchronizations which dominate the simulation time. With 
large scale simulations, however, it is possible to achieve 
scalability greater than M. The performance model also 
demonstrates this fact clearly. The speedup factor, the 
improvement in execution time by running the simulation on 
several Grid nodes compared to that on a single machine is 
given by the ratio of two polynomials in N. For large N, the 
quadratic term will be dominant, and the speed up factor 
asymptotically approaches the ratio a2(M)/a21 where a2(M) is 
the coefficient of the quadratic term in (4) and  a21 is the 
corresponding coefficient for a single machine case. These are 
further illustrated in the plots shown in Fig. 2. 
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Fine-grained applications take longer execution time 
because for a fixed work load, fine graining an application 
increases overhead and thread context switching due to yields, 
to maintain synchronization. If a thread completes a loop 
before its assigned quantum is finished, it should be forced to 
yield control.  However, depending on the scheduling policy 
of the JVM implementation, it may always be on top of the 
ready queue.  From the scheduler view point, this thread did 
not get a fair share of the CPU time and should be run before 
other threads, while from the application point of view, it has 
up-to-date temporal status and should wait until all threads do 
likewise.  Coarse grained applications are more efficient, with 
less frequent involuntary yielding by threads.  

 

Scalability: N=200, G=5ms, OB=30%
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Fig. 1(a) Small simulations may not be always scalable 

 

Scalability: N=550, G=10ms, OB=30%

0

2

4

6

8

10

0 1 2 3 4 5 6

Number of Nodes

Sp
ee

d 
up

 F
ac

to
r

Predicted
Measured

 
Fig. 1(b) Better scalability for large simulations 

 

As can be seen in Fig. 2(b), the determination of M for 
maximum performance is not always trivial.  For fine-grained 
applications, running the simulation over several nodes may 
not always yield the desired speed up.  In fact, it may have the 
opposite effect, (depending on the number of agents). The 
performance predictor can determine the arrangement (such as 
the number of nodes, the number of agents per node, etc) for 
optimized operation. 

 

Scalability: Grid vs stand-alone, G=200ms, OB=20%
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Fig. 2(a) Coarse-grained simulations 

Scalability: Grd vs Stand-alone, G=2ms, OB=20%
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Fig. 2b Fine grained simulations 

C. Prediction with Variable application Granualirty 
The validity of the predictor was verified using a workload 

having the feature of real simulation applications.  The 
granularity of the new workload is expressed statistically.  It 
has a uniform distribution given in terms of maximum range 
of deviation (d%) from a mean granularity value (µ). The 
execution times for different deviation ranges were compared 
against the predicted performance for the mean granularity.  
Fig. 3 shows that even with 60% deviation range, the 
prediction is fairly good.  The accuracy of the prediction 
improves with N. 
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Fig. 3 Effect of granularity variation on prediction (OB=80%, 5-

node) for different deviation vales (µ = 20ms) 

D. System Utilization: 
The measured CPU utilization data shows that for small 

scale simulations, the system is idle for a considerable part of 
the time.  This idle time is a measure of performance loss 
associated with the communication latency. Although 
utilization is better for large simulations, a breakdown of the 
time into user-thread and system-thread usages shows that a 
significant time is spent on system threads too. 
 

0
10
20
30
40
50
60
70
80

0 200 400 600 800 1000

Number of Agents

%
 U

til
iz

at
io

n

User Threads
System Threads
Total

 
Fig. 4 CPU Utilization for OB=80%, 5-node 
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V. DISCUSSION 
The overall performance characteristics observable from the 

response time and speed up plots match with the predicted 
trends. The quadratic behaviour of the response time when the 
workload size or the number of threads increases can be 
attributed to several factors, among which the following are 
more likely [14]: 
1. The increase in number of synchronized objects introduces 
delays associated with locks. 
2. The JVM decision on code optimization, garbage 
collection, scheduling policy, etc., is not clearly understood. 
3. Operating system behaviour that cannot be adequately 
captured to be included into the performance model and the 
predictor.   

The contribution of each factor is not clearly known, but the 
combined effect is clearly visible in the unpredictability of the 
threads execution sequence, a major problem causing excess 
overheads during time-step synchronization.  

Since the Grid is a dynamic environment, the list of factors 
contributing to unpredictability is even longer and it would be 
necessary to build dynamic performance models and handle 
load monitoring and management throughout the execution.   

 
Limitations of the Study 

- The performance model built is not general and usable 
over a wider range.  This requires a larger experiment with 
rigorous modeling and analysis techniques. 

- The experiment is conducted under a controlled 
environment and important factors such as heterogeneity 
of resources, communication bottlenecks, load conditions, 
etc., are not accounted for. 

- The accuracy of the prediction model for variable 
granularity cannot be generalized since granularity may 
have different stochastic distribution models. 

 

The findings of the experiment will thus need to be further 
improved to address the above limitations. 

VI. CONCLUSION AND FUTURE WORK 
The experiment shows how performance prediction for 

MABS application models can be built by incorporating the 
prominent features of MABS.  Since the performance model is 
built for a simplified workload, additional effort is needed to 
achieve a more comprehensive model.  As it is now, however, 
it can provide a general guidance to MABS application 
developers and simulation modelers on how to address design 
issues related to performance and application modeling.   

To make the best use of performance predictor for MABS 
applications, it can be placed as a middleware layered between 
the MABS application and the standard Grid services.  In 
practical deployment scenarios, application parameters may 
not be well characterized or are not known in advance.  Thus, 
they should be determined on the fly and the middleware can 
prove a useful tool for this.  This is particularly essential if 
performance prediction for dynamic load management is the 
main purpose.     

Another issue is the relation between high level simulation 
modeling and the architecture of the MABS application to be 
deployed.  Coarse grained architectures generally provide 
better performance and it is important that simulation 
modelers can design their application with this factor in mind.  
Some MABS application models allow bundling of several 
agents into one thread instead of deploying them as separate 
threads.  The performance trade-off achievable by using this 
approach will be seen in future experiments. 
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