
International Journal of Chemical, Materials and Biomolecular Sciences

ISSN: 2415-6620

Vol:4, No:6, 2010

402

 

 

  
Abstract—This paper unifies power optimization approaches in 

various energy converters, such as: thermal, solar, chemical, and 
electrochemical engines, in particular fuel cells. Thermodynamics 
leads to converter’s efficiency and limiting power. Efficiency 
equations serve to solve problems of upgrading and downgrading of 
resources. While optimization of steady systems applies the 
differential calculus and Lagrange multipliers, dynamic optimization 
involves variational calculus and dynamic programming. In reacting 
systems chemical affinity constitutes a prevailing component of an 
overall efficiency, thus the power is analyzed in terms of an active 
part of chemical affinity. The main novelty of the present paper in the 
energy yield context consists in showing that the generalized heat 
flux Q (involving the traditional heat flux q plus the product of 
temperature and the sum products of partial entropies and fluxes of 
species) plays in complex cases (solar, chemical and electrochemical) 
the same role as the traditional heat q in pure heat engines.    

The presented methodology is also applied to power limits in fuel 
cells as to systems which are electrochemical flow engines propelled 
by chemical reactions. The performance of fuel cells is determined by 
magnitudes and directions of participating streams and mechanism of 
electric current generation. Voltage lowering below the reversible 
voltage is a proper measure of cells imperfection. The voltage losses, 
called polarization, include the contributions of three main sources: 
activation, ohmic and concentration. Examples show power maxima 
in fuel cells and prove the relevance of the extension of the thermal 
machine theory to chemical and electrochemical systems. The main 
novelty of the present paper in the FC context consists in introducing 
an effective or reduced Gibbs free energy change between products p 
and reactants s which take into account the decrease of voltage and 
power caused by the incomplete conversion of the overall reaction. 
 

Keywords— Power yield, entropy production, chemical engines, 
fuel cells, exergy.  

I. INTRODUCTION 

n a previous work [1] we have analyzed models of power 
production and power optimization towards energy limits in 

purely thermal systems with finite rates. In particular, radiation 
engines were treated as important nonlinear systems governed 
by laws of thermodynamics and transport phenomena. 
Temperatures T of participating media were sole necessary 
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variables to describe these systems. In the present work we 
treat generalized power yield problems systems in which both 
temperatures T and chemical potentials µk are essential. This is 
associated with engines propelled by fluxes of both energy and 
substance. In a process of power production shown in Fig. 1 
two subsystems differing in values of T and µ interact through 
the set of power generators (engines). The production process 
is propelled by diffusive and/or convective fluxes of heat and 
mass transferred through ‘conductances’ or boundary layers. 
The energy flux (power) is created in each generator located 
between the resource stream (‘upper’ fluid 1) and, say, an 
waste stream (‘lower’ fluid, 2).  

Basically, both transfer mechanisms, flows and values of 
conductances of boundary layers influence the rate of power 
generation [2-5]. Local fluxes of heat and power do not change 
along the steady process path only when both streams 
(reservoirs) in Fig.1 are infinite. Whenever one, say, upper, 
stream is finite, its thermal potential decreases along the path, 
which is the consequence of the energy balance. Any finite 
stream is thus a resource reservoir. It is the resource property 
or the finiteness of amount or flow of a valuable substance or 
energy which changes the upper fluid properties along its path. 
For the engine mode of the system and a very large ‘lower’ 
stream (sometimes the stream of the environmental fluid), one 
observes stage-wise relaxation of the upper stream S to the 
equilibrium with an infinite lower reservoir. This is a 
cumulative effect obtained for a resource fluid at flow, a set of 
sequentially arranged engines, and an infinite bath [6]. An  
inverse process, which needs a supply of an external power, 
may be referred to the upgrading of the resource in a heat 
pump [7]. Studies of resource downgrading or upgrading apply 
methods of dynamical optimization [8]. Indeed, the 
developments shown in Fig.1 may be regarded as dynamical 
processes since they evolve through sequence of states, either 
in the chronological time or in holdup (spatial) time.  

Fuel cells working in the power production mode are also 
engine-type systems. In fact, they are electrochemical flow 
engines propelled by chemical reactions. Downgrading or 
upgrading of resources may also occur in the systems of the 
fuel cell type. The performance of fuel cells  is determined by 
magnitudes and directions of participating streams and by 
mechanism of electric current generation. Voltage lowering in 
fuel cells below the reversible value is a good measure of their 
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imperfection which influences the downgrading and upgrading 
of reagents. Yet, in this paper we restrict to the steady-state 
fuel cell systems.  

Section II of the present paper derives relevant controls in 
power systems, the so called Carnot variables. These results 
are common for all processes considered here. Energy driven 
systems are treated in Sects III-VIII of this paper. Role of 
chemical affinities for chemical conversion is pointed out in 
Sec. X. Electrochemical systems (fuel cells) are analyzed in 
Sect XI. Sections XII and XIII present, respectively, final 
remarks and basic conclusions.   

II.  DEVELOPMENT OF CONTROLS IN POWER SYSTEMS.  

Here we shall recall and then use definitions of Carnot 
control variables (Carnot temperature and chemical potential) 
whose derivations and applications were originated in our 
previous work [9, 10]. Since diverse control variables of heat 
and mass transfer can accomplish the task of a sustainable 
energy conversion, alternative (more traditional) controls are 
also possible. However, the mathematical formulas are the 
simplest in terms of Carnot controls.   

We begin with the simplest case of no mass transfer, i.e. we 
shall consider a steady, internally reversible (‘endoreversible’) 
engine with perfect internal power generators characterized at 
each stage by temperatures of circulating fluid T1’ and T2’, 
Fig.1.  

 

 
 
Fig.1. A discrete scheme of chemical and/or thermal engine. G is the 
flux of Gibbs thermodynamic function (flux G in Eqs. (11) and (12)). 
 

The stream temperatures, attributed to the bulk o each fluid 
are T1 and T2. The inequalities T1>T1’>T2’>T2 are valid for the 
engine mode of the system. The internal entropy balance of a 
perfect engine at an arbitrary stage yields 
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Continuity of pure heat fluxes through each boundary layer 

(each conductor) is assumed at each stage (q1=q1’ and q2= q2’), 
the property which does not hold in the case when heat transfer 
is coupled with transfer of substances.  

As a flux can be normalized by dividing it by a constant 
resource mass flux we neglect dots over symbols of fluxes. 

Total entropy balance of a system’s stage leads to total 
entropy source σs as the difference of outlet and inlet entropy 
fluxes 
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With an effective temperature called Carnot temperature 
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entropy production of the endoreversible process, Eq. (2), takes 
the following simple form 
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This form is identical with the familiar expression obtained for 
processes of purely dissipative heat exchange between two 
bodies with temperatures T1 and T’.  

From the entropy and energy balances of an internally 
reversible process the “endoreversible” thermal efficiency 
follows in terms of temperatures of the circulating fluid  
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In terms of temperature T’ of Eq. (3) this efficiency assumes 
the classical Carnot form containing the temperature in the 
bulk of the second reservoir and temperature T’.  
 

T

T

′
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This property substantiates the name “Carnot temperature” for 
the control variable T’. When a control action takes place, the 
superiority of Eq. (6) over Eq. (5) consists in using in (6) 
single, free control T’, instead of two constrained controls of 
Eq. (5) (linked by an internal balance of the entropy). 
Moreover, the endoreversible power is also of classical form 
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In terms of T’ description of thermal endoreversible cycles is 
broken down to formally “classical” equations which contain T’ 
in place of T1. Importantly, the derivation of Eqs. (1) - (7) does 
not require any specific assumptions on the nature of heat 
transfer. In irreversible situations Carnot temperature T’ 
efficiently represents temperature of the upper reservoir, T1. Yet, 
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at the reversible Carnot point, where T1’ = T1 and T2’ = T2, Eq. 
(3) yields T’ = T1, thus returning to the classical reversible 
theory. These properties of Carnot temperature render 
descriptions of endoreversible and reversible cycles similar. 
They also make the variable T’ a suitable control in both static 
and dynamic cases [9, 10]. 

For the purpose of this paper it is worth knowing that in terms 
of Carnot temperature T’ the linear (Newtonian) heat transfer is 
described by a simple kinetic equation 

 
)( TTgq ′−= 11 ,                                   (8) 

 
where g is overall heat transfer conductance i.e. the product of a 
total exchange area and an overall heat transfer coefficient [8].  

For a linear resource relaxing to the thermodynamic 
equilibrium along the stationary Lagrangian path or for an 
unsteady relaxation, the kinetics related to Eq. (8) has the 
linear form 

1
1 −′= TT

d

dT

τ
 ,         (9) 

 
where the non-dimensional time τ satisfies Eq. (38)  below and 
is related to the overall conductance g of Eq. (8). Subscript 1 is 
neglected in equations describing dynamical paths.  

The resource (or a finite “upper stream”) is upgraded 
whenever Carnot temperature T’ is higher than resource’s 
temperature T1. Whereas the resource is downgraded (relaxes to 
the thermodynamic equilibrium with an infinite “lower stream” 
or the environment of temperature T2) whenever Carnot 
temperature T’ is lower than resource’s temperature T1. In linear 
systems, power-maximizing T’ is proportional to the resource’s 
temperature T1 at each time instant  [6]. For more details and, in 
particular, the case of two finite streams with constant heat 
capacities see a book by Sieniutycz and JeŜowski [11].  

The notion of Carnot temperature can be extended to chemical 
systems where also the Carnot chemical potential emerges [10]. 
We shall also make some remarks here.  

The structure of Eq. (1) also holds to systems with mass 
transfer provided that instead of pure heat flux q the so called 
total heat flux (mass transfer involving heat flux) Q is introduced 
satisfying an equation 

 

mmkk nTsnTsnTsqQ +++≡ 11 .....      (10) 

 
or, since the heat flux equals the difference between total 
energy flux ε and flux of enthalpies of transferred components,  
q=ε-h, 
  

GnnnQ mmkk −≡−−≡ 11 εµµµε .......          (11) 

 
where G is the flux of Gibbs thermodynamic function (Gibbs 
flux). The equality  

GQ +=ε                                      (12) 

 
is fundamental in the theory of chemical engines; it indicates 
that power can be generated by two propelling fluxes: heat flux 
Q and Gibbs flux G, each generation having its own efficiency 

(thermal and chemical efficiencies). The related driving forces 
are the temperature difference and chemical affinity.  

When mass transfer is included the internal entropy balance of 
the perfect engine has in terms of total heat flux Q the same 
structure as Eq. (1) in terms of q, i.e. 
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The continuity of energy and mass fluxes through the resistive 
layers leads to ‘primed’ fluxes in terms of those for the bulk. 
Assuming a complete conversion we restrict to power yield by a 
simple reaction A1+A2=0 (isomerisation or phase change of A1 
into A2). The energy balance 
 

p+= 21 εε             (14) 

 
and the mass balance in terms of conserved fluxes through 
cross-sections 1’ and 1 as well as 2’ and 2 
 

21 = nn              (15) 

 
are combined with Eq. (13) describing the continuity of the 
entropy flux in the reversible part of the system. This yields 
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Eliminating ε2 and n2 from these equations yields 
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whence  
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which leads to a power expression 
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In Eq. (19) power p is expressed in terms of fluxes continuous 
through the conductors. To proceed further we need consider 
quantitatively the entropy produced in the system. 

The entropy production in the system follows from the 
balance of fluxes in the bulks of the streams 
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Eliminating q2 from this result with the help of the energy 
balance (14) we obtain 
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An equivalent form of this equation is the formula 
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which may be compared with the same power evaluated for 
the endoreversible part of the system 
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The comparison of Eqs (22) and (23) yields an equality 
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from which the entropy production can be expressed in terms 
of bulk driving forces and active driving forces (measures of 
process efficiencies). We finally obtain 
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This expression generalizes Eq. (3) for the case when a single 
reaction A1+A2=0 undergoes in the system. Equation (25) 
leads again to the definition of Carnot temperature in 
agreement with Eq. (3) and to Carnot chemical potential of 
the (first) component  
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In a special case of an isothermal process the above formula 
yields a chemical control variable 
 

'' 212 −+=′ µµµµ                           (27) 

 
which has been used earlier to study an isothermal engine [12]. 
After introducing the Carnot temperature in accordance with Eq. 
(3), total entropy production of the endoreversible power 
generation by the simple reaction A1+A2=0 (isomerisation or 
phase change of A1 into A2), takes the following simple form 
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Introducing into the above formula total heat Q1 satisfying 

1111 −≡ nQ µε we finally obtain 
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where Q1=q1+T1s1n1 is the total heat flux propelling the power 
generation in the system.  

Carnot variables T’ and µ’  are two free, independent control 
variables applied in power maximization of steady and 
dynamical generators. The resulting equation (29) is formally 
equivalent with a formula obtained for the purely dissipative 
exchange of energy and matter between two bodies with 
temperatures T1 and T’ and chemical potentials µ1 and µ’.  

III.  INTERNAL IMPERFECTIONS IN ENERGY SYSTEMS 

The ideas referring to endoreversible systems may be 
generalized to those with internal dissipation. In such cases a 
single irreversible unit can be characterized by two loops 
shown in Fig. 2 which presents the temperature–entropy 
diagram of an arbitrary irreversible stage. Each stage can work 
either in the heat-pump mode (larger, external loop in Fig. 2) 
or in the engine mode (smaller, internal loop in Fig. 2).  

 
Fig. 2. Two basic modes with internal and external dissipation: power 
yield in an engine and power consumption in a heat pump. Primed 
temperatures characterize the circulating fluid. 

 
The related analysis follows the earlier analyses of the 

problem which take into account internal irreversibilities by 
applying the factor of internal irreversibilities, Φ [11]. By 
definition, Φ= ∆S2’/∆S1’ (where ∆S1’ and ∆S2’ are respectively 
the entropy changes of the circulating fluid along the two 
isotherms T1’ and T2’ in Fig. 2) equals the ratio of the entropy 
fluxes across the thermal machine, Φ = Js2’/ Js1’. Because of  
the second law inequality at the steady state, the following 
inequalities are valid: Js2’/Js1 >1 for engines and Js2’/Js1 <1 for 
heat pumps; thus the considered ratio Φ measures the internal 
irreversibility. In fact, Φ is a synthetic measure of the 
machine’s imperfection. Φ satisfies inequality Φ >1 for engine 
mode and Φ <1 for heat pump mode of the system. A typical 
goal is to derive efficiency, entropy production and power 
limits in terms of Φ. Applications of this quantity are discussed 
in the book by Sieniutycz and JeŜowski [11].  
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We shall now present an exposition of the formulas 
describing efficiencies, power yield and entropy production in 
systems with internal imperfections. This presentation 
corresponds with the assumption that it is an average value of 
Φ, evaluated within the boundaries of operative parameters of 
interest which is used in most of analyses of thermal machines. 

In the analysis we shall make use of the fact that, in 
agreement with Eq. (13), the thermal efficiency component of 
any endoreversible thermal or chemical engine can always by 
written in the form η=1-Q2/Q1. By evaluating total rate of 
entropy production σs (the sum of external and internal parts) 
as the difference between the outlet and inlet entropy fluxes we 
find in terms of the first-law efficiency η 
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Fig. 3. Qualitative sketch illustrating entropy production in chemical 
engines versus chemical efficiency ζ in a flow operation with 
simultaneous mass transfer and power production. For thermal 
engines the picture is qualitatively similar provided that the chemical 
efficiency  ζ is replaced by the thermal efficiency η. 
 
Equation (30) is a general relationship as no special 
assumptions are involved in its derivation. It states that the 
entropy production in an arbitrary engine is directly related to 
the deviation of the thermal efficiency from the corresponding 
Carnot efficiency. This conclusion leads to an important 
analytical formula for the total entropy source that will enable 
its direct optimization. The entropy balance of an irreversible 
machine contains internal entropy production int

sσ as a source 

term in the expression 
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After defining the coefficient 
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called the internal irreversibility factor the internal entropy 
balance takes the form usually applied for thermal machines 
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We have already stressed that one can evaluate Φ  from the 

averaged value of the internal entropy production, that 
describes the effect of irreversible processes within the thermal 
machine. Clearly, in many cases Φ  is a complicated function 
of the machine’s operating variables. In those complex cases 

one applies the data of dtdSs /intint
σσ = to calculate averaged 

values of the coefficient Φ. In our analysis the quantity Φ is 
treated as the process constant. For chillers and energy 

generators experimental data of dtdSs /intint
σσ = are available 

that allow the calculation of Φ. For more information, see the 
book by Sieniutycz and JeŜowski [11] and many references 
therein.   

Consequently, thermal efficiency η can be evaluated in terms 
of suitable parameters characterizing the imperfect machine 
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After eliminating η from Eqs. (30) and (34) we conclude 

that, quite generally, total entropy production rate can be 
written as 
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The first term in the resulting expression the describes the 

internal entropy source (within the thermal machine) and the 
second one the external entropy source (within the reservoirs). 

Equivalently, after using the definition of the internal 
irreversibility factor (32) we obtain for the entropy generation 
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In the last two equations the Carnot temperature T’ was 
introduced that satisfies the thermodynamic definition (3) 
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In terms of the Carnot temperature T’ and factor Φ the 

efficiency η , Eq. (33), assumes the simple, pseudo-Carnot 
form 

T

T
Φ

′
−= 21η  .                              (37) 

 
which is quite useful and general enough to describe thermal, 
radiative  and chemical engines. 

A particularly interesting role of the above formulas is 
observed for radiation engines which are energy systems 
driven by the black radiation. In these systems Gibbs flux G = 
0, whereas total heat flux Q is identical with the energy flux ε, 
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i.e. Q = ε. Their power of entropy production follows from 
Eqs. (35) and (36) as 
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The first of these equations can be applied immediately; the 

second calls for a function T1’(T1, ε1) as the one shown below 
of Eq. (40).  

When the energy exchange in both reservoirs depends on the 
difference of temperatures in power a (a=4 for the radiative 
energy exchange and 1 for the Newtonian one), i.e. for 
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then, since aa gTT
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111'1 )/( ε−= , from the radiation law, the 

following formula describes the power of entropy generation 
 

)
11

(
)/(

1
1

int
/1

111

TTT

gT
s

aa

s −
′

+
′

−= εσεσ .         (41) 

  
This means that only in the “endoreversible” case, i.e. when 

the power of internal entropy production vanishes, the external 
entropy production is simply related to the product of energy 
flux ε1 and the suitable difference of temperature reciprocals, 
(T’)-1- (T1)

-1, as in the two-body contact. In the general case of 
a finite internal entropy production the external part of σs 
follows in terms of its internal part in the form 
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or the sum of both parts of the entropy production agrees with 
Eq. (42). Therefore, the analytical description of thermal 
converters in terms of the Carnot temperature is particularly 
simple.  

The efficiency worsening caused by the dissipation is 
described in a general way by the inverted formula (30) 
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Of course, the pseudo-Carnot formula, Eq. (37), also belongs 
to the class of imperfect efficiencies since it can be expressed 
in the form 
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This result implies the ratio σs/ε1 consistent with Eqs. (35) 

and (38). Equations for entropy production σs, presented 
above, are helpful in definite situations when one wants to 

evaluate the efficiency worsening. Yet, the knowledge of the 
entropy production σs is also necessary in calculations of 
generalized exergies [11]. In the dynamical cases essential is 
also the best time behavior of σs. 

The majority of research papers on power limits published 
to date deals with systems in which there are two infinite 
reservoirs. To this case refer steady-state analyses of the 
Chambadal-Novikov-Curzon-Ahlborn engine (CNCA engine) 
in which energy exchange is described by Newtonian law of 
cooling [2], or of the Stefan-Boltzmann engine, a system with 
the radiation fluids and energy exchange governed by the 
Stefan-Boltzmann law [3]. Entropy production characteristic 
for these systems is shown in Fig. 3.  

In a CNCA engine the maximum power point may be 
related to the optimum value of a single, free (unconstrained) 
control variable which may be efficiency η, heat flux q1, or 
Carnot temperature T’. When the internal irreversibilities 
within the power generator play a role, the pseudo-Carnot 
formula (37) applies in place of Eq. (6), where Φ  is the 
internal irreversibility factor [5].  

In terms of bulk temperatures T1, T2 and Φ one finds for 
linear systems at the maximum power point   
 

21
21=′ /)( ΦTTTopt .        (45)  

 
For the Stefan-Boltzmann engine exact expression for the 

optimal point cannot be determined analytically, yet, this 
temperature can be found graphically from the chart p=f(T’). 
A pseudo-Newtonian model, [5, 7], which treats the state 
dependent energy exchange with coefficient α(T3), omits to a 
considerable extent analytical difficulties associated with the 
use of the Stefan-Boltzmann equation. The results stemming 
from this model show that the formula (45) is a good 
approximation also in nonlinear cases. 

IV. A THEORY FOR DYNAMICAL ENERGY PRODUCTION  

Whenever the resources are finite the previous (steady) 
analysis is replaced by a dynamic one, and the mathematical 
formalism is transferred from the realm of functions to the 
realm of functionals. This refers to the case when the 
propelling fluid flows at a finite rate; in this case the Carnot 
temperature and the resource temperature decrease along the 
process path. Here the optimization task is to find an optimal 
profile of the Carnot temperature T’  along the resource fluid 
path that assures an extremum of the work consumed or 
delivered and – simultaneously – the minimum of the integral 
entropy production. Figure 4 below illustrates the evaluation 
idea of the dynamic work limit for a system of a resource and 
infinite bath. This idea leads to a generalized exergy, for a 
finite duration of the state change and a minimal irreversibility. 

Dynamical energy yield requires the knowledge of an 
extremal curve rather than an extremum point. This leads to 
variational metods (to handle extrema of functionals) in place 
of static optimization methods (to handle extrema of 
functions). For example, the use of a pseudo-Newtonian model 
to quantify the dynamic power yield from radiation, gives rise 
to a non-exponential optimal curve describing the radiation 
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relaxation to the equilibrium. The non-exponential shape of the 
relaxation curve is the consequence of nonlinear properties of 
the radiation fluid. Non-exponential are also other curves 
describing the radiation relaxation, e.g. those following from 
exact models involving the Stefan-Boltzmann equation [4, 5, 
7]. Optimal (e.g. power-maximizing) temperature of the 
resource, T(t), is accompanied by the optimal control T’(t); 
they both are components of the dynamic optimization 
solution. 

Energy limits of dynamical processes are inherently 
connected with exergies, the classical exergy and its rate-
dependent extensions. To obtain the classical exergy from 
work functionals it suffices to assume that the thermal 
efficiency of the system is identical with the Carnot efficiency. 
On the other hand, non-Carnot efficiencies, influenced by 
rates, lead to ‘generalized exergies’. The benefit from 
generalized exergies is that they define stronger energy limits 
than those predicted by classical exergies [1,8,9,11]. 

The classical exergy defines bounds on the common work 
delivered from (or supplied to) slow, reversible processes [8]. 
Such bounds are reversible since the magnitude of the work 
delivered during the reversible approach to equilibrium is 
equal to the one of the work supplied, after the initial and final 
states are inverted, i.e. when the second process reverses to the 
initial state of the first. Our approach leads to the 
generalization of the classical exergy for finite rates. During 
the approach to the equilibrium the so-called engine mode of 
the system takes place in which the work is released, during 
the departure- the so-called heat-pump mode occurs in which 
work is supplied. Work W delivered in the engine mode is 
positive by assumption. In the heat-pump mode W is negative, 
or the positive work (-W) must be supplied to the system. To 
find a generalized exergy, optimization problems are set, for 
the maximum of the work delivered [max W] and for the 
minimum of the work supplied [min (-W)], e.g. [12]. While the 
reversibility property is lost for such exergy, its (kinetic) 
bounds are stronger and more useful than classical 
thermostatic bounds. This substantiates role of the extended 
exergy for evaluation of energy limits in practical systems. 

With the functionals of power generation (consumption) at 
disposal one can formulate the Hamilton-Jacobi-Bellman 
theory (HJB theory) for the extended exergy and related 
extremum work. The HJB theory is the basic ingredient in 
variational calculus and optimal control [8,11]. A HJB 
equation extends the classical Hamilton-Jacobi equation by 
the addition of extremum conditions, and it is essential to 
develop numerical methods in complex cases (with state 
dependent coefficients) when the problem cannot be solved 
analytically. Due to the direct link between the HJB theory 
and dynamic programming the associated numerical methods 
make use Bellman’s recurrence equation [13]. These methods 
are complementary with respect of the Pontryagin's principle 
[8], as both are effective seeking methods of functional 
extrema. Yet, in spite of its power, Pontriagin's principle does 
not yield the principal function V which is a general work 
potential describing the change of the extended exergy, the 
main result being sought. Otherwise, when a HJB equation is 
known, the exergy (or work) is explicit, and the discrete 

numerical problem leads to Bellman's recurrence equation, 
solvable by the method of the dynamic programming [13]. 
The problem of generalized exergy falls into the category of 
finite-time potentials, an important issue of contemporary 
thermodynamics [8]. This problem is solved with the concept 
of multistage energy production or consumption, where each 
stage represents the standard Curzon-Ahlborn-Novikov 
operation [3], as in Fig.1. 

V. DYNAMICAL ENERGY GENERATION FROM RADIATION  

Energy transfer rates in reservoirs (streams) with nonlinear 
media can be described by various models. As an example of 
the above theory we consider the radiation engines which are 
thermal machines driven by the  radiation fluid, a medium 
exhibiting nonlinear properties. Usually one assumes that the 
energy transfer in a reservoir is proportional to the difference 
of absolute temperatures in certain power, a. The case of a =4 
refers to the radiation, a=-1 to the Onsagerian kinetics and a=1 
to the Fourier law of heat exchange. (In the Onsagerian case 
the quantities gi are negative in the common formalism 
considered.)  

As the first case of the radiation engine modeling we 
consider a “symmetric nonlinear case” in which the the energy 
exchange process in the energy exchange in each reservoir 
satisfies the Stefan-Boltzmann equation. Next we consider 
“hybrid nonlinear case” in which the upper-temperature fluid 
is still governed by the kinetics proportional to the difference 
of (T4)i, whereas the kinetics in the lower reservoir is 
Newtonian. 

Here are the equations of the symmetric nonlinear case. The 
energy exchange process in the upper reservoir satisfies Eq. 
(40), and an equation of the same type and with the same 
coefficient a is valid for the energy exchange in the lower 
reservoir, namely 

 )( 2'2222
aa TTgQ −==ε              (46) 

 
 To express the internal balance equation for the entropy 
 

 TTTgΦ aa
'1'111 )( −  = TTTg aa

'22'22 )( −           (47) 

 

in terms of T’ and T1’ we substitute TTTT ′≡ /2'1'2 into 

(47). Next we solve the result obtained with respect to T1’. 
This leads to an equation describing (in terms of T’) the upper 
temperature of the circulating fluid T1’ 

a

a
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
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.  
From this expression and Eq. (40) the energy flux ε1 follows 

in terms of T’. This flux is obtained in the form 
   

2
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1
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which represents “thermal characteristics” of the system. An 
expression for T2’ corresponding with (48) follows from the 
thermodynamic definition of Carnot temperature, 

TTTT ′≡ /2'1'2 . Also, ε2= ε1(1-η), where η is defined by the 

pseudo-Carnot expression, Eq. (37). Thus all necessary 
quantities are known.  

For a=1 the kinetics of heat exchange depends on the 
difference of two temperatures T1 –T’, as in the case of the 
direct two-body contact. Yet, in nonlinear processes the heat 
flux (49) emerges as function of three (not merely two) 
temperatures, T’, T1 and T2. This means that the modeling rule 
involving the formalism of the two-body contact (satisfied 
when a=1) is invalid in the case of nonlinear processes. Still 
we can evaluate power limits by maximizing the power p 
related to equation (49) with respect to the free Carnot control, 
T’; see Eq. (52) below.  

For a=4 the model describes the radiation engine usually 
called the Stefan-Boltzmann engine. In spite of the model’s 
simplicity, its two “resistive parts” take rigorously into account 
the entropy generation caused by simultaneous emission and 
absorption of black-body radiation, the model’s property 
which some of FTT adversaries seem not to be aware of. This 
entropy generation is just the external part of the total entropy 
production that follows as the “classical” sum:  

 

)()( 1
'2

1
22

1
1

1
'11

−−−− −+−= TTTText
s εεσ ,              (50) 

 
where each ει is determined by the Stefan-Boltzmann law. 

For the “symmetric”kinetics”, governed by the differences in 
Ta, the Carnot representation of the total entropy production 
follows from equations (38) and (49) 
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Superiority of Carnot control T′ over the energy flux control 

ε1 may be noted. Since the energy flux expression (49) cannot 
be inverted to get an explicit function T ′ (ε1), analytical 
expressions for the energy-flux representation of the entropy 
production or the associated mechanical power p cannot 
generally be found in an analytical form. Still we can express 
the entropy production and power p in terms of Carnot control, 
T′ , and then evaluate the work limit by maximizing work W 
with respect to the free Carnot control, T′ . The work 
expression to be minimized is 
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T

T
Φ

gTTΦg

TTggdtW
a

aat

t

t

t

f

i

f

i










′
−

+′
′−== −∫∫ 2

2
1

21

1
211 1

)/(
ηε       (52) 

 
Whenever analytical difficulties occur (for a different from 

the unity), the maximization can be performed numerically by 
dynamic programming using Carnot T′ as the free control. 

 

We consider now hybrid nonlinear case in which the 
radiation law governs the energy flow only in the upper 
reservoir, whereas the lower one is governed by the Newtonian 
model  

)( 2'222 TTg −=ε  .            (53) 

 
The efficiency of an imperfect unit is still satisfied by 

expression η = 1 - ΦT2’/T1’, Eq. (37). To express the internal 
balance equation for the entropy 

  

 TTTgΦ '1
4
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4
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in terms of T’ and T1’ we substitute TTTT ′≡ /2'1'2  into (54). 

This leads to T’ in terms of T1’  
 

)( 4
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4
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and whence to the mechanical power p in terms of T1’. The 

thermal efficiency of the engine can be obtained in the form  
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which contains the temperature T1’ as an effective control 

variable. This result leads to the mechanical power expression 
with the explicit control T1’ 

 

dt
gTTΦgT

ΦT
TTgdtW

f

i

f

i

t

t

t

t









−−
−−== ∫∫

2
4
'1

4
11'1

24
'1

4
111 /)(

1)(ηε    (57) 

 

Since from Eq. (40), aa gTT
/1

111'1 )/( ε−= , the energy flux 

representation of Eq. (57) is obtained in the form  
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Equations (57) or (58) allow analytical or graphical 

maximization of work with respect to a single control variable,  
T1’or ε1. This leads to the limits on work production in 
imperfect units. A suitable control may be the Carnot 
temperature itself, its function or an operator in terms of the 
process variables. Operator structure of T′  is frequent in 
dynamical problems. 

In dynamical systems differential forms of expressions are 
necessary. For a suitably defined time τ (associated with the 
resource fluid; see Eq. (32) below) and for an arbitrary heat 
transfer (Newtonian or not) the internal entropy production is 
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whereas its external part 
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The minimization must involve total entropy production as 

the quantity which determines the lost work in thermal 
equations of availabilities. The sum of Eqs. (59) and (60)  is 
the integral  
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The limiting production or consumption of mechanical 
energy is associated with extremum work (52) or (57) or 
minimum of overall entropy production (31). Often is possible 
to determine explicit form of functions describing Carnot 
temperature T ′  in terms of the current fluid’s temperature T 
and its time derivative. Such functional structure allows to 
apply the variational calculus in the optimization analysis. If 
this function is difficult to find in an explicit form then 
equations (59) and (60) should be written in the form in which 
T ′ and T1 are two variables in the Pontryagin’s algorithm of 
the optimal control. In that case a differential constraint must 
be added which links rate dT1/dt with state variable T1 and 
control T ′ (Eq. (63) below). 

We shall again specialize with what we called symmetric 
nonlinear case. It involves the radiative heat transfer (a=4) in 
both upper and lower reservoirs and corresponds with the form 
(51) of the intensity of total entropy production. 

We shall define the nondimensional time τ1 by the equality 
 

111111111 /)/()(/ ταε ddTdxFadTTcGg v −≡−=             (62) 

 
which means that the driving energy flux can be measured in 

terms of the temperature drop of the propelling fluid per unit 
of the nondimensional time. Comparing the result obtained 
with ε1 of Eq. (49) we obtain the basic differential equation 
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This formula constitutes the differential constraint in the 

problem of minimization of the total entropy production (61) 
by Pontryagin’s maximum principle. This is particularly 
important in view of the fact that the method of variational 
calculus cannot effectively be used (as opposed to the case 
considered below). 

We shall now specialize to what we called the hybrid 
nonlinear case. It involves the radiative heat transfer (a=4) in 
the upper reservoir and a convective one in the lower one. In 
terms of the rate 111 / τddTT ≡& we obtain 
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and 
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To obtain an optimal path associated with the limiting 

production or consumption of mechanical energy the sum of 
the above functionals i.e. the overall entropy production 
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has to be minimized for a fixed duration and defined end 

states of the radiation fluid. The most typical way to do 
accomplish the minimization is to write down and then solve 
the Euler-Lagrange equation of the variational problem. 
Analytical solution is very difficult to obtain, thus one has to 
rest on numerical approaches. For Eqs. (61) or (66) these 
approaches involve the dynamic programming algorithms 
(Bellman’s equations; [8, 13]) which are, in fact, discrete 
representations of the HJB equations of the variational 
problem. Analytical aspects of HJB equations are analyzed 
throughout the Sects. 6-9 of the present paper. 

VI.  FINITE RESOURCES AND FINITE RATE EXERGIES 

Two different kinds of work, first associated with the resource 
downgrading during its relaxation to the equilibrium and the 
second – with the reverse process of resource upgrading, are 
essential. During the engine mode work is released, during heat-
pump mode work is supplied. The optimal work follows in the 
form of a generalized potential which depends on the end states 
and duration. For appropriate boundary conditions the principal 
function of the variational problem of extremum work at flow 
coincides with the exergy as the function that characterizes 
quality of resources.  

We are now in position to formulate the HJB theory for 
systems propelled by energy flux ε. Total power obtained from 
an infinite number of infinitesimal stages representing the 
resource relaxation is determined as the Lagrange functional of 
the following structure 
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where f0 is power generation intensity, G& - resource flux, c(T)-
specific heat, η(T, T’) - efficiency in terms of state T and 
control T’, further T – enlarged state vector comprising state 
and time,  t – time variable (residence time or holdup time) for 
a resource contacting with energy transfer surface. For a 
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constant mass flux of a resource stream, one can extremize 
power per unit mass flux, i.e. the quantity of specific work 
dimension called ‘work at flow’. A non-dimensional time τ is 
often used in the description 
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This definition assures that τ  is identical with the number of 

the energy transfer units, and related to system’s time constants, 
χ and HTU (relaxation constant and height of the transfer unit). 
Equation (68), which links non-dimensional and physical times, 

contains resource’s flow G& , stream velocity v through cross-

section ⊥A , and heat transfer exchange surface per unit volume 
av [5]. 

The function f0 in Eq. (67) contains thermal efficiency, η, 
described by a practical counterpart of the Carnot formula. 
When T > Te, efficiency η decreases in the engine mode below 
ηC and increases in the heat-pump mode above ηC. At the limit 
of vanishing rates dT/dt = 0 and TT →′ . Work of each mode 
simplifies then to the classical exergy.  

Solutions to work extremum problems can be obtained by 
variational methods, i.e. via Euler-Lagrange equation of 
variational calculus. However, such solutions do not contain 
direct information about the optimal work function V = 

max(W& / G& ). Yet, V can be obtained by solving the related 
Hamilton-Jacobi-Bellman equation (HJB equation: [8,13]).  

 

 
Fig. 4. In finite-rate processes limiting work produced and consumed 
differ in both process modes. 

 
For the Newtonian energy transfer (linear kinetics) 
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Extremum work function V = max(W& / G& ) contained in 
equations of this type is a function of the final state and total 
duration. 

After the evaluation of optimal control and its substitution to 
Eq. (69) one obtains a nonlinear equation 
  

0=






 ∂∂+1−−

∂
∂ 2

1− )/( TVcTTc
V e

τ
          (70) 

 
which is the Hamilton-Jacobi equation of the problem. Its 
solution can be found by the integration of work intensity 
along an optimal path, between limits Ti and Tf. A reversible 
(path independent) part of V is the classical exergy A(T, Te, 0).  

Whenever analytical difficulties are serious method of 
dynamic programming is applied to solve a discrete HJB 
equation which is in, fact, Bellman’s equation of dynamic 
programming for a multistage cascade process [13]. 

Details of modeling of multistage power production in 
sequences of engines are discussed in the previous 
publications [5, 9, 11]. 

VII.  EXAMPLES OF HJB EQUATIONS IN POWER SYSTEMS 

In this section we shall display some Hamilton-Jacobi-
Bellman equations for the power systems with radiation. A 
suitable example is a radiation engine whose power integral is 
approximated by a pseudo-Newtonian model of radiative 
energy exchange.  

The model is associated with an optimal function 
 
















′

′
′−1−≡ ∫

f

i

t

t

e

mm
tT

ffii dtTTυ
T

T
ΦcGtTtTV ),( )(max),,,(

)('

& ,    (71) 

 
whereυ =α(T3)(T’-T). Alternative forms use expressions of 
Carnot temperature T’ in terms of other control variables [5]. 
Optimal power (71) can be referred to a pseudolinear kinetics 
dT/dt = f(T, T’) consistent with rate υ=α(T3)(T’-T). A general 
form of HJB equation for work function V is 
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where f0 is defined as the integrand in Eq. (71). 

A more exact model or radiation conversion relaxes the 
assumption of the pseudo-Newtonian transfer and applies the 
Stefan-Boltzmann law. For the symmetric model of radiation 
conversion (both reservoirs composed of radiation we obtain 
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Here Φ’ ≡ Φg1/g2 and coefficient 1−01−= )( mhv pcaσβ  is related 

to molar constant of photons density0
mp  and Stefan-Boltzmann 

constant σ. In the physical space, power exponent a=4 for 
radiation and a=1 for a linear resource. With a dynamical state 
equation following from Eq. (63) 
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applied in general Eq. (72) we obtain a HJB equation 
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 [5]. Dynamics (74) is the characteristic equation to Eq. (75). 

For a hybrid model of the radiation conversion (upper 
reservoir composed of the radiation and lower reservoir of a 
Newtonian fluid), the power production expression has the form 
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whereas the related Hamilton-Jacobi-Bellman equation is 
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where by definition: 
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is the Carnot temperature of this particular problem [5].  

The HJB approach can also be applied when one is using the 
general equations of nonlinear macrokinetics [11]. In this case 
one may consider coupled transfer of mass (m) and energy (e). 
On this ground one can develop the nonlinear theory in which 
thermal conductances are variable i.e. are state functions 

VIII.  SOLUTIONS OF HJB EQUATIONS IN ENERGY SYSTEMS 

By applying the feedback control, either optimal temperature 
T’ or some other optimal control is implemented as the quantity 
maximizing the hamiltonian with respect to Carnot temperature 
at each point of the path. The Pontryagin’s variable for the 
energy problem is z = - ∂V/∂T. Expressions extremized in HJB 
equations are some Hamiltonians, H. The maximization  of  H 
leads to two equations. The first expresses optimal control T' in 
terms of T and z = - ∂V/∂T. For the linear kinetics of Eq. (69) we 
obtain 
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whereas the  second  is  the  original equation (69) without 
maximizing operation 
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To obtain optimal control function T'(z, T) one should solve the 
second equality in Eq. (78) in terms of T’. The result is optimal 
Carnot control T' in terms of T and z = - ∂V/∂T, 
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This  expression is next substituted into Eq. (79); the result is the 
nonlinear Hamilton-Jacobi equation 
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which contains the energy-like (extremum) Hamiltonian  
 

( )21 //1),( TTTVccT
T

V
TH e−∂∂+=

∂
∂ − .           (82) 

 
Expressing extremum Hamiltonian (82) in terms of state variable 
T and Carnot control T ' yields an energy-like function satisfying 
the following relation 
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E is the Legendre transform of the work lagrangian l0 = - f0 with 
respect to the rate u = dT/dτ . 

Assuming a numerical value of the Hamiltonian, say h, one 
can exploit the constancy of H to eliminate ∂V/∂T. Next 
combining equation H=h with optimal control (80), or with an 
equivalent result for heat flow control u=T ‘-T  
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yields optimal rate u= T& in terms of temperature T and the 
Hamiltonian constant h 
 

TcThcThT ee })/1(/{ 1−±−±=& .         (85) 

 
A more general form of this result which applies to systems 

with internal dissipation (factor Φ) and applies to the pseudo-
Newtonian model of radiation is 
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The coefficient ξ , defined in the above equation, is an 
intensity index and hσ=h/T. The result is valid the temperature 
dependent heat capacity cv(T)=4a0T

3. Positive ξ refer to 
heating of the resource fluid in the heat-pump mode, and the 
negative - to cooling of this fluid in the engine mode. 
Therefore pseudo-Newtonian systems produce power relaxing 
with the optimal rate 
 

TΦTT ),,( σξ h=&           (87) 
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Equations (86) and (87) describe the optimal trajectory in 

terms of state variable T and constant hσ. The corresponding 
optimal control (Carnot control) is 
 

( )TTΦT ),,(1 σξ h+=′ .                 (88) 

 
In comparison with the linear systems, the pseudo-

Newtonian relaxation curve is not exponential. Kuran [7] has 
illustrated the optimal temperature of radiation downgraded in 
engine mode or upgraded in the heat-pump mode, see also [4] 
and [5].   

HJB theory of energy systems can also be based on 
properties of entropy production. Equations (64)-(66) contain 
expressions representing Carnot temperature T ′  in terms of 
the upper reservoir temperature T1 and the time derivative of 
this quantity. They prove that the success in achieving 
Lagrange functionals (necessary when one wants to apply the 
method of calculus of variations) is crucially dependent on the 
possibility of getting Carnot temperature T’ in the form of an 
explicit analytical function of T’ and dT’/dt. For the symmetric 
nonlinear model of the engine such explicit function is 
impossible to find, yet the possibility exists in the case of the 
hybrid nonlinear model. For the latter model one can therefore 
write down explicit Euler-Lagrange equations of the 
variational problem and perform the minimization of the 
entropy production. 

IX.  RATE DEPENDENT EXERGIES AS GENERALIZED WORK 

POTENTIALS 

Let us begin with linear systems. Substituting temperature 
control (88) with a constant ξ into work functional (67) and 
integrating along an optimal path yields an extremal work 
function 
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This expression is valid for every process mode. Integration of 

Eq. (86) subject to end conditions T(τi)=Ti and T(τf)=Tf leads to 
V in terms of the process duration.  

For radiation cv(T)=4a0T
3, where a0 is the radiation constant. 

The optimal path consistent with Eqs. (87) and (89) has the form 
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The integration limits refer to the initial state (i) and a current 

state of the radiation fluid, i.e. temperatures Ti and T 

corresponding with τi and τ . Optimal curve (90) refers to the 
case when the radiation relaxation is subject to a constraint 
resulting from Eq. (87).   

The corresponding extremal work function per unit volume of 
flowing radiation is 
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Generalized exergy change V prohibits processes from 

operating below the heat-pump mode (lower bound for work 
supplied) and above the engine mode line (upper bound for work 
produced).  The so-called endoreversible limits correspond with 
Φ =1; weaker limits of classical exergy are represented by the 
straight line A= Aclass. The classical availability is potential or 
state function whose change between two arbitrary states 
describes the reversible work. On the other hand, generalized 
availability functions are irreversible extensions of this classical 
function including minimally irreversible processes.  

Regions of possible improvements are found when imperfect 
machines are replaced by those with better performance, 
including limits for Carnot machines. The generalized exergy of 
radiation at flow, [14], follows in analytical form from Eq. (91) 
after applying exergy boundary conditions. Yet the classical 
exergy of radiation at flow resides in the discussed exergy 
equation in Jeter’s 1981 form, [15], rather than in Petela’s 1964 
form, [14]. The zero-rate limit, i.e. the change of classical 
thermal availability appears in Eq. (91) in the standard way.  

X. POWER SYSTEMS DRIVEN BY CHEMICAL AFFINITIES 

The developed approach can be extended to chemical and 
electrochemical engines. Here we shall make only a few basic 
remarks. In chemical engines mass transports participate in 
transformation of chemical affinities into mechanical power [12, 
16]. Yet, as opposed to thermal machines, in chemical ones 
generalized streams or reservoirs are present, capable of 
providing both heat and substance. Large streams or infinite 
reservoirs assure constancy of chemical potentials. Problems of 
extremum power (maximum of power produced and minimum 
of power consumed) are static optimization problems. For a 
finite “upper stream”, however, amount and chemical potential 
of an active reactant decrease in time, and considered problems 
are those of dynamic optimization and variational calculus. 
Because of the diversity and complexity of chemical systems the 
area of power producing chemistries is extremely broad.  

The simplest model of power producing chemical engine is 
that with an isothermal isomerization reaction, A1+A2=0, [3, 12]. 
Power expression and efficiency formula of a chemical system 
follow from the entropy conservation and energy balance of a 
power-producing zone (‘active part’). In an ‘endoreversible 
chemical engine’ total entropy flux is continuous through the 
active zone. When a formula describing this continuity is 
combined with energy balance we find in an isothermal case 
 

121 −= np )( '' µµ ,                                    (92) 
 
where the feed flux n1 equals to n, an invariant molar flux of 
reagents. Process efficiency ζ is defined as power yield per flux    
n. This efficiency is identical with the chemical affinity of our 
reaction in the chemically active part of the system. While ζ is 
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not dimensionless, it describes correctly the system. In terms of 
Carnot variable, µ’ , which satisfies Eq. (27) 
 

2−′= µµζ .                                         (93) 

 
For a steady engine the following function describes chemical 

Carnot control µ’  in terms of fuel flux n1 and its mole fraction x 
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Since Eq. (93) is valid, Eq. (94) also characterizes the efficiency 
control in terms of n and fuel fraction x.  

Equation (94) shows that an effective concentration of the 
reactant in upper reservoir x1eff = x1 – 1−

1g n is decreased, whereas 

an effective concentration of the product in lower reservoir x2eff = 
x2 + 1−

2g n is increased due to the finite mass flux. Therefore 

chemical efficiency ζ decreases nonlinearly with n.  
When the effect of resistances (gk)

-1 is ignorable or flux n is 
very small, reversible Carnot-like chemical efficiency, ζC, is 
attained. The power function, described by the product ζ(n)n, 
exhibits a maximum for a finite value of the fuel flux, n.  

Application of Eq. (94) to the Lagrangian relaxation path leads 
to a work functional 
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whose maximum describes the dynamical limit of the system. 
Here X=x/(1-x) and j equals the ratio of upper to lower mass 
conductance, g1/g2.  

The path optimality condition may be expressed in terms of the 
constancy of the following Hamiltonian 
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For low rates and large concentrations X  (mole fractions x1 
close to the unity) optimal relaxation rate of the fuel resource is 
approximately constant.  

Yet, in an arbitrary situation optimal rates are state dependent 
so as to preserve the constancy of H in Eq. (96). Extensions of 
Eq. (94) are known for multicomponent, multireaction systems 
[17]. 

Power formula which treats the internal imperfections has the 
form generalizing “endoreversible” Eq. (23) 
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where Ψ is the coefficient of chemical losses which takes into 
account the imperfections of the species transformations caused 
by incomplete conversions [17].  

This formalism can be generalized to complex, multi-
reaction chemical systems [17].  

XI. FUEL CELLS AT STEADY STATE CONDITIONS 

To understand the role of electrochemical reactions in the 
power yield we consider performance bounds of fuel cells. 
These systems are electrochemical flow engines propelled by 
chemical reactions, which satisfy requirements imposed by 
chemical stoichiometry. The performance of fuel cells is 
determined by magnitudes and directions of all streams and by 
mechanism of electric current generation. The mode 
distinction for the work production and consumption units 
applies here as well. Units which produce power are 
electrochemical engines whereas those which consume power 
are electrolyzers. Figure 5 illustrates a solid oxide fuel cell 
engine (SOFC) and refers to the power yield mode.  

A fuel cell is an electrochemical energy converter which 
directly and continuously transforms a part of chemical energy 
into electrical energy by consuming fuel and oxidant. Fuel 
cells have recently attracted great attention by virtue of their 
inherently clean, efficient, and reliable performance. Their 
main advantage in comparison to heat engines is that their 
efficiency is not a major function of device size. 

While both electronic and ionic transfers are necessary to 
sustain power generation, it is the overall chemical reaction 
which is the source of power, and it is the chemical unit 
property which constitutes the first major component of the 
theory of power generation in fuel cell engines. The second 
major component involves the kinetics of electronic, ionic and 
thermal transfer phenomena.  

 
Fig. 5. Principle of a solid oxide fuel cell 

 
The basic structure of fuel cells includes electrolyte layer in 

contact with a porous anode and cathode on either side. 
Gaseous fuels are fed continuously to the anode (negative 
electrode) compartment and an oxidant (i.e., oxygen from air) 
is fed continuously to the cathode (positive electrode) 
compartment. Electrochemical reactions take place at the 
electrodes to produce an electric current. The reaction is the 
electrochemical oxidation of fuel, usually hydrogen, and the 
reduction of the oxidant, usually oxygen. These properties 
make fuel cells similar to the chemical engine of Fig. 1.  

Voltage lowering in fuel cells below the reversible value E0 
is a good measure of their imperfection only when E0 can be 
identified with the so-called idle run voltage E0, see discussion 
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below and Fig. 6a. With the concept of effective nonlinear 
resistances operating voltage of a general fuel cell can be 
represented as the departure from the idle run voltage E0. 

 
 V = E0 - Vint= E -Vact -Vconc - Vohm  
 

= E0 - I(Ract + Rconc + Rohm)                   (98) 
  

The rate dependent losses, which are called polarization, 
include three main sources: activation polarization (Vact), 
ohmic polarization (Vohm), and concentration polarization 
(Vconc). They refer to the equivalent activation resistance (Ract), 
equivalent ohmic resistance (Rohm), and equivalent 
concentration resistance (Rconc). Large number of approaches 
for calculating these polarization losses has been reviewed in 
the literature by Zhao, Ou and Chen, [18].  

 

 
 

 
Fig. 6. Voltage-current density and power - current density 
characteristics of the SOFC for various fuels in temperature 800oC 
(a) and at various temperatures (b). Continuous lines represent the 
Aspen PlusTM calculations testing the model consistency with the 
experiments. These lines were obtained in Wierzbicki’s MsD thesis 
[19], supervised by the present author and J. Jewulski. Points refer to 
experiments of Wierzbicki and Jewulski in Warsaw Institute of 
Energetics (Wierzbicki, [19], and his ref. 18). 
 

Activation and concentration polarizations occur at both 
anode and cathode locations, while the resistive polarization 

represents ohmic losses throughout the fuel cell. As the voltage 
losses increase with current, the initially increasing power 
begins finally decrease for sufficiently large currents, so that 
maxima of power are observed (Fig. 6b). 

The final voltage equation used for the calculation of the fuel 
cell voltage in Wierzbicki’s model is: 
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where the limiting current is 
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and C1 is a experimentally determined parameter. Power 
density is simply the product of voltage V and current density 
i. In an ideal situation (no losses) the cell voltage is defined by 
the Nernst equation. Yet, while the first term of Eq. (99) 
defines the voltage without load, it nonetheless takes into 
account losses of the idle run, which are the effect of flaws in 
electrode constructions and other imperfections which cause 
that the open circuit voltage will in reality be lower than the 
theoretical value. Activation polarization Vact is neglected in 
this model. The losses include ohmic polarization and 
concentration polarization. The second term of Eq. (99) 
quantifies ohmic losses associated with electric resistance of 
electrodes and flow resistance of ions through the electrolyte. 
The third term refers to mass transport losses. Quantity iL is the 
particular current arising when the fuel is consumed in the 
reaction with the maximum possible feed rate. For comparison, 
the data of Zhao, Ou and Chen, [18], are shown in Fig. 7. 
 

 
 
Fig. 7. Data of the cell voltage, polarizations, and power density in 
terms of current density for a fuel cell using hydrogen (97% H2 + 3% 
H2O) as fuel and air (21% O2 + 79% N2) as oxidant (Zhao, Ou and 
Chen [18]), consistent with the data of Wierzbicki, [19]. 

XII.  FINAL REMARKS   

The present paper provides the unifying thermodynamic 
method for determining power production limits in energy 
systems. These limits are enhanced in comparison with those 
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predicted by the classical thermodynamics. As opposed to the 
classical thermodynamics, these bounds depend not only on 
changes of the thermodynamic state of participating resources 
but also on process irreversibilities, ratios of stream flows, 
stream directions, and mechanism of heat and mass transfer.  

To understand the problem of bounds and their distinction 
for the work production and consumption, recall that the work-
producing process is the inverse of the work-consuming 
process (the final state of the second process is the initial state 
of the first, and conversely), when durations of the two 
processes and their end states are fixed to be the same.  

In thermostatics the two bounds on the work, the bound on 
the work produced and that on the work consumed, coincide. 
However thermostatic bounds are often too far from reality to 
be really useful. The generalized bounds, obtained here by 
solving HJB equations, are stronger than those predicted by 
thermostatics. They do not coincide for processes of work 
production and work consumption; they are 'thermokinetic' 
rather than 'thermostatic' bounds. Only for infinitely long 
durations or for processes with excellent transfer (an infinite 
number of transfer units) the thermokinetic bounds reduce to 
the classical thermostatic bounds. 

A real process which does not apply the optimal protocol 
but has the same boundary states and duration as the optimal 
path, requires a real work supply that can only be larger than 
the finite-rate bound obtained by the optimization. Similarly, 
the real work delivered from a nonequilibrium work-producing 
system (with the same boundary states and duration but with a 
suboptimal control) can only be lower than the corresponding 
finite-rate bound. Indeed, the two bounds, for a process and its 
inverse, which coincide in thermostatics, diverge in 
thermodynamics, at a rate that grows with any index 
quantifying the process deviation from the static behavior, e.g. 
Hamiltonian H. For sufficiently high values of rate indices 
(large H), work consumed may far exceed the classical work; 
work produced can be much lower than classical or even 
vanish.  

Functions of optimal work obtained via optimization are 
generalizations of the classical exergy, [20], for the case of 
imperfect (dissipation–involving) downgrading and utilization 
of resources. The generalized exergy in processes departing 
from the equilibrium (resource relaxation, downgrading) is 
larger than the one in processes approaching the equilibrium 
(resource utilization, upgrading). This property emerges 
because one respectively adds or subtracts the product of Te 
and entropy production in equations describing the generalized 
availability. Limits for mechanical energy yield or 
consumption provided by exergies A are always stronger than 
those defined by the classical exergy. Thus, in both modes, 
generalized exergies provide enhanced bounds in comparison 
with those predicted by classical exergy.  

In the realm of fuel cells these issues are relatively fresh but 
there is a potential of implementing them especially in 
connection with control problems [21, 22]. Electrochemical 
systems and particularly fuel cells are especially important in 

this context by virtue of their inherently clean, efficient, and 
reliable performance. The methodology extending that familiar  
for the classical thermal machines has also been extended to 
the complex multi-component and multi-reaction chemical 
engines, [17].   

XIII.  CONCLUSION 

Clearly, with thermokinetic models, we can confront and 
surmount the limitations of applying classical thermodynamic 
bounds to real processes. The consequence are enhanced  
power limits, stronger than those of classical thermodynamics. 
This is a direction with many open opportunities, especially 
for separation and chemical systems. More information related 
to power limits in energy systems can be found in our earlier 
papers [9, 23] and in the book [11]. A challenging extension is 
also the optimization of the fuel cell–heat engine hybrid 
systems [24]. 

NOMENCLATURE 

Av generalized exergy per unit volume [Jm-3] 
⊥A surface area perpendicular to flow [m2]  

a temperature power exponent in kinetic equation [-] 
a0=4σ/c constant related to the Stefan-Boltzmann constant [Jm-

3K-4] 
av total area of energy exchange per unit volume [m-1] 
E0, E0 Nernst ideal voltage and idle run voltage, respectively 
[V] 

G& resource flux [gs-1, mols-1]  
g1, g  partial and overall conductance [Js-1K -a] 
f0, fi  profit rate and process rates 
H Hamiltonian function 
HTU height of transfer unit [m] 
h numerical value of Hamiltonian [Jm-3K-1] 
h, hv specific and volumetric enthalpies [Jg-1, Jm-3] 
i-electric current density [Am-2] 
n flux of fuel reagents [gs-1, mols-1] 
p = W& power output [Js-1] 

0
mp molar constant of photons density [molm-2K -3s-1] 

q heat flux between a stream and power generator [Js-1] 
Q total heat flux involving transferred entropies [Js-1] 
S, Sσ  entropy and entropy produced [JK-1] 
∆S1’ entropy change of circulating fluid along isotherm T1’  
∆S2’ entropy change of the circulating fluid along isotherm T2’ 
s, sv specific and volumetric entropy [JK-1g-1, J K-1m-3] 
T variable temperature of resource [K] 
T1, T2 bulk temperatures of reservoirs 1 and 2 [K] 
T1’, T2’ temperatures of circulating fluid (Fig.1) [K] 
Te constant temperature of environment [K] 
T′Carnot temperature control [K],  
T& = u rate of control of T in non-dimensional time [K] 
t physical time [s] 
u and υ  rate controls, dΤ/dτ and dT/dt, [K, Ks-1] 
V voltage, maximum work function, resp.[V, Jmol-1]  
v velocity of resource stream [ms-1] 
W work produced, positive in engine mode [J] 
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w specific work at flow or power per unit flux of a resource 
[J/mol] 
x mass fraction [-], length coordinate [m] 
z adjoint variable 
  
Greek symbols 
α1, α‘ partial and overall heat coefficients referred to 
respective cross-sections [Jm-2s-1K-1] 
β effective coefficient of radiation transfer related to molar 

constant of photons density0mp  and Stefan-Boltzmann 

constant of radiation; 1−01−= )( mhv pcaσβ [s-1] 

ε total energy flux, conservative along a conductor [Js-1] 
η = p/q1 first-law thermal efficiency [-] 
χ = ρcv(α’av)

-1 time constant assuring the identity of ratio t/χ 
with number of transfer units [s] 
µ chemical potential [Jmol-1] 
µ ′ Carnot chemical potential [Jmol-1] 

Φ  factor of internal irreversibility [-] 
σ Stefan-Boltzmann constant for radiation  [Jm-2 s-1K -4] 
σs entropy production of the system [JK-1s-1] 
ξ intensity index [-] 
ζ chemical efficiency [-]  
τ dimensionless time or number of transfer units [-] 
 
Subscripts 
C Carnot point 
m molar flow 
v per unit volume 
1,2 first and second fluid 
0 idle run voltage 
 
Superscripts 
e environment 
i  initial state 
f initial state 
0 ideal (equilibrium) voltage 
 
Abbreviations 
CNCA Chambadal-Novikov-Curzon-Ahlborn engine 
HJB Hamilton-Jacobi-Bellman 
HJ Hamilton Jacobi equation. 
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