
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:9, 2010

1395

Abstract—A new conceptual architecture for low-level neural

pattern recognition is presented. The key ideas are that the brain
implements support vector machines and that support vectors are
represented as memory patterns in competitive queuing memories. A
binary classifier is built from two competitive queuing memories
holding positive and negative valence training examples respectively.
The support vector machine classification function is calculated in
synchronized evaluation cycles. The kernel is computed by bi-
symmetric feed-forward networks feed by sensory input and by
competitive queuing memories traversing the complete sequence of
support vectors. Temporary summation generates the output
classification. It is speculated that perception apparatus in the brain
reuses structures that have evolved for enabling fluent execution of
prepared action sequences so that pattern recognition is built on
internalized motor programmes.

Keywords—Competitive queuing model, Olfactory system,
Pattern recognition, Support vector machine, Thalamus

I. INTRODUCTION
HE perception systems of higher vertebrates include
trainable pattern recognition functions that work reliably
and flexibly in a wide range of contexts. One single

exposure is often sufficient for learning a new significant
pattern [1]. Pattern recognition skills are quite stable even if
not rehearsed and in spite of intervening learning of unrelated
classifications. Although the processing speed of biological
neural systems is comparatively low, low-level pattern
recognition is typically performed within a few hundred
milliseconds e.g. the duration of a sniff cycle in the olfactory
system [2]. The behavior of natural pattern recognition
systems is hence qualitatively different from that of feed-
forward artificial neural networks where one-shot learning is
difficult and training examples must be reviewed frequently to
avoid overwriting of established skills.
 Reference [3] conjectures that low-level pattern recognition
systems in the brain implements support vector machines
(SVM) of a specific type (zero-bias ν-SVM). The core of this
scheme is that support vectors are memory patterns in a
randomly oscillating associative memory and that
classifications are computed by temporal integration in a feed-
forward pathway in which inputs are provided by external
sensors and by a stream of support vector patterns from the

M. Jändel is with the Swedish Defence Research Agency, SE-164 90,

Stockholm, Sweden (phone: +46 709277264; fax: +46 855503700; e-mail:
magnus@jaendel.se).

This work was supported by the Swedish Foundation for Strategic
Research.

oscillating associative memory. This model supports one-shot
learning and that once established skills are stable without
rehearsal. An interesting architectural match between neural
zero-bias ν-SVM and the olfactory system is described in [3].
Gross oscillatory patterns in the brain are also reproduced by
the model. The zero-bias ν-SVM model is moreover proposed
as a model for burst behavior in the thalamocortical system
[4].
 In spite of intriguing correspondences to brain systems,
there are several problems with the zero-bias ν-SVM
approach.
A) Excluding the bias factor in the SVM classification
function reduces generalization performance as discussed in
[3]. It is, however, very difficult to find a biologically
believable realization of biased ν-SVM using one single
support vector memory unit.
B) Temporal integration over randomly sampled support
vectors converges rather slowly to the required classification
function. This means that only ~10 support vectors can be
used under biologically realistic conditions.
C) Given the wide scope of pattern recognition tasks in natural
circumstances it appears to be extravagant to build a dedicated
pattern recognition machine with stored support vectors for
each classification context. It would be more efficient to reuse
training examples for many different tasks. The zero-bias ν-
SVM model appears, however, to require a specific collection
of support vectors for each task.
 The present paper suggests a new model that preserves the
match to brain architecture and dynamics that was found in [3]
and [4] but resolves the three problems that plagues the zero-
bias ν-SVM model.

 It is found that biased ν-SVM can be implemented using
separate banks of memory for support vectors with different
valence.
 The convergence problem is alleviated by employing
competitive queuing memory for storing support vectors. The
ability to precisely repeat a time series of patterns is exactly
what is needed for optimal convergence of the neural SVM
classification calculation. This capability is also needed for
skilled motor behavior so it is conjectured that the same basic
machinery is used both for perception and for action.

 Using different banks of competitive queuing memory for
support vectors with different valence also solves the
specialization problem since it enables flexible combinations
of training examples for different pattern recognition tasks.

M. Jändel

Pattern Recognition as an
Internalized Motor Programme

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:9, 2010

1396

 Although the objective of this paper is to launch a new
biologically relevant model of low-level pattern recognition in
the brain, a high level architectural model will be used and the
style of the description will be slanted to engineering rather to
biology. The match to brain systems for models of this type is
discussed in [3] and [4] and evolutionary aspects are covered
in [5]. Here we will focus on elucidating the overall structure
of the neural biased ν-SVM model.
 The structure of the paper is as follows. A high-level model
of competitive queuing memory is defined in section II.
Section III describes ν-SVM including a novel training
algorithm that is optimized for the purpose of implementation
with bi-symmetric competitive queuing memory. The neural
implementation is described in section IV with subsections for
architecture, classification, one-shot learning of new training
examples, learning of optimal weights and bias learning.
Section V concludes the paper with discussion of biological
feasibility and possible extensions.

II. COMPETITIVE QUEUING MEMORY
A basic skill underlying purposeful motor behavior is the

ability to express a sequence of actions according to a pre-
prepared plan. There are two main approaches to learning and
reproducing action sequences: recurrent network architectures
[6] [7] [8] and competitive queuing models [9][10][11].
Bullock [12] argues that competitive queuing models are used
in the brain as a basic architectural component for producing
complex skilled actions. The present paper will speculatively
apply competitive queuing to trainable pattern recognition.
The main reason for using competitive queuing memory rather
than recurrent network models is the one-shot learning
capacity of the former approach.
 We shall use an abstract high-order model for a competitive
queuing memory (CQM) as shown in Fig. 1. The CQM
consists of a memory layer and a choice layer. The memory
layer holds m* patterns xi (i=1, 2, … m*) that in the following
is understood to be real-valued vectors. Each memory pattern
has an associated activation level αi that also will be called the
weight of the pattern. Weights are positive real numbers and
cannot exceed a maximum value. The CQM is turned on by a
reset signal and the choice layer outputs the memory pattern
with the highest weight for a time that is proportional to the
weight. The selected pattern is then inhibited and the choice
layer selects the memory pattern with the next highest weight
to be displayed for at time that again is proportional to the
weight of the selected pattern. At the end of this period the
active pattern is inhibited and the memory pattern with the
third highest weight is selected and so on. The CQM will
hence transverse the stored memory patterns until all patterns
with non-zero weights have been displayed.
 A training interface can adjust the value of a weight which
means that all the other weights also are modified with a
constant amount so that the sum of weights is conserved. It is
also possible to inject a new memory pattern into the CQM.
The initial weight of new memory pattern is set to zero. The
sum of the weights is hence a constant. This means that the

total time for displaying the complete sequence of patterns
also is constant.

Fig. 1 Competitive queuing memory (CQM). The choice layer selects
and outputs the memory pattern xi with the highest activation level αi
for at time proportional to the activation level. Selected patterns are
inhibited after presentation so that the CQM traverses all memory
patterns with non-zero activation level.

 Note that some competitive queuing models [9] [13]- [15]
redistribute the activity level after each iteration so that the
activity of not yet selected patterns increases for each
iteration. The present model avoids such redistribution thus
keeping the activity level of patterns constant until they are
selected, displayed for the allotted time and then quenched
until the reset signal restores the original value.
 Reference [12] presents considerable evidence that the brain
uses competitive queuing for learning and expressing motor
action sequences and that this mechanism underlies skilled
fluent behavior including drawing, speech and musical
expression. Recent electrophysiological support for the
competitive queuing model is found in [16]. In the following
we will apply the present abstract model to one-shot trainable
pattern recognition in the brain leading up to the proposition
that nature employs competitive queuing for both perception
and action.

III. SUPPORT VECTOR MACHINE DEFINITION AND SOLUTION
 We shall consider an algorithm for binary classification in
which the valence { 1, 1}y ∈ + − of a test sample x is found by
generalizing from a training set consisting of examples (xi, yi)
where i=1,2, … m. Bold letters signify vectors, xi is a real-
valued vector and yi is the correct classification.
 A support vector machine (SVM) [17] implicitly performs a
non-linear projection of input vectors x to a high-dimensional
feature space. The classifier is a hyperplane in feature space
that with maximum margin separates examples with positive
valence from examples with negative valence. Regular
support vectors are training examples that sit right on the
margin and thus define the hyperplane. Soft-margin SVMs
allow outlier support vectors to violate margins so that the
classifier can handle noisy training sets. Model parameters

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:9, 2010

1397

control the balance between accuracy and generalization
performance.
 The ν-SVM is a soft-margin SVM in which a single
parameter 0 1ν< < controls the generalization ability [18].
For a set of m training examples ν-SVM is solved by
maximizing the dual objective function

, 1

1W() K(,)
2

m

i j i j i j
i j

y y α α
=

= − ∑α x x (1)

where K is the positive definite kernel function that defines
the implicit projection to feature space. Each training example
(xi, yi) is associated with a weight ai and W is maximized with
respect to α under the three constraints

10 i m
α≤ ≤ , (2)

1

m

i
i

α ν
=

≥∑ (3)

and

1
0

m

i i
i

y α
=

=∑ . (4)

Chang and Lin [19] demonstrated that there in general exists
an optimal solution in the α-space hyperplane,

1

m

i
i

α ν
=

=∑ , (5)

so that the tighter constraint (5) can replace (3).
 There are no false optima since equation (1) is quadratic
with respect to α and the optimum is sought for in the α-space
hyperplane that is defined by the constraints. Once an optimal
solution has been found, inputs x can be classified as having
negative valence if f(x) < 0 and positive valence if f(x) ≥ 0
using the classification function

1
() K(,)

m

i i i
i

f y bα
=

= +∑x x x (6)

where b is a bias parameter. Section IV E describes how the
optimal value of b is found. Note that the constraint (4) is
removed if b is set to zero as in the zero-bias ν-SVM [3]. The
classification margin is defined as M(x) = y f(x). For future
use we also define the function

1
() () K(,)

m

i i i
i

h f b y α
=

= − = ∑x x x x . (7)

 So far we have briefly reviewed the basics of the ν-SVM
problem. To prepare for the neural implementation some
further notation and a special solution method will be
introduced. We are aiming for a neural architecture in which
training examples with different valence are held in different
neural structures. We note therefore that the constraints (4)
and (5) can be written

1 1
(1,) (1,)

2

m m

i i i i
i i

y y νδ α δ α
= =

= − =∑ ∑ (8)

where the Kronecker delta function is defined as,
1, if ´

(,́)
0, if ´

y y
y y

y y
δ

 =⎧
= ⎨ ≠⎩

 . (9)

 Because of the benign quadratic nature of the ν-SVM
problem we can solve it by gradient ascent. The weight vector
α is initiated as an arbitrary point in the α-space hyperplane
given by the constraints (2), (4) and (5). For simplicity we
shall refer to this hyperplane as the constraint hyperplane. We
will define a learning rule that keeps the weight vector in the
constraint hyperplane while moving it towards the optimum of
W. Since the goal is to handle training examples with positive
and negative valence separately there will eventually be one
learning rule for each of these categories.
 The weight vector must move in the direction that is defined
by the projection of the gradient of W(α) in the constraint
hyperplane. The i:th component of U=grad(W) is

1

WU K(,) ()
m

i i j j i j i i
ji

y y y hα
α =

∂
= = − = −

∂ ∑ x x x . (10)

 To find the projection of U in the constraint hyperplane we

first define the normals 1 (1,1,...,1)A m
=e and

1 2
1 (, ,...,)B my y y
m

=e of the hyperplanes (5) and (4)

respectively. An orthonormal base 1 2(,)e e spanning the sub-
space defined by Ae and Be is given by 1 A=e e and

2 2

ˆ

ˆ1
B Ay

y

−
=

−

e e
e where

1

1ˆ
m

i
i

y y
m =

= ∑ is the average valence.

 The projection Ũ of U=grad(W) on the constraint
hyperplane is,

1 1 2 2() ()= − ⋅ − ⋅U U U e e U e e% . (11)
The i:th component of Ũ evaluates to

2

ˆ ˆˆ ˆ ˆˆU U ()
ˆ1

i
i i

y y
U U yU

y
−

= − − −
−

% (12)

where Û is the average value of Ui,

1

1ˆ U
m

i
i

U
m =

= ∑ , (13)

and ˆ̂U is the first moment of Ui with respect to y

1

1ˆ̂ U
m

i i
i

U y
m =

= ∑ . (14)

 The gradient ascent learning rule for reaching the maximum
of (1) is that the weight vector incrementally is updated
according to

η← +α α U% (15)
where η is a sufficiently small learning rate. Since we are
aiming for an architecture in which examples with positive
and negative valence are handled by different physical units
we shall need separate learning rules for positive and negative
examples. For an example i with positive valence (12)
simplifies to

ˆU Ui i U+= −% (16)
where the second term averages only over positive valence
examples,

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:9, 2010

1398

1

1ˆ (1,y)U
m

i i
i

U
m

δ+
=+

= ∑ . (17)

The number of positive valence examples is m+ and the
number of negative valence examples is m− so
that m m m+ −+ = . Correspondingly we get for examples with
negative valence

ˆU Ui i U−= −% , (18)
with the second term averaging over negative valence
examples,

1

1ˆ (-1,)U
m

i i
i

U y
m

δ−
=−

= ∑ . (19)

 Note that (16) and (18), for a fully trained SVM, enforce a
partitioning of the training examples into three parts
depending on the value of U ()i i iy h= − x .

 Trivial examples have *
ˆUi U< so that U 0i <% . The index *

is here shorthand for + or – according to the valence of the
example. The learning rule (15) forces αi to zero so that trivial
examples give no contribution to classifications.

Fig. 2 Training example types in a soft margin support vector
machine. Closed symbols are positive valence training examples and
open symbols are negative valence training examples. A fully trained
soft margin SVM divides the training examples in three groups:
regular support vectors, outlier support vectors and trivial examples.

 Soft margin classifiers allow some training examples to
violate margins. Such outlier support vectors have

*
ˆUi U> and hence U 0i >% so that the learning rule pushes the

corresponding weight to the maximum value 1/i mα = .
 The remaining group of examples forms the regular support
vectors with weights falling in the intermediate
range 0 1/i mα< < . Such stable intermediate weights require

that U 0i =% and hence that U ()i i iy h= − x is equal for all
regular support vectors belonging to the same valence group.
In section III E we will use this result in the bias computation.

IV. NEURAL IMPLEMENTATION

A. Architecture
Fig. 3 shows the full architecture of the proposed neural

implementation of a ν-SVM.
Sensors capture signals from the external world and provide

a continuously updated sensory vector x´´(t) where t is time.
The Switch selects between sensory input and internal

signals carrying recalled training examples depending on if
the system is in the classification mode or the training mode. It
provides the input vector x´(t) to the Trap.

The Trap is a piece of sensory memory that periodically
captures a snapshot of the input vector x´(t) and holds the
trapped copy x as a stable input for the downstream system.

The core of the classification engine is bi-symmetric. Each
bi-symmetric part includes a competitive queuing memory
(CQM) for storing and recalling training examples and a unit
for computing the SVM kernel. Training examples are
typically support vectors as explained in section IV D. The
upper part of the system in Fig. 3 handles training examples
with negative valence whereas the lower part handles training
examples with positive valence. The meaning of positive and
negative from the point of view of the organism depends on
the context. In a food search situation positive valence could
e.g. mean edible and negative valence mean not edible.
 Signals from the bi-symmetric parts come together in the

Integrator where
1

K(,)
m

i i i
i

y α
=
∑ x x is computed. The Bias unit

adds the factor b and outputs the classification function.
The cyclic operation of the system is synchronized by a

clock signal that marks the beginning of each evaluation or
training cycle. The system performs four main functions:

1) Classification in which it evaluates sensory input
2) Surprise learning in which it learns new training examples
3) Importance learning in which it learns the optimal SVM
 weights
4) Bias learning in which it learns the optimal bias factor

The detailed operation and functions of the system and its
parts will be explained by describing each process in turn.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:9, 2010

1399

Fig. 3 Architecture of a neural ν-SVM system. Boxes are system
parts. Ovals are surrounding systems. Sensors provide raw sensory
input. Higher-order brain systems (HOBS) receive classifications and
control the processes of the system. Dashed lines indicate
connections used only for training the system according to the
Surprise learning and the Importance learning processes. Solid lines
are connections used for the Classification process and on occasion
also for the learning processes. The clock symbol marks units that
receive the synchronization signal indicating the start of an
evaluation cycle.

B. Classification
The sensors provide a continuously updated sensory vector

x´´(t) where t is the current time. The Switch is, in the
classification mode, transparent for the sensory vector so the
Trap receives x´(t) = x´´(t). The system follows a cyclic
process in which each cycle is an evaluation period during
which a classification is performed. The length of the
evaluation period is Teval. Cued by a clock signal indicating the
start of a cycle at time t0, the Trap captures a snapshot x =
x´(t0) of the sensory input and holds this sample unchanged
for a full cycle. The next snapshot x = x´(t0+ Teval) is captured
at the beginning of the next evaluation period. This process is
repeated incessantly.

At the start of an evaluation cycle the CQM+ is reset by the
clock signal and starts outputting a series of training examples
with positive valence. As explained in section IV D these
examples are, for a fully trained system, the support vectors
with positive valence. The stored examples in the CQM
compete for the opportunity to be selected as described in
section II.

Each example xi is presented for an endurance time Ti that
is proportional to the corresponding SVM weight,

i iT cα= , (20)

where the factor c= 2Teval /ν is identical for both sides of the

bi-symmetric system since
1 1

(1,) (1,)
m m

eval i i i i
i i

T y T y Tδ δ
= =

= = −∑ ∑

(see also (8)). The endurance time is the physical
representation of SVM weight in the neural system. Note that

the upper limit according to the constraint (2) means that there
must be a corresponding maximal endurance time

max /T c m= . (21)
 The Kernel+ unit receives both the trapped sensory input x
and the present output x+ from CQM+. It computes the kernel
function K(x, x+) and forwards the result to the Integrator. The
Kernel units are feed-forward networks and require no
synchronization.
 The CQM- and the Kernel- mirror the operation of the
positive valence side. CQM- is triggered by the same clock
signal as CQM+ and cycles through the stored negative
valence training examples. The present output x- of the CQM-

and the sensory vector x are inputs to the Kernel- unit that
computes K(x, x-).
 The integrator calculates over an evaluation cycle

0

0

() (K (,) K (,))
trapt T

t

ch dt
+

+ + − −= −∫x x x x x (22)

where h is given by (7). Note that the contribution from the
positive valence side to (22) is excitatory whereas the
contribution from the negative valence side is inhibitory. Since
each of the CQM units cycles through the support vectors and
since each support vector is presented for a time i iT cα= we
conclude that the integral in (22) is proportional

to
1

K(,)
m

i i i
i

y α
=
∑ x x . The Integrator computes the core part of

the classification function.
 The Bias unit receives ch(x) from the Integrator adds cb and
outputs a signal that is proportional to the SVM classification
function

(()) ()c h b cf+ =x x . (23)
Note that sgn(cf(x))=sgn(f(x)) since c is a positive constant.
 This sub-section has demonstrated how the classification
process works assuming that the system is fully trained so that
the CQM units contain support vectors with optimal weights
and the Bias unit knows the correct value of b. The following
sections will focus on the training processes that achieve this.

C. Surprise Learning
The Surprise learning process collects relevant training

examples from the environment. Ideally it should load only
the support vectors into the CQM since trivial examples do
not contribute to classifications.

Consider a creature in an environment with several different
types of food and poison with distinctive scents. The olfactory
system of the life form is organized as the system shown in
Fig. 3 and is used for guiding the organism to find food and
avoid poison. The system should not store a memory of every
encounter with food or poison in the CQM units. It would
quickly fill up memory space with trivial examples that
contribute little to pattern recognition performance. The more
proficient the animal becomes in finding its normal food, the
more will trivial examples dominate in the flow of odors. It
needs some filtering scheme for only imprinting odors that are

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:9, 2010

1400

good support vector candidates.
A viable strategy is to only register surprises where a

surprise is defined as a misclassified input. Such inputs are
likely to be close to the classification boundary and are hence
good support vector candidates. Note that regular support
vectors are borderline cases that sit right on the margin (see
Fig. 2). Infant organisms would be poor at recognizing food
and starts with a series of dangerous experiment where
various objects are eaten. Poison will taste bad and make the
life form sick thus constituting a surprise with negative
valence. Occasionally the animal classifies edible stuff as
poison and watches how more proficient mates devours the
food. That will be a surprise with positive valence. Note that
higher-order systems assist the SVM classifier in inferring the
valence of surprises. Accumulating surprises provides the
creature with an increasingly relevant set of support vector
candidates. A major advantage with this learning mode is that
relevant experiences are loaded into the CQM mode
immediately thus providing a mechanism for one-shot
learning.

A new training example, that just has been acquired by
surprise learning, is put into the CQM with some initial
endurance time. This time could in a complex life form
conceivably be proportional to the emotional intensity of the
event. In the following we will simply assume that the initial
endurance time is zero so that the system is stable when
acquiring new training examples.

D. Importance Learning
A surprise learning episode leaves the system in a sub-

optimal state in which the SVM weight vector is detached
from the optimum as defined by the solution of the ν-SVM
problem according to section III. To reinstate optimal pattern
recognition performance, the system should apply the gradient
ascent procedure in which the weights repeatedly are updated
according to the learning rule defined by (15) - (19). In this
sub-section we will discuss SVM weights while remembering
that the endurance times represent the weights according to
the proportionality relation (20).

 There are several possible algorithms for implementing ν-
SVM gradient ascent in the present architecture, one of which
will be presented here. The following general aspects are
shared by workable methods.

I) Inputs from the external world are replaced by training
examples evoked from the CQM units. The Switch shuts out
the sensory input and locks on inputs from one of the CQMs.
The organism is hence incapacitated during this process. A
reasonable assumption is that importance learning is
performed in sleep. Replacing sensory input with memories
bears some similarity to dreaming. Philosophers of the mind
have for a very long time suspected that dreaming is related to
off-line learning and memory consolidation [20]. We should,
however, be careful to draw this analogy too far since there
are many competing theories of dreaming and low-level
perceptual learning in sleep might not be associated with

dreaming.
II) The Trap and the feed-forward classification process

work precisely as in the waking state but the resulting
classification is disconnected from the action system. If e.g. a
positive valence training example of food scent is recalled and
put into the Trap, this will not cause actual feeding behavior.
This is analogous to sleep paralysis in REM sleep.

III) The learning rule applied to either of the CQM units
redistributes the endurance time (SVM weight) over the stored
patterns but keeps the sum of endurance times in the CQM
constant. This is a property of the competitive queuing model
and is also consistent with the constraints (4) and (5) as
expressed in (8). The learning rules (16) and (18), where the
Ui term is balanced by the average of the same term for all
memory patterns in the CQM, respect the conservation of the
sum of weights in the CQM.

The details of the Importance learning algorithm will now
be explained. The Switch receives the presently displayed
training examples +x and −x from the CQM+ and the CQM-
respectively. At a uniformly distributed random time in the
evaluation cycle, the Switch locks on one of these input
vectors. The positive and negative valence input is selected
with equal probability. The chosen training example is
forwarded to the Trap and the valence of the selection is sent
to both of the CQM units. The result is that the Switch is
opaque for sensory input and outputs training examples xj
randomly selected according a distribution i ip κα= where

κ=1/ν.
 The Trap operates just as in the waking state. At the
beginning of each evaluation cycle it locks on the output of
the Switch. The net result is that the Trap for the duration of
each evaluation cycle outputs a training example xj randomly
selected from the distribution i ip κα= .
 Each of the CQM units applies the same learning rules once
for each selected memory pattern:

* (,)i i j i jy y Kα α η← − x x (24)

* (,)
*k k j i jk y y K

m
ηα α∀ ← + x x (25)

where * means either + or -. Note that xj is the example held
by the Trap for the duration of the evaluation cycle whereas xi
is the currently displayed example of the CQM. The CQM
receives the valence yj of the trapped example from the Switch
and stores it for the duration of the evaluation cycle (see Fig.
3). The learning rule (24) is applied only to the presently
displayed example and the learning rule (25) is applied to all
training examples stored by the CQM. The training of the bi-
symmetric CQMs is hence disconnected, the only link being
that they both use the same input example xj.
 We shall now demonstrate that the learning rules (24-25)
implements ν-SVM gradient ascent according to (16) and (18)
respectively. For this purpose we consider the average change

sαΔ of the weight of a specific training example with index s
during one evaluation interval. The averaging is performed

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:9, 2010

1401

with respect to the probability distribution of examples in the
Trap.
 The learning rule (24) modifies the selected weight once per
evaluation interval with the average result

1
1

* (,)
m

s j j s j s
j

y y p K Uα η κη
=

Δ = − =∑ x x (26)

where Us is given by (10).
 The learning rule (25) modifies the selected weight m* times
per evaluation interval with a result that averages to

2
1 1

*
1

1 (*,) * (,)
*

1 ˆ(*,)
*

m m

s k j j k j
k j

m

k k
k

y y y y p K
m

y y U U
m

α η δ

ηκ δ κη

= =

=

Δ = =

− = −

∑ ∑

∑

x x
 (27)

where *Û is given by (17) for the positive valence CQM and
by (19) for the negative valence CQM. The Kronecker delta in
(27) is defined according to (9).
 Combining the contributions from learning rules (24) and
(25) we get 1 2 *

ˆ()s s s sU Uα α α κηΔ + Δ = Δ = − showing that

the learning rules implement ν-SVM gradient ascent
according to (16) and (18). This means that weights of trivial
examples vanish asymptotically so that the effective optimized
training example population consists only of support vectors.

E. Bias Learning
In section IV B we assumed that the Bias unit adds the correct
bias b to the output h(x) of the Integrator thus finalizing the
computation of the classification function f(x) = h(x) + b. The
Bias unit must, however, learn the proper value of b. This is
done in the sleeping state in which the Integrator for each
evaluation cycle produces an output ch(xj) where xj is a
training example selected randomly according to the pj=καj
distribution.
 The algorithm for computing the bias is quite simple in the
special case where all training examples are regular support
vectors. The bias unit could just compute the average value
<ch>=-b of the input ch(xj) and output cf(x)= ch(x)- <ch>. The
reason for this is that all regular support vectors with positive
valence have the same value h+

 of h(x) whereas all regular
support vectors with negative valence have the same value h-

of h(x) (see section III). The constraint (8) ensures that
positive valence support vectors and negative valence support
vectors carry the same statistical weight so that

1 1() ((()) (()))
2 2

ch c h h c f b f b cb+ − + −< >= + = − + − = −x x

where +x and −x are any positive and negative valence
support vector respectively and () ()f f+ −= −x x because all
regular support vectors have the same margin.
 In the general case, the training examples include outliers as
well as regular support vectors. We assume, however, that the
regular support vectors are the majority of the training
example population. The Bias unit performs a clustering
computation with respect to the value of the input ch(xj). Two
clusters centered on the values ch+ and ch- are found. The

clusters are surrounded by scattered points corresponding to
outlier support vectors. The Bias unit computes the average

value 1 ()
2

ch c h h cb+ −< >= + = − of the centers of the clusters

and forms the output cf(x) by subtracting <ch> from the input.

V. DISCUSSION
Simulations show that the online learning strategy of

storing misclassifications as new training examples works
reliably for a wide range of problem types and SVM kernels.
Dropping trivial examples from the training set is also a robust
and proven strategy [21]. These methods are suboptimal since
using fewer training examples can only worsen classifications
but they save plenty of memory space. In the model we have
employed radical memory saving strategies. Nature may be
more or less generous with memory space.

The present system has the advantage of keeping the time
for generating a classification constant in spite of continuous
learning. Inserting more training examples in the CQMs
means that endurance times eventually rescale but the time for
performing pattern recognition remains constant. A
predictable time for generating classifications is obviously
useful for facilitating timely action and for building higher
order pattern recognition systems.

Handling negative numbers gracefully is always a problem
when applying mathematical models with positive and
negative numbers to brain systems. Neurons have excitatory
and inhibitory links and but these mechanisms lack the neat
symmetry of the mathematical concepts. Using separate
memories for training examples with different valence
provides a partial solution to this dilemma since the storage
location implicitly defines the valence of the examples. The
Integrator must, however, still deal with summation of
positive and negative terms by means of excitation and
inhibition.

A definite advantage of bi-symmetric competitive queuing
ν-SVM compared to the single-memory zero-bias ν-SVM is
that the population of training examples can be combined in
many different pattern recognition contexts. A CQM can store
one set of training examples and several different time
sequences. Each time sequence is represented by a set of
weights α, α´, α´´ … A given training example could be a
regular support vector in one set, a trivial example in a second
set and an outlier in a third set. Many different classifiers can
be realized using a restricted set of CQMs and training
examples by flexible pair wise combinations of CQMs and
appropriate selections of time sequences. This modularization
in reusable collections of training examples could also support
higher-order systems that control and configure lower-order
classifiers [22].

The neural biased ν-SVM model in section IV is intended
as a model of the brain but is described as a high-level
architecture without explicit relation to brain structures.
Mappings of the neural zero-bias SVM to biological neural

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:9, 2010

1402

systems are provided in [3] and [4] and apply largely also to
the present model. We shall here briefly review how the
biased ν-SVM compares to brain components, structures and
processes focusing on the olfactory system as an example. It
should be noted that the brain, according to the present
hypothesis, implements many different instances of neural
support vector machines each instance tailored for a specific
pattern recognition task.

The Sensors module in Fig. 3 corresponds to the olfactory
bulb where input from the primary chemical sensors are
compiled and stabilized.

The Switch forwards one of several inputs according to the
state of the system. This function is clearly implementable in
the brain. An example of a similar routing function is found in
the thalamic relay matrix [23]. The Trap is an abstraction of
sensory memory which is characteristic of all senses [24]. The
Switch and the Trap are, as argued in [3], found in the anterior
olfactory cortex that is known to receive signals both from the
olfactory bulb and broad retrograde connections from the
piriform cortex allowing odor memories from the piriform
cortex to be copied to the anterior olfactory cortex [25].

Biologically realistic neural models of competitive queuing
memory in the context of motor systems are discussed in [12].
It is a speculation of the present paper that CQM is employed
in perception. In the olfactory context, CQMs could be located
to the anterior piriform cortex that is known to resemble an
associative memory [25].

The Kernel units implement non-linear multi-input
functions and are hence readily built from neural hardware.
Feed-forward artificial neural networks with at least one
hidden layer can approximate any continuous multivariate
function with arbitrary accuracy [26]. SVM kernels should be
positive definite but even kernels that violate this requirement
may work well in practice [27]. Good pattern recognition
performance can, for many applications, be achieved with a
wide variety of kernels [28]. The kernel functions applied by
the Kernel+ and Kernel- nodes should be identical. Such
identical matching of brain structures might be difficult to
achieve because of the changeable nature of brain tissue. This
is a serious challenge for the present model and good reason
for also considering the single-memory model in [3]. The
neural basis for the Integrator function is temporal summation
[29]. The Bias unit performs effectively an unsupervised
clustering operation which is a quite feasibly function in
neural networks. For olfaction it appears that the feed forward
pathway consisting of the Kernels, the Integrator and the Bias
unit should be found in the posterior piriform cortex that
structurally mainly is a feed-forward network [25].

The present model includes a fast cycle in the CQMs and a
slow evaluation cycle. This is not unlike the oscillatory pattern
of the brain with high frequency cortical oscillations
combined with slower rhythms of the sensory systems. The
olfactory system exhibits e.g. a sniffing cycle [2], where each
cycle means that input scents are evaluated, combined with
faster oscillations in the piriform cortex [30]. Brain rhythms

in relation to support vector machine models are further
discussed in [3] and [4].
 Note that there is a rich literature on computational models
of the olfactory system with many established alternatives to
the present theory. References to competing models are found
in [4].

The present model shows an intriguing resemblance to the
competitive queuing account of motor action. Skilled motor
action is according to [12] characterized by:

- Motor programmes are memories of significant motor
sequences that are stored in CQMs.

- Higher-order systems initiate appropriate motor
programmes as needed.

- Output motor control signals are produced by blending
internal programmes with sensory inputs.

- Failure triggers discontinuous modifications of motor
programmes.

- Timing is optimized by repetitious training.
Trainable pattern recognition is according to the present

model characterized by:
- Support vectors are memories of significant sensory

inputs. Patter recognition is based on programmes of
support vectors.

- Higher-order systems initiate appropriate support
vector programmes as needed.

- Output classifications are created by blending internal
programmes with sensory inputs.

- Failure triggers discontinuous modifications of support
vector programmes.

- Programme timing is optimized by internal repetition.
The similarity between skilled motor action and trained

pattern recognition can speculatively be accounted for by
evolution reusing and adapting the same baseline neural
machinery for action and perception.

REFERENCES
[1] T. Teyke, “Food-attraction conditioning in the snail, Helix Pomatia.,” J.

Comp. Physiol, vol. A 177, pp. 409–414, 1995.
[2] F. Macrides, H. B. Eichenbaum, and W. B. Forbes, “Temporal

relationship between sniffing and the limbic θ -rhythm during odor
discrimination reversal learning,” J. Neurosci., vol. 2, pp. 1705–1717,
1982.

[3] M. Jändel, “A neural support vector machine,” Neural Networks, vol. 23,
pp. 607–613, 2010.

[4] M. Jändel, “Thalamic bursts mediate pattern recognition,” in Proc. 4th
International IEEE EMBS Conf. on Neural Engineering, 2009, pp. 562–
565.

[5] M. Jändel, “Evolutionary path to biological kernel machines,” in Proc.
of Brain Inspired Cognitive Systems, 2010, to be published.

[6] J. Elman, “Language processing,” in The Handbook Of Brain Theory
And Neural Networks, M. Arbib, Ed. MIT Press, 1995, pp. 508–512.

[7] P. F. Dominey, “Influences of temporal organization on sequence
learning and transfer,” J. Exp. Psychol. Learn. Mem. Cogn., vol. 24, pp.
234–248, 1998.

[8] J. L. Elman, “Finding structure in time,” Cognitive Science, vol. 14, pp.
179–211, 1990.

[9] S. Grossberg, “A theory of human memory: Self-organization and
performance of sensory-motor codes, maps, and plans,” in Progress in
Theoretical Biology, vol. 5, R. Rosen, and F. Snell, Eds. Academic
Press, 1978, pp. 233–374.

[10] G. Houghton, “The problem of serial order: A neural network

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:9, 2010

1403

model of sequence learning and recall,” in Current Research In Natural
Language Generation, R. Dale et al, Eds. Academic Press, 1990, pp.
287–319.

[11] D. Bullock, and B. Rhodes, “Competitive queuing for serial
planning and performance,” in Handbook of Brain Theory And Neural
Networks, M. Arbib, Ed. MIT Press, 2003, pp. 241–244.

[12] D. Bullock, “Adaptive neural models of queuing and timing in fluent
action,” Trends in Cognitive Sciences, vol. 8, no. 9, pp. 426–433, 2004.

[13] I. Boardman, and D. Bullock, “A neural network model of serial order
recall from short-term memory,” in Proceedings of the International
Joint Conference on Neural Networks, II, pp. 879–884, 1991.

[14] G. Bradski, G. A. Carpenter, and S. Grossberg, “STORE working
memory networks for storage and recall of arbitrary temporal
sequences,” Biol. Cybern., vol. 71, pp. 469–480, 1994.

[15] B. Rhodes, and D. Bullock, “Neural dynamics of learning and
performance of fixed sequences: Latency pattern reorganizations and the
N-STREAMS model,” Boston University Technical Report CAS/CNS-
02-007, 2002.

[16] B. B. Averbeck, M. V. Chafee, D. A. Crowe, and A. P. Georgopoulos,
”Parallel processing of serial movements in prefrontal cortex,” Proc. Natl.
Acad. Sci. U. S. A., vol. 99, pp. 13172–13177, 2002.

[17] N. Cristianini, and J. Shawe-Taylor, An introduction to support vector
machines and other kernel-based methods. Cambridge: Cambridge
University Press, 2000.

[18] B. Schölkopf, A. J. Smola, R. C. Williamson, and P. L. Bartlett, “New
support vector algorithms,” Neural Computation, vol. 12, pp. 1207–
1245, 2000.

[19] C-C. Chang, and C-J. Lin, “Training ν-support vector classifiers: theory
and algorithms,” Neural Computation, vol. 13, pp. 2119–2147, 2001.

[20] M. F. Quintilianus, Institutio Oratoria, Book XI, 95 (English translation
in The Orators Education, vol. 5, books 11-12, Loeb classical library).

[21] B. Schölkopf, and A. J. Smola, Learning with kernels. Cambridge MA:
MIT Press, 2002.

[22] H. J. Caulfield, and K. Heidary, “Exploring margin setting for good
generalization in multiple class discrimination,” Pattern Recognition,
vol. 38, pp. 1225–1238, 2005.

[23] S. M. Sherman, and R. W. Guillery, Exploring the thalamus and its role
in cortical function, 2nd ed., Cambridge, MA: MIT Press, 2006.

[24] A. D. Baddeley, Essentials of human memory. New York: Psychology
Press, 1999.

[25] L. B. Haberly, “Parallel-distributed processing in olfactory cortex: new
insights from morphological and physiological analysis of neuronal
circuitry,” Chem. Senses, vol. 26, pp. 551–576, 2001.

[26] G. Cybenko, “Approximations by superpositions of a sigmoidal
function,” Math. of Control, Signals and Syst., vol. 2, pp. 303–314,
1989.

[27] C. S. Ong, X. Mary, S. Canu, and A.J. Smola, “Learning with non-
positive kernels,” in Proc. of the 21st International Conference on
Machine Learning, 2004, pp. 81–89.

[28] B. Schölkopf, C. Burges, and V. Vapnik, “Extracting support data for a
given task,” in Proc. First Annual Conference on Knowledge Discovery
& Data Mining, 1995, pp. 252–257.

[29] D. Johnston, and S.M-S. Wu, Foundations of cellular neurophysiology.
Cambridge MA: MIT Press, 1995.

[30] L. B. Haberly, “Olfactory cortex,” in The synaptic organization of the
brain, 4th ed., G. M. Shepherd, Ed., Oxford: Oxford University Press,
1998, pp. 377–416.

