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Abstract—A new conceptual architecture for low-level neural 

pattern recognition is presented. The key ideas are that the brain 
implements support vector machines and that support vectors are 
represented as memory patterns in competitive queuing memories. A 
binary classifier is built from two competitive queuing memories 
holding positive and negative valence training examples respectively. 
The support vector machine classification function is calculated in 
synchronized evaluation cycles. The kernel is computed by bi-
symmetric feed-forward networks feed by sensory input and by 
competitive queuing memories traversing the complete sequence of 
support vectors. Temporary summation generates the output 
classification. It is speculated that perception apparatus in the brain 
reuses structures that have evolved for enabling fluent execution of 
prepared action sequences so that pattern recognition is built on 
internalized motor programmes. 
 

Keywords—Competitive queuing model, Olfactory system, 
Pattern recognition, Support vector machine, Thalamus 

I. INTRODUCTION 
HE perception systems of higher vertebrates include 
trainable pattern recognition functions that work reliably 
and flexibly in a wide range of contexts. One single 

exposure is often sufficient for learning a new significant 
pattern [1].  Pattern recognition skills are quite stable even if 
not rehearsed and in spite of intervening learning of unrelated 
classifications. Although the processing speed of biological 
neural systems is comparatively low, low-level pattern 
recognition is typically performed within a few hundred 
milliseconds e.g. the duration of a sniff cycle in the olfactory 
system [2]. The behavior of natural pattern recognition 
systems is hence qualitatively different from that of feed-
forward artificial neural networks where one-shot learning is 
difficult and training examples must be reviewed frequently to 
avoid overwriting of established skills. 
   Reference [3] conjectures that low-level pattern recognition 
systems in the brain implements support vector machines 
(SVM) of a specific type (zero-bias ν-SVM). The core of this 
scheme is that support vectors are memory patterns in a 
randomly oscillating associative memory and that 
classifications are computed by temporal integration in a feed-
forward pathway in which inputs are provided by external 
sensors and by a stream of support vector patterns from the 
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oscillating associative memory. This model supports one-shot 
learning and that once established skills are stable without 
rehearsal. An interesting architectural match between neural 
zero-bias ν-SVM and the olfactory system is described in [3]. 
Gross oscillatory patterns in the brain are also reproduced by 
the model. The zero-bias ν-SVM model is moreover proposed 
as a model for burst behavior in the thalamocortical system 
[4].  
    In spite of intriguing correspondences to brain systems, 
there are several problems with the zero-bias ν-SVM 
approach.  
A) Excluding the bias factor in the SVM classification 
function reduces generalization performance as discussed in 
[3]. It is, however, very difficult to find a biologically 
believable realization of biased ν-SVM using one single 
support vector memory unit.  
B) Temporal integration over randomly sampled support 
vectors converges rather slowly to the required classification 
function. This means that only ~10 support vectors can be 
used under biologically realistic conditions. 
C) Given the wide scope of pattern recognition tasks in natural 
circumstances it appears to be extravagant to build a dedicated 
pattern recognition machine with stored support vectors for 
each classification context. It would be more efficient to reuse 
training examples for many different tasks. The zero-bias ν-
SVM model appears, however, to require a specific collection 
of support vectors for each task. 
   The present paper suggests a new model that preserves the 
match to brain architecture and dynamics that was found in [3] 
and [4] but resolves the three problems that plagues the zero-
bias ν-SVM model.  

   It is found that biased ν-SVM can be implemented using 
separate banks of memory for support vectors with different 
valence.  
   The convergence problem is alleviated by employing 
competitive queuing memory for storing support vectors. The 
ability to precisely repeat a time series of patterns is exactly 
what is needed for optimal convergence of the neural SVM 
classification calculation. This capability is also needed for 
skilled motor behavior so it is conjectured that the same basic 
machinery is used both for perception and for action. 
 
   Using different banks of competitive queuing memory for 
support vectors with different valence also solves the 
specialization problem since it enables flexible combinations 
of training examples for different pattern recognition tasks. 

M. Jändel 

Pattern Recognition as an 
Internalized Motor Programme 
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   Although the objective of this paper is to launch a new 
biologically relevant model of low-level pattern recognition in 
the brain, a high level architectural model will be used and the 
style of the description will be slanted to engineering rather to 
biology. The match to brain systems for models of this type is 
discussed in [3] and [4] and evolutionary aspects are covered 
in [5]. Here we will focus on elucidating the overall structure 
of the neural biased ν-SVM model.  
    The structure of the paper is as follows. A high-level model 
of competitive queuing memory is defined in section II. 
Section III describes ν-SVM including a novel training 
algorithm that is optimized for the purpose of implementation 
with bi-symmetric competitive queuing memory. The neural 
implementation is described in section IV with subsections for 
architecture, classification, one-shot learning of new training 
examples, learning of optimal weights and bias learning. 
Section V concludes the paper with discussion of biological 
feasibility and possible extensions. 

II.  COMPETITIVE QUEUING MEMORY 
A basic skill underlying purposeful motor behavior is the 

ability to express a sequence of actions according to a pre-
prepared plan.  There are two main approaches to learning and 
reproducing action sequences: recurrent network architectures 
[6] [7] [8] and competitive queuing models [9][10][11]. 
Bullock [12] argues that competitive queuing models are used 
in the brain as a basic architectural component for producing 
complex skilled actions. The present paper will speculatively 
apply competitive queuing to trainable pattern recognition. 
The main reason for using competitive queuing memory rather 
than recurrent network models is the one-shot learning 
capacity of the former approach. 
   We shall use an abstract high-order model for a competitive 
queuing memory (CQM) as shown in Fig. 1. The CQM 
consists of a memory layer and a choice layer. The memory 
layer holds m* patterns xi (i=1, 2, … m*) that in the following 
is understood to be real-valued vectors. Each memory pattern 
has an associated activation level αi that also will be called the 
weight of the pattern. Weights are positive real numbers and 
cannot exceed a maximum value. The CQM is turned on by a 
reset signal and the choice layer outputs the memory pattern 
with the highest weight for a time that is proportional to the 
weight. The selected pattern is then inhibited and the choice 
layer selects the memory pattern with the next highest weight 
to be displayed for at time that again is proportional to the 
weight of the selected pattern. At the end of this period the 
active pattern is inhibited and the memory pattern with the 
third highest weight is selected and so on. The CQM will 
hence transverse the stored memory patterns until all patterns 
with non-zero weights have been displayed.  
   A training interface can adjust the value of a weight which 
means that all the other weights also are modified with a 
constant amount so that the sum of weights is conserved. It is 
also possible to inject a new memory pattern into the CQM. 
The initial weight of new memory pattern is set to zero. The 
sum of the weights is hence a constant. This means that the 

total time for displaying the complete sequence of patterns 
also is constant. 

 
Fig. 1 Competitive queuing memory (CQM). The choice layer selects 
and outputs the memory pattern xi with the highest activation level αi 
for at time proportional to the activation level. Selected patterns are 
inhibited after presentation so that the CQM traverses all memory 
patterns with non-zero activation level. 
 
   Note that some competitive queuing models [9] [13]- [15] 
redistribute the activity level after each iteration so that the 
activity of not yet selected patterns increases for each 
iteration. The present model avoids such redistribution thus 
keeping the activity level of patterns constant until they are 
selected, displayed for the allotted time and then quenched 
until the reset signal restores the original value.  
   Reference [12] presents considerable evidence that the brain 
uses competitive queuing for learning and expressing motor 
action sequences and that this mechanism underlies skilled 
fluent behavior including drawing, speech and musical 
expression.  Recent electrophysiological support for the 
competitive queuing model is found in [16].  In the following 
we will apply the present abstract model to one-shot trainable 
pattern recognition in the brain leading up to the proposition 
that nature employs competitive queuing for both perception 
and action. 

III.  SUPPORT VECTOR MACHINE DEFINITION AND SOLUTION 
   We shall consider an algorithm for binary classification in 
which the valence { 1, 1}y ∈ + − of a test sample x is found by 
generalizing from a training set consisting of examples (xi, yi) 
where i=1,2, … m. Bold letters signify vectors, xi is a real-
valued vector and yi is the correct classification. 
   A support vector machine (SVM) [17] implicitly performs a 
non-linear projection of input vectors x to a high-dimensional 
feature space. The classifier is a hyperplane in feature space 
that with maximum margin separates examples with positive 
valence from examples with negative valence.  Regular 
support vectors are training examples that sit right on the 
margin and thus define the hyperplane. Soft-margin SVMs 
allow outlier support vectors to violate margins so that the 
classifier can handle noisy training sets. Model parameters 
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control the balance between accuracy and generalization 
performance. 
   The ν-SVM is a soft-margin SVM in which a single 
parameter 0 1ν< <  controls the generalization ability [18]. 
For a set of m training examples ν-SVM is solved by 
maximizing the dual objective function 

, 1

1W( ) K( , )
2

m

i j i j i j
i j

y y α α
=

= − ∑α x x                       (1) 

where K is the positive definite kernel function that defines 
the implicit projection to feature space. Each training example   
(xi, yi) is associated with a weight ai and W is maximized with 
respect to α under the three constraints 
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Chang and Lin [19] demonstrated that there in general exists 
an optimal solution in the α-space hyperplane, 

1

m

i
i

α ν
=
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so that the tighter constraint (5) can replace (3).  
   There are no false optima since equation (1) is quadratic 
with respect to α and the optimum is sought for in the α-space 
hyperplane that is defined by the constraints. Once an optimal 
solution has been found, inputs x can be classified as having 
negative valence if  f(x) < 0 and positive valence if   f(x) ≥ 0 
using the classification function 

1
( ) K( , )

m

i i i
i

f y bα
=
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where b is a bias parameter. Section IV E describes how the 
optimal value of b is found. Note that the constraint (4) is 
removed if b is set to zero as in the zero-bias ν-SVM [3]. The 
classification margin is defined as M(x) = y f(x). For future 
use we also define the function 

1
( ) ( ) K( , )

m

i i i
i

h f b y α
=

= − = ∑x x x x .             (7) 

   So far we have briefly reviewed the basics of the ν-SVM 
problem. To prepare for the neural implementation some 
further notation and a special solution method will be 
introduced. We are aiming for a neural architecture in which 
training examples with different valence are held in different 
neural structures. We note therefore that the constraints (4) 
and (5) can be written 

1 1
(1, ) ( 1, )

2

m m
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i i
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= =
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where the Kronecker delta function is defined as, 
1, if ´

( ,́ )
0, if ´

y y
y y

y y
δ

  =⎧
= ⎨   ≠⎩

 .                 (9) 

   Because of the benign quadratic nature of the ν-SVM 
problem we can solve it by gradient ascent. The weight vector 
α is initiated as an arbitrary point in the α-space hyperplane 
given by the constraints (2), (4) and (5). For simplicity we 
shall refer to this hyperplane as the constraint hyperplane. We 
will define a learning rule that keeps the weight vector in the 
constraint hyperplane while moving it towards the optimum of 
W. Since the goal is to handle training examples with positive 
and negative valence separately there will eventually be one 
learning rule for each of these categories. 
   The weight vector must move in the direction that is defined 
by the projection of the gradient of W(α) in the constraint 
hyperplane. The i:th component of  U=grad(W) is 

1

WU K( , ) ( )
m

i i j j i j i i
ji
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∂
= = − = −

∂ ∑ x x x  .      (10) 

   To find the projection of U in the constraint hyperplane we 

first define the normals 1 (1,1,...,1)A m
=e and 

1 2
1 ( , ,..., )B my y y
m

=e  of the hyperplanes (5) and (4) 

respectively. An orthonormal base 1 2( , )e e spanning the sub-
space defined by Ae and Be is given by 1 A=e e  and  
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   The projection Ũ of U=grad(W) on the constraint 
hyperplane is, 

1 1 2 2( ) ( )= − ⋅ − ⋅U U U e e U e e% .                   (11) 
The i:th component of Ũ evaluates to 
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where Û is the average value of Ui, 

1

1ˆ U
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and ˆ̂U is the first moment of Ui with respect to y 

1

1ˆ̂ U
m

i i
i

U y
m =

= ∑ .                   (14) 

   The gradient ascent learning rule for reaching the maximum 
of (1) is that the weight vector incrementally is updated 
according to 

η← +α α U%                          (15) 
where η is a sufficiently small learning rate. Since we are 
aiming for an architecture in which examples with positive 
and negative valence are handled by different physical units 
we shall need separate learning rules for positive and negative 
examples. For an example i with positive valence (12) 
simplifies to 

ˆU Ui i U+= −%                     (16) 
where the second term averages only over positive valence 
examples, 
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The number of positive valence examples is m+ and the 
number of negative valence examples is m− so 
that m m m+ −+ = . Correspondingly we get for examples with 
negative valence 

ˆU Ui i U−= −%  ,                      (18) 
with the second term averaging over negative valence 
examples, 

1

1ˆ (-1, )U
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i

U y
m
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   Note that (16) and (18), for a fully trained SVM, enforce a 
partitioning of the training examples into three parts 
depending on the value of U ( )i i iy h= − x .    

   Trivial examples have *
ˆUi U< so that U 0i <% . The index * 

is here shorthand for + or – according to the valence of the 
example. The learning rule (15) forces αi to zero so that trivial 
examples give no contribution to classifications.  

 
 
Fig. 2 Training example types in a soft margin support vector 
machine. Closed symbols are positive valence training examples and 
open symbols are negative valence training examples. A fully trained 
soft margin SVM divides the training examples in three groups: 
regular support vectors, outlier support vectors and trivial examples. 
 
   Soft margin classifiers allow some training examples to 
violate margins. Such outlier support vectors have 

*
ˆUi U> and hence U 0i >% so that the learning rule pushes the 

corresponding weight to the maximum value 1/i mα = . 
    The remaining group of examples forms the regular support 
vectors with weights falling in the intermediate 
range 0 1/i mα< < . Such stable intermediate weights require 

that U 0i =% and hence that U ( )i i iy h= − x  is equal for all 
regular support vectors belonging to the same valence group. 
In section III E we will use this result in the bias computation. 

IV. NEURAL IMPLEMENTATION  

A.  Architecture 
Fig. 3 shows the full architecture of the proposed neural 

implementation of a ν-SVM.  
Sensors capture signals from the external world and provide 

a continuously updated sensory vector x´´(t) where t is time.   
The Switch selects between sensory input and internal 

signals carrying recalled training examples depending on if 
the system is in the classification mode or the training mode. It 
provides the input vector x´(t) to the Trap. 

The Trap is a piece of sensory memory that periodically 
captures a snapshot of the input vector x´(t) and holds the 
trapped copy x as a stable input for the downstream system. 

The core of the classification engine is bi-symmetric. Each 
bi-symmetric part includes a competitive queuing memory 
(CQM) for storing and recalling training examples and a unit 
for computing the SVM kernel. Training examples are 
typically support vectors as explained in section IV D. The 
upper part of the system in Fig. 3 handles training examples 
with negative valence whereas the lower part handles training 
examples with positive valence. The meaning of positive and 
negative from the point of view of the organism depends on 
the context. In a food search situation positive valence could 
e.g. mean edible and negative valence mean not edible.  
   Signals from the bi-symmetric parts come together in the 

Integrator where 
1

K( , )
m

i i i
i

y α
=
∑ x x  is computed. The Bias unit 

adds the factor b and outputs the classification function.  
The cyclic operation of the system is synchronized by a 

clock signal that marks the beginning of each evaluation or 
training cycle. The system performs four main functions: 

 
1) Classification in which it evaluates sensory input 
2) Surprise learning in which it learns new training examples 
3) Importance learning in which it learns the optimal SVM    
    weights 
4) Bias learning in which it learns the optimal bias factor 
 
The detailed operation and functions of the system and its 
parts will be explained by describing each process in turn. 
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Fig. 3 Architecture of a neural ν-SVM system. Boxes are system 
parts. Ovals are surrounding systems. Sensors provide raw sensory 
input. Higher-order brain systems (HOBS) receive classifications and 
control the processes of the system. Dashed lines indicate 
connections used only for training the system according to the 
Surprise learning and the Importance learning processes. Solid lines 
are connections used for the Classification process and on occasion 
also for the learning processes. The clock symbol marks units that 
receive the synchronization signal indicating the start of an 
evaluation cycle.  

 

B.  Classification 
The sensors provide a continuously updated sensory vector 

x´´(t) where t is the current time. The Switch is, in the 
classification mode, transparent for the sensory vector so the 
Trap receives x´(t) = x´´(t). The system follows a cyclic 
process in which each cycle is an evaluation period during 
which a classification is performed. The length of the 
evaluation period is Teval. Cued by a clock signal indicating the 
start of a cycle at time t0, the Trap captures a snapshot x = 
x´(t0) of the sensory input and holds this sample unchanged 
for a full cycle. The next snapshot x = x´(t0+ Teval) is captured 
at the beginning of the next evaluation period. This process is 
repeated incessantly. 

At the start of an evaluation cycle the CQM+ is reset by the 
clock signal and starts outputting a series of training examples 
with positive valence. As explained in section IV D these 
examples are, for a fully trained system, the support vectors 
with positive valence. The stored examples in the CQM 
compete for the opportunity to be selected as described in 
section II.  

Each example xi is presented for an endurance time Ti that 
is proportional to the corresponding SVM weight, 

i iT cα= ,                                       (20) 

where the factor c= 2Teval /ν is identical for both sides of the 

bi-symmetric system since 
1 1

(1, ) ( 1, )
m m

eval i i i i
i i

T y T y Tδ δ
= =

= = −∑ ∑  

(see also (8)). The endurance time is the physical 
representation of SVM weight in the neural system. Note that 

the upper limit according to the constraint (2) means that there 
must be a corresponding maximal endurance time 

max /T c m= .                         (21) 
   The Kernel+ unit receives both the trapped sensory input x 
and the present output x+ from CQM+. It computes the kernel 
function K(x, x+) and forwards the result to the Integrator. The 
Kernel units are feed-forward networks and require no 
synchronization. 
    The CQM- and the Kernel- mirror the operation of the 
positive valence side. CQM- is triggered by the same clock 
signal as CQM+ and cycles through the stored negative 
valence training examples. The present output x- of the CQM- 

and the sensory vector x are inputs to the Kernel- unit that 
computes K(x, x-). 
   The integrator calculates over an evaluation cycle 
 

0

0

( ) (K ( , ) K ( , ))
trapt T

t

ch dt
+

+ + − −= −∫x x x x x                               (22) 

where h is given by (7). Note that the contribution from the 
positive valence side to (22) is excitatory whereas the 
contribution from the negative valence side is inhibitory. Since 
each of the CQM units cycles through the support vectors and 
since each support vector is presented for a time i iT cα= we 
conclude that the integral in (22) is proportional 

to
1

K( , )
m

i i i
i

y α
=
∑ x x . The Integrator computes the core part of 

the classification function. 
   The Bias unit receives ch(x) from the Integrator adds cb and 
outputs a signal that is proportional to the SVM classification 
function 

( ( ) ) ( )c h b cf+ =x x .                            (23) 
Note that sgn(cf(x))=sgn(f(x)) since c is a positive constant. 
   This sub-section has demonstrated how the classification 
process works assuming that the system is fully trained so that 
the CQM units contain support vectors with optimal weights 
and the Bias unit knows the correct value of b. The following 
sections will focus on the training processes that achieve this. 

C.  Surprise Learning 
The Surprise learning process collects relevant training 

examples from the environment. Ideally it should load only 
the support vectors into the CQM since trivial examples do 
not contribute to classifications. 

Consider a creature in an environment with several different 
types of food and poison with distinctive scents. The olfactory 
system of the life form is organized as the system shown in 
Fig. 3 and is used for guiding the organism to find food and 
avoid poison. The system should not store a memory of every 
encounter with food or poison in the CQM units. It would 
quickly fill up memory space with trivial examples that 
contribute little to pattern recognition performance. The more 
proficient the animal becomes in finding its normal food, the 
more will trivial examples dominate in the flow of odors. It 
needs some filtering scheme for only imprinting odors that are 
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good support vector candidates. 
A viable strategy is to only register surprises where a 

surprise is defined as a misclassified input. Such inputs are 
likely to be close to the classification boundary and are hence 
good support vector candidates. Note that regular support 
vectors are borderline cases that sit right on the margin (see 
Fig. 2). Infant organisms would be poor at recognizing food 
and starts with a series of dangerous experiment where 
various objects are eaten. Poison will taste bad and make the 
life form sick thus constituting a surprise with negative 
valence. Occasionally the animal classifies edible stuff as 
poison and watches how more proficient mates devours the 
food.  That will be a surprise with positive valence. Note that 
higher-order systems assist the SVM classifier in inferring the 
valence of surprises. Accumulating surprises provides the 
creature with an increasingly relevant set of support vector 
candidates. A major advantage with this learning mode is that 
relevant experiences are loaded into the CQM mode 
immediately thus providing a mechanism for one-shot 
learning.  

A new training example, that just has been acquired by 
surprise learning, is put into the CQM with some initial 
endurance time. This time could in a complex life form 
conceivably be proportional to the emotional intensity of the 
event. In the following we will simply assume that the initial 
endurance time is zero so that the system is stable when 
acquiring new training examples. 

D.  Importance Learning 
A surprise learning episode leaves the system in a sub-

optimal state in which the SVM weight vector is detached 
from the optimum as defined by the solution of the ν-SVM 
problem according to section III. To reinstate optimal pattern 
recognition performance, the system should apply the gradient 
ascent procedure in which the weights repeatedly are updated 
according to the learning rule defined by (15) - (19). In this 
sub-section we will discuss SVM weights while remembering 
that the endurance times represent the weights according to 
the proportionality relation (20). 

   There are several possible algorithms for implementing ν-
SVM gradient ascent in the present architecture, one of which 
will be presented here. The following general aspects are 
shared by workable methods. 

I) Inputs from the external world are replaced by training 
examples evoked from the CQM units. The Switch shuts out 
the sensory input and locks on inputs from one of the CQMs. 
The organism is hence incapacitated during this process. A 
reasonable assumption is that importance learning is 
performed in sleep. Replacing sensory input with memories 
bears some similarity to dreaming. Philosophers of the mind 
have for a very long time suspected that dreaming is related to 
off-line learning and memory consolidation [20]. We should, 
however, be careful to draw this analogy too far since there 
are many competing theories of dreaming and low-level 
perceptual learning in sleep might not be associated with 

dreaming. 
II) The Trap and the feed-forward classification process 

work precisely as in the waking state but the resulting 
classification is disconnected from the action system. If e.g. a 
positive valence training example of food scent is recalled and 
put into the Trap, this will not cause actual feeding behavior. 
This is analogous to sleep paralysis in REM sleep. 

III) The learning rule applied to either of the CQM units 
redistributes the endurance time (SVM weight) over the stored 
patterns but keeps the sum of endurance times in the CQM 
constant. This is a property of the competitive queuing model 
and is also consistent with the constraints (4) and (5) as 
expressed in (8). The learning rules (16) and (18), where the 
Ui term is balanced by the average of the same term for all 
memory patterns in the CQM, respect the conservation of the 
sum of weights in the CQM.   

The details of the Importance learning algorithm will now 
be explained. The Switch receives the presently displayed 
training examples +x and −x  from the CQM+ and the CQM- 
respectively. At a uniformly distributed random time in the 
evaluation cycle, the Switch locks on one of these input 
vectors. The positive and negative valence input is selected 
with equal probability. The chosen training example is 
forwarded to the Trap and the valence of the selection is sent 
to both of the CQM units. The result is that the Switch is 
opaque for sensory input and outputs training examples xj 
randomly selected according a distribution i ip κα= where 

κ=1/ν. 
   The Trap operates just as in the waking state. At the 
beginning of each evaluation cycle it locks on the output of 
the Switch. The net result is that the Trap for the duration of 
each evaluation cycle outputs a training example xj randomly 
selected from the distribution i ip κα= . 
   Each of the CQM units applies the same learning rules once 
for each selected memory pattern: 

* ( , )i i j i jy y Kα α η← − x x                  (24) 

* ( , )
*k k j i jk y y K

m
ηα α∀   ← + x x               (25) 

where * means either + or -. Note that xj is the example held 
by the Trap for the duration of the evaluation cycle whereas xi 
is the currently displayed example of the CQM. The CQM 
receives the valence yj of the trapped example from the Switch 
and stores it for the duration of the evaluation cycle (see Fig. 
3).  The learning rule (24) is applied only to the presently 
displayed example and the learning rule (25) is applied to all 
training examples stored by the CQM. The training of the bi-
symmetric CQMs is hence disconnected, the only link being 
that they both use the same input example xj. 
   We shall now demonstrate that the learning rules (24-25) 
implements ν-SVM gradient ascent according to (16) and (18) 
respectively. For this purpose we consider the average change 

sαΔ of the weight of a specific training example with index s 
during one evaluation interval. The averaging is performed 
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with respect to the probability distribution of examples in the 
Trap. 
   The learning rule (24) modifies the selected weight once per 
evaluation interval with the average result 

1
1

* ( , )
m

s j j s j s
j

y y p K Uα η κη
=

Δ = − =∑ x x                       (26) 

where Us is given by (10). 
   The learning rule (25) modifies the selected weight m* times 
per evaluation interval with a result that averages to 

2
1 1

*
1

1 ( *, ) * ( , )
*

1 ˆ( *, )
*

m m

s k j j k j
k j

m

k k
k

y y y y p K
m

y y U U
m

α η δ

ηκ δ κη

= =

=

Δ = =

− = −

∑ ∑

∑

x x
     (27) 

where *Û  is given by (17) for the positive valence CQM and 
by (19) for the negative valence CQM. The Kronecker delta in 
(27) is defined according to (9). 
   Combining the contributions from learning rules (24) and 
(25) we get 1 2 *

ˆ( )s s s sU Uα α α κηΔ + Δ = Δ = − showing that 

the learning rules implement ν-SVM gradient ascent 
according to (16) and (18). This means that weights of trivial 
examples vanish asymptotically so that the effective optimized 
training example population consists only of support vectors.   
 

E.  Bias Learning 
In section IV B we assumed that the Bias unit adds the correct 
bias b to the output h(x) of the Integrator thus finalizing the 
computation of the classification function f(x) = h(x) + b. The 
Bias unit must, however, learn the proper value of b. This is 
done in the sleeping state in which the Integrator for each 
evaluation cycle produces an output ch(xj) where xj is a 
training example selected randomly according to the pj=καj 
distribution. 
   The algorithm for computing the bias is quite simple in the 
special case where all training examples are regular support 
vectors. The bias unit could just compute the average value 
<ch>=-b of the input ch(xj) and output cf(x)= ch(x)- <ch>. The 
reason for this is that all regular support vectors with positive 
valence have the same value h+

 of h(x) whereas all regular 
support vectors with negative valence have the same value h-

of h(x) (see section III). The constraint (8) ensures that 
positive valence support vectors and negative valence support 
vectors carry the same statistical weight so that 

1 1( ) (( ( ) ) ( ( ) ))
2 2

ch c h h c f b f b cb+ − + −< >= + = − + − = −x x  

where +x  and −x  are any positive and negative valence 
support vector respectively and ( ) ( )f f+ −= −x x because all 
regular support vectors have the same margin. 
   In the general case, the training examples include outliers as 
well as regular support vectors. We assume, however, that the 
regular support vectors are the majority of the training 
example population. The Bias unit performs a clustering 
computation with respect to the value of the input ch(xj). Two 
clusters centered on the values ch+ and ch- are found. The 

clusters are surrounded by scattered points corresponding to 
outlier support vectors. The Bias unit computes the average 

value 1 ( )
2

ch c h h cb+ −< >= + = − of the centers of the clusters 

and forms the output cf(x) by subtracting <ch> from the input. 

V.  DISCUSSION 
Simulations show that the online learning strategy of 

storing misclassifications as new training examples works 
reliably for a wide range of problem types and SVM kernels. 
Dropping trivial examples from the training set is also a robust 
and proven strategy [21]. These methods are suboptimal since 
using fewer training examples can only worsen classifications 
but they save plenty of memory space. In the model we have 
employed radical memory saving strategies. Nature may be 
more or less generous with memory space.  

The present system has the advantage of keeping the time 
for generating a classification constant in spite of continuous 
learning.  Inserting more training examples in the CQMs 
means that endurance times eventually rescale but the time for 
performing pattern recognition remains constant. A 
predictable time for generating classifications is obviously 
useful for facilitating timely action and for building higher 
order pattern recognition systems.  

Handling negative numbers gracefully is always a problem 
when applying mathematical models with positive and 
negative numbers to brain systems. Neurons have excitatory 
and inhibitory links and but these mechanisms lack the neat 
symmetry of the mathematical concepts. Using separate 
memories for training examples with different valence 
provides a partial solution to this dilemma since the storage 
location implicitly defines the valence of the examples. The 
Integrator must, however, still deal with summation of 
positive and negative terms by means of excitation and 
inhibition. 

A definite advantage of bi-symmetric competitive queuing 
ν-SVM compared to the single-memory zero-bias ν-SVM is 
that the population of training examples can be combined in 
many different pattern recognition contexts. A CQM can store 
one set of training examples and several different time 
sequences. Each time sequence is represented by a set of 
weights α, α´, α´´ … A given training example could be a 
regular support vector in one set, a trivial example in a second 
set and an outlier in a third set. Many different classifiers can 
be realized using a restricted set of CQMs and training 
examples by flexible pair wise combinations of CQMs and 
appropriate selections of time sequences. This modularization 
in reusable collections of training examples could also support 
higher-order systems that control and configure lower-order 
classifiers [22]. 

The neural biased ν-SVM model in section IV is intended 
as a model of the brain but is described as a high-level 
architecture without explicit relation to brain structures. 
Mappings of the neural zero-bias SVM to biological neural 
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systems are provided in [3] and [4] and apply largely also to 
the present model. We shall here briefly review how the 
biased ν-SVM compares to brain components, structures and 
processes focusing on the olfactory system as an example. It 
should be noted that the brain, according to the present 
hypothesis, implements many different instances of neural 
support vector machines each instance tailored for a specific 
pattern recognition task. 

The Sensors module in Fig. 3 corresponds to the olfactory 
bulb where input from the primary chemical sensors are 
compiled and stabilized.  

The Switch forwards one of several inputs according to the 
state of the system. This function is clearly implementable in 
the brain. An example of a similar routing function is found in 
the thalamic relay matrix [23]. The Trap is an abstraction of 
sensory memory which is characteristic of all senses [24]. The 
Switch and the Trap are, as argued in [3], found in the anterior 
olfactory cortex that is known to receive signals both from the 
olfactory bulb and broad retrograde connections from the 
piriform cortex allowing odor memories from the piriform 
cortex to be copied to the anterior olfactory cortex [25]. 

Biologically realistic neural models of competitive queuing 
memory in the context of motor systems are discussed in [12]. 
It is a speculation of the present paper that CQM is employed 
in perception. In the olfactory context, CQMs could be located 
to the anterior piriform cortex that is known to resemble an 
associative memory [25].  

The Kernel units implement non-linear multi-input 
functions and are hence readily built from neural hardware. 
Feed-forward artificial neural networks with at least one 
hidden layer can approximate any continuous multivariate 
function with arbitrary accuracy [26]. SVM kernels should be 
positive definite but even kernels that violate this requirement 
may work well in practice [27]. Good pattern recognition 
performance can, for many applications, be achieved with a 
wide variety of kernels [28].  The kernel functions applied by 
the Kernel+ and Kernel- nodes should be identical. Such 
identical matching of brain structures might be difficult to 
achieve because of the changeable nature of brain tissue. This 
is a serious challenge for the present model and good reason 
for also considering the single-memory model in [3]. The 
neural basis for the Integrator function is temporal summation 
[29]. The Bias unit performs effectively an unsupervised 
clustering operation which is a quite feasibly function in 
neural networks. For olfaction it appears that the feed forward 
pathway consisting of the Kernels, the Integrator and the Bias 
unit should be found in the posterior piriform cortex that 
structurally mainly is a feed-forward network [25]. 

The present model includes a fast cycle in the CQMs and a 
slow evaluation cycle. This is not unlike the oscillatory pattern 
of the brain with high frequency cortical oscillations 
combined with slower rhythms of the sensory systems. The 
olfactory system exhibits e.g. a sniffing cycle [2], where each 
cycle means that input scents are evaluated, combined with 
faster oscillations in the piriform cortex [30].  Brain rhythms 

in relation to support vector machine models are further 
discussed in [3] and [4].  
   Note that there is a rich literature on computational models 
of the olfactory system with many established alternatives to 
the present theory. References to competing models are found 
in [4].   

The present model shows an intriguing resemblance to the 
competitive queuing account of motor action. Skilled motor 
action is according to [12] characterized by: 

- Motor programmes are memories of significant motor 
sequences that are stored in CQMs. 

- Higher-order systems initiate appropriate motor 
programmes as needed. 

- Output motor control signals are produced by blending 
internal programmes with sensory inputs. 

- Failure triggers discontinuous modifications of motor 
programmes. 

- Timing is optimized by repetitious training. 
Trainable pattern recognition is according to the present 

model characterized by: 
- Support vectors are memories of significant sensory 

inputs. Patter recognition is based on programmes of 
support vectors. 

- Higher-order systems initiate appropriate support 
vector programmes as needed. 

- Output classifications are created by blending internal 
programmes with sensory inputs. 

- Failure triggers discontinuous modifications of support 
vector programmes. 

- Programme timing is optimized by internal repetition.  
The similarity between skilled motor action and trained 

pattern recognition can speculatively be accounted for by 
evolution reusing and adapting the same baseline neural 
machinery for action and perception. 
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