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Abstract—The article describes a case study on one of Czech 
Republic’s manufacturing middle size enterprises (ME), where due to 
the European financial crisis, production lines had to be redesigned 
and optimized in order to minimize the total costs of the production 
of goods. It is considered an optimization problem of minimizing the 
total cost of the work load, according to the costs of the possible 
locations of the workplaces, with an application of the Greedy 
algorithm and a partial analogy to a Set Packing Problem. The 
displacement of working tables in a company should be as a one-to-
one monotone increasing function in order for the total costs of 
production of the goods to be at minimum. We use a heuristic 
approach with greedy algorithm for solving this linear optimization 
problem, regardless the possible greediness which may appear and 
we apply it in a Czech ME. 
 
Keywords—Czech, greedy algorithm, minimize, total costs.  

I. INTRODUCTION 

HEimpetuous for our research comes from a real problem 
that manufacturers are facing as a result of the economic 

and financial crisis, which is far from over in several European 
countries like Czech Republic, in our case. In the 
manufacturing industry, due to today’s market conditions, 
when the production begins, it begins also the loss of working 
time and increase in costs, which is an important barrier for an 
increase of the degree of productivity, as it showed us 
concurrent manufacturing companies in countries like 
Germany, South Korea, USA or Japan. In these economic 
frustrating times for investors to decide where or in which 
companies they should put their money, manufacturing 
companies, which are responsible for the long term increase in 
national gross product, should try to solve their projects by 
optimization of the manufacturing lines. There are several 
ways how management can improve the productivity and 
efficiency of the process like Lean, Six Sigma or by simply 
applying tools like 5S or Root cause analysis, but everything 
should be done in time and what was valid 30 years ago it 
doesn’t always apply in today’s market. 

Today, the manufacturing process is managed according to 
the customers’ requirements and in order to fulfill these 
requirements, every process, every job must be done in time, 
maintaining the required quality level, projects being in 99.99 
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% of the cases, time constrained projects. The Project 
Manager should solve problems and implement projects with 
limited and adjacent resources in a predefined time period. 
Adjacent resources are resources for which the units assigned 
to a job are required to be in some sense adjacent. Possible 
examples of adjacent resources are dry docks, shop floor 
spaces and assembly areas. Otherwise, costs will rise and the 
company will not be able to remain long on the competitive 
market. 

There are several studies regarding the Time-Constrained 
Project Scheduling problem (TCPS) with one adjacent 1-
dimensional or 2-dimensional adjacent resource, ([1], [2] with 
one 1-dimensional adjacent resource), but we decided to focus 
our study on a more general aspect of the problem, i.e., the 
optimization of manufacturing time by minimizing the total 
input costs from the point of view of distributing the work 
load on the available production lines, in order to answer the 
actual market conditions. 

The present paper is structured in the following way: first it 
is presented the problem definition from a mathematical and 
theoretical point of view and then a practical part is presented 
where it was used data from a Czech middle size 
manufacturing company and computed using Cplex 
Optimization Studio program [3]. At the end results are 
interpreted, conclusions are drawn based on the practical part 
and future lines are drawn for future studies.  

II. PROBLEM DEFINITION 

In a manufacturing company, in order to produce goods we 
should have within a predefined time frame, a defined number 
of operations, given by a set of jobs, a set of renewable 
resources and one or multiple 1-dimensional adjacent 
resources, which will transform the inputs into outputs ready 
to be sold. Every job should be done within a specific time and 
space frame in order for the production to be Just-in-time. We 
consider that the time is determined by the work distribution 
on the production line, so only the distribution of the work 
load is considered below. Time spent with transport from the 
factory to the client is not considered.  

In a market where time is money, minimizing the total input 
costs will minimize the manufacturing time of the products 
and the customers will receive their ordered goods in time, 
without additional delays. 

Every manager confronts with the following problem, 
which we’ve decided to study further in our present paper:  

In what way should the work load (jobs or/and machines) 
be divided on the production line, in order to minimize the 
total costs of the work, which should be done, in order for the 
goods to be produced? in order to be competitive and fulfill 
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the market requirements in time, possible with an extra time 
reserve. 

In this manner we tried to give answers to the above stated 
question by solving it from a greedy perspective. We assume 
that the work, which has to be done, is executed not only by 
specialized workers (or robots or automatic machines) but also 
by workers (or robots or automatic machines) who know to do 
several jobs according to their qualifications and on the 
manufacturing line perform several operations, being able to 
switch to other working tables. Or in case of the automatic 
production lines, robots perform several operations according 
to their input programmed code. 

A. Theoretical Part 

If a good in order to be manufactured and send to the 
customers, must pass through several production stages and 
operations. According to the type and complexity of the finite 
product, the production managers together with the HR 
department or the IT department, should solve greater 
problems of dividing the jobs between workers and machines/ 
robots with the aim in minimizing the total cost of the work. 
The car manufacturing industry is one of the most complex 
manufacturing industries, where our study was implemented. 
Automatizing the entire company would be the expensive 
answer for our research question; however without the partial 
automatization, at least, in today’s manufacturing industry, a 
company cannot succeed. Thus, we look at this problem from 
the point of view of optimizing the total input costs, by 
dividing the work load between workers and automated 
machines on the available production lines. 

Given a set of integer values, representing the work (jobs) 
to be done, in a manufacturing company, {j1, j2,….jn}, where j1 
= is the 1st job, which has to be done at the entry of the 
material in the company, and states the first work place from 
where we can start the work, jn = last job and states the nth 
place where we can move the working table for performing 
the job to minimize the input costs, and ji< ji+1 for 1 � � �
� � 1, and a positive integer J, find a set of non-negative 
integers {c1, c2, … cn} which minimize  ∑ �	
	��  subject to 
∑ �	
	�� 
	 . 

The finite product has several partial jobs, which should be 
finished by workers or/and machines on a work alone basis, 
before passing to the next work place (work phase). The 
following pictures show some abstract examples of possible 
manufacturing lines. In these pictures the Inputs are described 
as “1111” and Outputs as “0000”. In other words as soon as 
the product is partially worked (semi-finished) the 1 is 
transformed to 0 and passes to another working table. 

 

 
Fig. 1 A 4-dimensional hypercube [4] 

 
These pictures are also called Hasse diagrams, after Helmut 

Hasse (1898–1979); according to Birkhoff [5], they are so-
called because of the effective use Hasse made of them. 
However, Hasse was not the first to use these diagrams; they 
appear, for e.g., in Vogt [6]. Although Hasse diagrams were 
originally devised as a technique for making drawings of 
partially ordered sets by hand, they have more recently been 
created automatically using graph drawing techniques [7], [8]. 

 

 
Fig. 2 A pseudo-projection of the 4-dimensional hypercube [4] 

 
We consider the situation when an intermediate production 

phase is critical to the finalization of the good. Thus if an 
intermediate production phase is not fulfilled within product’s 
requirements, the whole production line will be interrupted 
and the semi-finished good will never get into the customers’ 
hands. This situation is typical for companies which 
implemented Lean Manufacturing and use Andon signals, the 
line being stopped when a fault is discovered. 

 

 
Fig. 3 The edge-first-shadow of the 4-dimensional hypercube [4] 

 
In order to solve our problem we translate it in a linear 

optimization problem which we can solve using the Greedy 
algorithm. Before solving the optimization problem we must 
define that the intermediate operations are critical to the 
quality of the final product. Thus we first examine the 
structure of the distributive lattice (formed of the working 
tables within the production line) � �  2�  and show the one-
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to-one correspondence between the set of distributive lattices 
 � �  2� with �, � � � and the set of partially ordered sets 
(also called posets) on partitions of E. 

For a distributive lattice � �  2� the cardinality |D| of D 
can be as large as 2E and listing all the elements of D to 
represent it is not practical even for medium-sized E. We shall 
show how to efficiently express a distributive lattice as a 
structured system, a poset, on E. In other words, by using the 
greedy algorithm we find the efficient distribution of work 
load within a company, function of the individual costs, c, 
which are noted as x in the following equations and X is the 
total costs of the work load. 

Let � �  2�  be a distributive lattice with �, � � �. A 
sequence of monotone increasing elements of D  

 
�: �� � �� � �� � � � ��       (1)  

 
is called a chain of D and k is the length of the chain C. If 
there exists no chain which contains chain C as a proper 
subsequence, C is called a maximal chain of D. And if C given 
by (1) is a maximal chain, we have V0 = � and Vk = E. 

For each � � � we define 
 

��� !  "#X | e � X � D(      (2) 
 

D(e) is the unique minimal element of D, which contains e. 
Thus we can state that for 
 

�) � � � *�+ �	 � ��� , �, ���	 � ���    (3) 
 

Also we consider G(D) = (E, R(D)) be a directed graph with 
vertex set E and arc set R(D), where 
 

-�� ! #��, �	 . � � 
�, �	 � ��� (         (4) 

 
We decompose the graph G(D) into connected components 

Gi = (Si, Ri), where � � / . Let 01 be the partial order on the 
set of the connected components #2	|� � /( naturally induced 
by the decomposition, that is 2	3 01 2	4 , 56�7� ��, �� � / if 
and only if exists a directed path from a vertex of 
2	489 * :�78�; 9< 2	3. But according to (3) G(D) is 
transitively closed, thus if there is a directed path from a 
vertex v1 to a vertex v2, then there is an arc (v1, v2) in G(D). 
Therefore, we are sure when we state that if 2	3 01 2	4, there 
exists an arc from any vertex of  2	389 *�= :�78�; 9< 2	4 . 

Denote the set of the vertex sets Si�� � /) of the connected 
components Gi�� � /) by 

 
  Σ�� ! #@	| � � /(       (5) 

 
whereΣ��  is a partition of E. In the following we consider 
01 as a partial order on Σ��  by identifying Gi with Si for 
each � � /. We have thus obtained a poset P�� !
� Σ�� , 01 , which is called the poset derived from 
distributive lattice D. 

For a posetP ! � B, 0  a set C � B is called a lower ideal of 
P, if each �, �	 � B we have 
 

  � 0 �	  � C D � � C       (6) 
 

Birkhoff [7] introduced the theorem (1) that: Let � � 2� be 
a distributive lattice with �, � � �. Then, for the poset 
P�� ! � Σ�� , 01  derived from D, the following (i) and (ii) 
hold: 
(i) For each ideal L of P(D), 

 
E#F | F � C(  � �        (7) 

 
(ii) For each G � �, there exists an ideal L of P(D) such that

    
 G !  E#F | F � C(        (8) 

 
Proof: For (i): Put G !  E#F | F � C(. Since L is an ideal of 

P(D), it allows from the definition of P(D) that ��� � G for 
each � � G. Then G !  E#���  | � � G( and we have G � � 
since ��� � � from (2). 

For (ii): For a given G � �, X and any F � Σ��  do not 
cross, i.e., either F � G or F � � � G due to the partition of 
P(D). Therefore, C !  E#F | F � Σ�� , F � G( is a partition of 
X. Moreover, because of the definition of P(D), F� 01 F� �
G �HIJ��K F� � G.Consequently, C ! #F | F � Σ�� , F � G( 
is a desired ideal of P(D).                   (q.e.d.) 

From theorem (1), with (7) or (8), we determine a one-to-
one correspondence between D and the set of all the ideals of 
P(D).  

Given a distributive lattice � �  2� with �, � � � let 
 

�: � ! �� � �� � �� � � � �� ! �      (9) 
 

Be an arbitrary maximal chain of D. Then we have 
 

Σ�� ! #�	 � �	L�| � ! 1,2, … , N(     (10) 
 

In particular, the length of any maximal chain of D is 
independent of the choice of a maximal chain and is equal to 
| Σ�� |. We call D simple if the partition Σ��  is composed of 
singletons of E alone, i.e. Σ�� ! O#�(. � � �(.  

A sub-modular system (D, f) with simple D is called simple. 
For a non-simple sub-modular system (D, f) on E, we define 
 

GP ! #F | F �  Σ�� , F � G(      �G � �      (11) 
�Q ! OG Q . G � �(         (12) 

<�GPR  ! <�G       �G � �       (13) 
 

Then we have a simple sub-modular system ��Q, <S  on Σ��  
which we call the simplification of (D, f). 

Now returning to our initial research question, for a sub-
modular system (D, f) on E we consider a linear optimization 
problem described as follows: 

 
Pj: minimize ∑ 
�� ��� T��         (14) 
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Subject to � � U�<           (15) 
 
where j: E → R is a given weight function (individual jobs) 
and c are individual costs related to the individual jobs which 
are required to be done for goods to be produced. We assume 
that (14) is well defined. An optimal solution of Pj is called a 
minimum-weight base of (D, f) with respect to the weight 
function j. Similarly, a maximum-weight base of (D, f) with 
respect to the weight function j is an optimal solution of 
problem P-j with the weight function –j. 

If the jobs are arranged as shown above in different types of 
polyhedron, we can consider the correspondent costs arranged 
in a similar way. Thus fundamental structural properties of the 
base polyhedron B(f) are given by the following theorems. 

When (D, f) is not simple, problem Pj does not have a finite 
optimal solution if 
�� V 
��	  for any �, �	 � F � Σ�� . 
Therefore, if Pj has an optimal solution, j: E → R is constant 
on each F � Σ�� , and hence it suffices to consider the 
simplification of (D, f). 

We suppose without loss of generality, that in the 
minimum-weight base problem Pj described by (14) and (15) 
B(f) is pointed, i.e., D = 2P with B ! ��, 0 . 
 

Theorem 2[9]: Problem Pj in (15) has a finite optimal 
solution if and only if j: E → R is a monotone non-decreasing 
function from B ! ��, 0 to �-, � , i.e., �) �, �	  � �: � 0
 �	  D 
�� � 
��	 . 
 

Proof: “IF” part: Suppose that j is a monotone non-
decreasing function from B ! ��, 0  to �-, �  and that the 
distinct values of weights j(e) (� � �) are given by 
 

j1< j2< … <jp        (16) 
 

Define 
 

W	 ! #� | � � �, 
�� � 
	(   56�7� � ! 1,2, … , I  (17) 
 

wherenote that Ap = E. The sets Ai form a chain W� � W� �
� � WX  9< �.We recall x=individual job costs. 
 

Lemma 1: For any W � � let xA be a base of the reduction 
(D, f) · W of submodular system (D, f) to A and xA be a base of 
the contraction (D, f) / A of (D, f) by A. Then the direct sum 
;Z !  ;[ \ ;[ of xA and xA defined by 

 

�;[ \ ;[  �� ! ] ;[�� , <97 � � W
;[�� , <97 � � � � Ŵ     (18) 

 
is a base of (D, f). 
From Lemma 1 there exists a base ; � U�<  such that x(Ai) = 

 
f(Ai), for i=1,2,…,p.        (19) 

 
 
 

Then for any base = � U�<  we have from (15), (16) and 
(18) the following: 

 
∑ 
�� =�� � ∑ 
�� ;�� !  ∑ ∑ 
	_=�� �T�[`L[`a3

X
	��T��T��

�;�� b !  ∑ O
	_=�W	 � ;�W	 b � 
	_=�W	L� � �;�W	L� bcX
	�� !

 ∑ �
	 � 
	d� _=�W	 � ;�W	 b e e 
X f=_WXb � ;_WXbg !XL�
	��

∑ �
	d� � 
	 �<_W	 � =�W	 b h 0XL�
	��                (20) 

 
where we define W� ! � *�+ 5� 7��*JJ WX ! �. This shows 
the optimality of x (which we initially denoted the costs). 

“ONLY IF” part: Suppose that j is not a monotone non-
decreasing function from B ! ��, 0 89 �-, � , i.e., for some 
N�1 � N j I , Ak defined by (16) does not belong to D. Then 
there exist elements � � W�  and �	 � � � W� such that for 
�) G � � 5�86 � � G 5� 6*:� �	 � G. Hence, for any base 
; � U�<  we have �̃�;, �, �	 ! e∞ and ;em �nT � nT` �
U�<  for any m>0. Since j(e) < j(ei), problem Pj does not have 
a finite optimal solution.                       (q.e.d) 
 

Corollary: Let Pj’ be the problem given by Pj where B(f) is 
replaced by P(f). Problem Pj’ has a finite optimal solution if 
and only if j: E → R is a non-positive monotone non-
decreasing function from B ! ��, 0 89 �-, � . 
 

Proof: The non-positiveness is imposed on j since for any 
; � B�<  and � � � we have ;�m nT � B�<  for an arbitrary 
m� -d. For any non-positive j, Pj’ has a finite optimal solution 
if and only if Pj has a finite optimal solution. Therefore, the 
present corollary follows from theorem 2.               (q.e.d.) 
 

Theorem 3: Suppose that j is a monotone non-decreasing 
function from B ! ��, 0 89 �-, � , i.e., the sets Ai, where 
i=1,2,…,p , defined by (16) form a chain of D. For each 
i=1,2,…,p let fi be the rank function of the set minor ��, < ·
W	/W	L�, where W� ! �. Then the set of all the optimal 
solutions of problem Pj is given by 
 

U�<� \U�<� \ … \U_<Xb ! 

! O;�\;�\ … \;X.;	 � U�<	 , � ! 1,2, … , I(   (21) 
 
wherethe direct sum \ is defined by the following: ; � U�<  
is an optimal solution of Pj if and only if x restricted on Ai – 
Ai-1 is a base of ��, < · W	/W	L� for each i=1,2,…,p. 
 

Proof: It follows from the proof of the "IF" part of theorem 
2 that ; � U�<� \U�<� \ … \U_<Xb is an optimal solution of 
problem Pj. On the other hand, if x is an optimal solution, then 
we must have a dependency +�I�;, � � W	  for each 
i=1,2,…,p and � � W	 . 
 

Theorem 4:  A base ; � U�<  is an optimal solution of 
problem Pj if and only if for each �, �	 � � such that �	 �
+�I�;, �  we have 

 

�� h 
��	         (22) 
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Proof: The “ONLY IF” is trivial. The “IF” part follows 
from theorem 3. For, if (22) holds for each �, �	 �
� Kp�6 86*8 �	 � +�I�;, � , then we have (19) for Ai, 
i=1,2,…,p, defined by (16).            (q.e.d.) 

Theorem 4 states that the local optimality with respect to 
elementary transformations from x to ;em _nT � nT`b, �� �
�, �	 � +�I�;, � , mh 0  implies the global optimality. 

A sequence ���, ��, … , �
  of all the elements of E (a linear 
of total ordering of E) is called a linear extension of  

 
B ! ��, 0 �< �	 0 �qimplies� � 
 ��, 
 ! 1,2, … , � . 

 
Furthermore, a linear extension ���, ��, … , �
  of B !

��, 0  is called monotone non-decreasing with respect to 
j:E→R if 
��� � 
��� … � 
��
 . Such a monotone non-
decreasing linear extension of B ! ��, 0  exists if and only if 
j is a monotone non-decreasing function from B !
��, 0  89 �-, � . Suppose we are given a monotone non-
decreasing weight function j from B ! ��, 0  89 �-, � .  

We apply the Greedy algorithm in 2 steps: 
1. Find a monotone non-decreasing linear extension 

 ���, ��, … , �
  of B ! ��, 0  with respect to j. 
2. Compute a vector ; � -�  by 

 
;��	 ! <�@	 � <�@	L� , 56�7� � ! 1,2, … , �   (23) 

 
where for each i=1,2,…,n,  Si is the set of the first i elements 
of  ���, ��, … , �
  and @� ! �. Then x is a minimum-weight 
base of (D, f) with respect to weight w. 

Due to theorem 3, every extreme minimum-weight base can 
be obtained by the greedy algorithm by appropriately choosing 
a monotone non-decreasing linear extension  ���, ��, … , �
  of 
D in the 1st step. 

The greedy algorithm is not the only solution for 
minimizing the total costs of the individual jobs, according to 
their location on the production line, which have to be done in 
order to produce a finite good. However it gives us a chance of 
optimizing the work load, for a generally considered 
manufacturing company. We can conclude that for solving the 
Pj problem, the solution is a unique optimal one if j:E→R is a 
one-to-one monotone increasing function from B !
��, 0  89 �-, � . 
 

Theorem 5: Let f : D → R be a function on a simple 
distributive lattice � � 2�  Kp�6 86*8 �, � � � *�+ <�� ! 0. 
Then, the greedy algorithm described above works for B(f) 
defined as follows: 

 
U�< ! #; | ; � -� , �) G � �: 

;�G � <�G , ;�� ! <�� (     (24) 
 
if and only if f is a sub-modular function of D. 
 

Proof: It suffices to show the “ONLY IF” part. Suppose 
that the greedy algorithm works for B(f). Then, for each 
maximal chain 

�: � ! �� � �� � �� � � � �
 ! �     (25) 
 

of D the vector ; � -�  defined by (23) belongs to B(f). For 
any incomparable G, r � � choose a maximal chain C of (25) 
containing G s r and G t r and define x by (23). Since; �
U�< , by definition we have: 
 

;�G � <�G , ;�r � <�r ,  
;�G t r ! <�G t r , ;�G s r ! <�G s r   (26) 

 
Hence we have 
 

<�G e <�r h ;�G e ;�r , 
  <�G e <�r ! ;�G t r e ;�G s r ! 

! <�G t r e <�G s r              (27) 
 

It follows that function “f” is a sub-modular function of D.
 (q.e.d.) 

B. Practical Part 

We’ve implemented the above stated algorithm in a 
simplified form, in a manufacturing Czech company from the 
car manufacturing industry where a certain level of quality is 
required and the relationship and cooperation between this 
company and others from car manufacturing industry should 
be at the highest level in order to answer the market 
requirements. 

An optimization problem was solved, by minimizing the 
total costs of the work by distributing the working tables in a 
certain order, according to the Hasse diagram described above. 
A lattice of 24 was used according to the greedy algorithm 
from above. Cplex Optimization Studio was used. 

Our problem can also be considered as a special case of 
SPP (set packing problem), a classical optimization problem, 
one of Karp’s 21 NP-hard problems [10]. A lot of attention is 
given in specialized literature to set covering problem and 
node packing problems. For additional information we refer to 
[11], [12], for set covering problem or [13] and [14], for node 
packing problem. A good method for solving this type of 
problem is a Branch and Cut algorithm using polyhedral 
theory to obtain facets, by determining cliques as defined by 
[15]. However, only small-sized instances can be exactly 
solved. 

The considered Czech company, further “the Company”, is 
an ISO-9001 and ISO-TS 16949 certified company that is 
specialized in bending, forming and assembly of tubes in 2D 
and 3D. The Company processes steel, stainless steel, copper 
and aluminum tubes. It is also possible to assemble the 
products through welding and brazing. Their strength lies in 
the production of small to medium series, the average 
diameter of the tube between 6mm-65mm away. Their metal 
workings are used by leading companies (OEMs) in the 
automotive, medical, heating and cooling industry. They also 
offer various finishing's such as galvanizing or powder 
coating. 

The Company wants to introduce a new innovative product 
P1 on the market, which will incorporate the latest 
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technologies and know-how of the company, but for this a 
production line should be developed where a number of 10 
machines should be placed on some of the 15 available 
production lines in the company. Each of these lines has 
corresponding costs according to the place of the machines (or 
working tables for workers). These costs can include different 
types of operational costs, costs with trained workers, 
material, up to costs per m2, special tools designed for the 
production, etc.  

Company’s target is to implement the new production line 
and to arrange the machines accordingly to minimize the total 
input costs. From the table below one can see in what way the 
machines were displaced, 1 is for a place occupied by the 
machine and 0 is for an “empty” space on the production line.  

We know the capacity of the possible production lines as 
follows: 

 
TABLE I 

CAPACITY AND FIXED COSTS FOR EACH OF THE AVAILABLE PRODUCTION 

LINES 

Lines Capacity [x103Nh] Fixed costs [x103 CZK] 
L1 4 200 
L2 3 130 
L3 3 150 
L4 3 250 
L5 3 280 
L6 2 480 
L7 2 200 
L8 2 320 
L9 2 340 
L10 2 300 
L11 2 100 
L12 1 110 
L13 1 120 
L14 1 130 
L15 1 140 

 
Fixed costs of the lines were computed according to the 

possible positions of the machine/working table. These 
positions have also different operational costs related to the 
distance to the supply room, energy, heat, time spent to get 
from one point to another by designated workers, fuel 
consumption of manipulation machines, facility costs.  

We also know that some operations are more complex than 
others and thus the machines are displaced in such a manner. 

We use the following formula: 
 

TC = FC + VC (Total Costs = Fixed Costs + Variable Costs) 
 

TC = FC of the opened line x the lines which we should open 
+ costs related to the location of each machine on the line x 

the selected locations of the machines 
 
A simplified version of the initial problem is: Where and on 

which lines should we locate our machines in order to 
minimize the total input costs of the production line? 

This we can translate in a simplified greedy algorithm (for 
variable costs): 

 
VC:=0 
For i=1 to 15 and j=1 to 10 

repeat 
VC1:=greedySolution(∑ �	;	�u	�� ) 
VC2:=localSearch(greedySolution) 
VC:=VC2 

until VC=∑ �	;	�u	�� =min 
 

where x is the location of each machine (can be either 1 or 0) 
and is the variable and �	  is the costs of operations (jobs) 
which had to be made according to the following equation, not 
to exceed the total capacity of the company: 

 
4;� e 3;� e 3;x e 3;y e 3;u e 2;z e 2;{ e 2;| e 

e2;} e 2;�� e 2;�� e ;�� e ;�x e ;�y e ;�u ! 
! 898*J �*I*��8= 9< 86� �9HI*�=  

 
After finding the minimum variable costs we compute the 

fixed costs according to the specified location. 
The costs for each location in our 10x15 matrix of possible 

locations are: 
 

TABLE II 
COSTS OF EACH AVAILABLE LOCATION ON THE PRODUCTION LINES 

Machines 
or 

Resources 
"I" 

Costs of machine "I" on line "L" [x103 CZK] 

r1 73 2 70 4 5 6 7 8 9 10 11 2 6 56 23 

r2 2 3 4 5 6 1 8 9 32 2 12 35 9 2 3 

r3 3 4 7 47 7 3 9 10 11 7 13 7 9 87 12 

r4 4 5 76 7 63 9 10 4 12 50 89 4 77 98 2 

r5 24 6 26 8 35 10 9 12 13 14 15 1 5 3 5 

r6 6 7 8 22 10 47 12 13 75 15 16 14 22 64 2 

r7 7 12 9 10 11 12 13 14 1 16 17 11 42 72 13 

r8 8 9 8 1 12 1 14 15 16 1 18 2 27 5 34 

r9 14 10 11 12 1 14 235 1 12 18 86 1 34 16 14 

r10 10 1 12 45 14 15 16 17 1 19 1 3 31 29 5 

III. RESULTS 

A result of 1.564 mil. CZK was obtained for the production 
line of P1, which was the optimal minimal solution. It was 
computed a number of 53 iterations and the machines were 
displaced according to the maximum capacity of the line and 
of the company. Also a distribution of the working tables was 
used according to the above mentioned Hasse diagram (Fig.1), 
which complicated the results. If it wasn’t for the Cplex 
software, the computation of such a relatively easy problem 
would have taken a lot of time. 
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The following results were obtained: 
 

TABLE III 
LOCATION OF RESOURCE I ON THE PRODUCTION LINE L 

Resources Location of resources "I" on each line "L" 

r1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

r2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

r3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

r4 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 

r5 1 1 0 1 0 0 1 0 0 0 1 1 0 0 0 

r6 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 

r7 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

r8 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

r9 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

r10 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

 
TABLE IV 

A COMPARISON OF THE ACTUAL AND AVAILABLE CAPACITY 

No. of machines supported by a production line Capacity 
4 4 
3 3 
3 3 
3 3 
3 3 
0 0 
2 2 
0 0 
0 0 
0 0 
2 2 
1 1 
0 0 
0 0 
0 0 

  
According to the TableIII, on the fourth line we have 1 on 

1st, 2nd, 4th and 7thcolumn which can represent either only a 
25% capacity use of the 4th resource (machine and/or 
workers) or an operation formed of 4 different smaller 
operations which are interconnected and in cooperation. This 
was stated as an input constraint according to the complexity 
of the 4thoperation which will take place and also in order to 
have a Hasse distribution of working load diagram.  

One can see that on each line we have at least one machine 
(working table), so the problem is solved. Also the capacity of 
the company is maintained and the total costs are minimized 
by not opening the 6th, 8th, 9th, 10th, 13th, 14th and 15th available 
production lines, where machines and working table could 
have been located. Thus the management decided to 
implement a production line where machines (and working 
tables) would have been located in different places of the 
available space, instead of picking one of the available 
production lines, in order to minimize the total input costs of 
their new product P1.  

Due to the intellectual property rights the data used in this 
paper were altered not to affect the business development of 
the company. 

IV. CONCLUSION 

In this paper we have considered a partial analogy to a 
special case of the classic combinatorial optimization problem 
SPP, which was solved with the help of optimization program 
Cplex, but which is a NP hard problem and cannot be easily 
solved for larger variables.  

We wanted to show that a general problem can be solved 
with the use of greedy algorithm and linear programming, 
when applied for a particular case, within the car 
manufacturing industry as considered above. 

REFERENCES 

[1] Guldemond T.A., Hurink J.L., Paulus J.J. ,SchuttenJ.M.J.,“Time-
constrained project scheduling” InJournal of Scheduling 2008; 
11(2):137–48. 

[2] Hurink J.L., Kok A.L., Paulus J.J., SchuttenJ.M.J.,“Time-constrained 
project scheduling with adjacent resources” InJournal of Computers & 
Operations Research 2011; 38:310–319. 

[3] IBM ILOG CPLEX Optimization Studio v.12.5 
[4] Wikipedia, the free encyclopedia 

http://en.wikipedia.org/wiki/Hasse_diagram 
[5] Birkhoff, Garrett,Lattice Theory (Revised ed.), American Mathematical 

Society, 1948. 
[6] Vogt, Henri Gustav,Leçonssur la résolutionalgébrique des équations, 

Nony, p. 91, 1895. 
[7] Di Battista, G., Tamassia, R.,“Algorithms for plane representation of 

acyclic digraphs” InJournal of Theoretical Computer Science 1988; 
61(2–3):175–178, doi:10.1016/0304-3975(88)90123-5. 

[8] Birkhoff, Garrett,Lattice Theory, American Mathematical Colloquium 
Publications 1967:25, 3rd ed., Providence, R. I. 

[9] Fujishige, S., Tomizawa, N.,“A note on sub-modular functions on 
distributive lattices” InJournal of the Operations Research Society of 
Japan 1983; 26:309-318. 

[10] Karp, R. M.,“Reducibility Among Combinatorial Problems” In R. E. 
Miller and J. W. Thatcher (editors). Complexity of Computer 

Computations, New York: Plenum,1972: 85–103. 
[11] Bianchi S., Nasini G., TolomeiP.,“The set covering problem on circulant 

matrices: polynomial instances and the relation with the dominating set 
problem on webs”Electronic Notes in Discrete Mathematics 2010; 
36:1185–1192. 

[12] Zahra Naji-Azimi, Paolo Toth, Laura Galli,“An electromagnetism 
metaheuristic for the unicost set covering problem” InEuropean Journal 
of Operational Research 2010; 205:290–300. 

[13] Peter J. Zwaneveld, Leo G. Kroon, Stan P.M. van Hoesel,“Routing 
trains through a railway station based on a node packing 
model”InEuropean Journal of Operational Research 2001; 128:14-33. 

[14] Yuma Tanaka, Shinji Imahori, Mihiro Sasaki, MutsunoriYagiura,“An 
LP-based heuristic algorithm for the node capacitated in-tree packing 
problem” InJournal of Computers& Operations Research 2012; 39:637–
646. 

[15] M.W. Padberg,“On the facial structure of set packing polyhedral” 
InMathematical Programming 1973; 5:199–215. 

 

George CristianGruia,born in 1984 is a PhD. 
candidate at Czech Technical University in 
Prague,Faculty of Mechanical Engineering, 
Department of Management and Economics. His major 
is production and operations management with a focus 
on the quality management. 
 He teaches subjects like Statistics, Project 

Management and Management and Economics of the Enterprise. He had 
participated at several international conferences where has received several 
awards for his papers. He had received a scholarship for complete university 
studies from the Government of Czech Republic and collaborates with 
different Czech and Romanian companies. 
 

Michal Kavan, born in 1953 has graduated from the 
Czech Technical University in Prague, Faculty of 
Mechanical Engineering, Department of Management 
and Economics. At this university he has been teaching 



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:7, No:6, 2013

1088

for more than thirty years, now as an associate professor.  He lectures on a 
number of management courses in master's and doctoral studies. Its basic 
specialization is production and operations management. 

During his professional career he also served as a member of the board of 
directors of several engineering companies, where he was involved in their 
management. He graduated a four-week instructor's training course at Saint 
Mary's University in Halifax, sponsored by the Government of Canada. He 
has written a number of textbooks and teaching materials. 
 

 

 

 

 

 

 

 

 

 

 


