
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:5, 2007

1252

Abstract—Finding the minimal logical functions has important

applications in the design of logical circuits. This task is solved by
many different methods but, frequently, they are not suitable for a
computer implementation. We briefly summarise the well-known
Quine-McCluskey method, which gives a unique procedure of
computing and thus can be simply implemented, but, even for simple
examples, does not guarantee an optimal solution. Since the Petrick
extension of the Quine-McCluskey method does not give a generally
usable method for finding an optimum for logical functions with a
high number of values, we focus on interpretation of the result of the
Quine-McCluskey method and show that it represents a set covering
problem that, unfortunately, is an NP-hard combinatorial problem.
Therefore it must be solved by heuristic or approximation methods.
We propose an approach based on genetic algorithms and show
suitable parameter settings.

Keywords—Boolean algebra, Karnaugh map, Quine-McCluskey

method, set covering problem, genetic algorithm.

I. INTRODUCTION

OR minimisation of logical functions, laws of the Boolean
algebra and the Karnaugh maps are mostly used.

The Karnaugh maps represent a very efficient graphical tool
for minimising logical functions with no more than 6
variables. However, their use is based on visual recognition of
adjacent cells and, therefore, the method is not suitable for
automated processing on computers. A direct application of
the Boolean algebra laws is not restricted in this way, but
there is no general algorithm defining the sequence of their
application and thus this approach is not suitable for computer
implementation either.

With the growing strength of computational techniques,
further investigations were focused on an algorithm-based
technique for simplifying Boolean logic functions that could
be used to handle a large number of variables.

The well-known method usable on computers is the
algorithm proposed by Edward J. McCluskey, professor of
electrical engineering at University of Standford, and
philosopher Willard van Orman Quine from Harvard
University [13], [18].

We will assume that the number of variables n may be high
but restricted in the sense that all 2n rows of the corresponding

Manuscript received June 15, 2007. This work was supported in part by the
Ministry of Education, Youth and Sports of the Czech Republic under
research plan MSM 0021630518 "Simulation Modelling of Mechatronic
Systems".

Miloš Šeda works in the Institute of Automation and Computer Science,
Faculty of Mechanical Engineering, Brno University of Technology,
Technická 2896/2, CZ 616 69 Brno, Czech Republic (phone: +420-54114
3332; fax: +420-54114 2330; e-mail: seda@fme.vutbr.cz).

truth table may be saved in a memory and thus may be
processed. If this condition is not satisfied, then we could only
work with a selected number of truth table rows. This
approach is possible, e.g., in image filters [19]. Of course, this
is inacceptable in real logic control applications where all
input combinations must be tested. In the next considerations
we will assume the full truth table.

II. QUINE-MCCLUSKEY METHOD
The Quine-McCluskey method [13], [17], [18] is an exact

algorithm based on systematic application of the distributive
law (1), complement law (2) and idempotence law (3), i.e. the
laws as follows:
 .()x y z xy xz+ = + (1)

 1x x+ = (2)
 x x x+ = (3)

From (1) and (2), we can easily derive the uniting theorem
(4)
 .() .1xy x y x y y x x+ = + = = (4)

In general, this means that two expressions with the same
set of variables differing only in one variable with
complementary occurrence may be reduced to one expression
given by their common part, e.g.

() .1f xyzw xyzw xzw x x xzw xzw= + = + = =
For next considerations we will need the following notions:
Literal is a variable or its negation.
Term is a conjunction (= product) of literals.
Minterm is a conjunction of literals including every variable

of the function exactly once in true or complemented form.
For example, if (, ,)f x y z x yz xy= + , then x yz and xy are

terms and minterms are represented by conjunctions
, x yz xyz and xyz because ()xy xy z z xyz xyz= + = + .

Disjunctive normal form (DNF) of a formula f is a formula
f’ such that f’ is equivalent to f and f’ has the form of a
disjunction of conjunctions of literals.

Canonical (or complete) disjunctive normal form (CDNF)
is a DNF where all conjunctions are represented by minterms.

Now we can describe a skeleton of the Quine-McCluskey
method:

1. Minterms of a given Boolean function in CDNF are
divided into groups such that minterms with the same
number of negations are in the same group.

2. All pairs of terms from adjacent groups (i.e. groups
whose number of negations differ by one) are
compared.

 Heuristic Set-Covering-Based Postprocessing
for Improving the Quine-McCluskey Method

Miloš Šeda

F

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:5, 2007

1253

3. If compared terms differ only in one literal (and the
uniting theorem may be applied) then these terms are
removed and a term reduced to a common part is
carried to the next iteration.

4. All terms are used only once, i.e. if necessary the
idempotence law is applied.

5. If the number of terms in the new iteration is
nonzero, then steps 2-5 are repeated, otherwise the
algorithm finishes.

The result of the algorithm is represented by the terms
that were not removed, i.e. that could not be simplified.

Now, we will apply the Quine-McCluskey method to a
simple logical function from [5] and, by means of the
Karnaugh map, we will show that it will not find its minimal
form.

 Example 1 Minimise the following logical function in
CDNF.

Solution: If we divide the minterms into groups by the
number of their negations, then we get this initial iteration:

(0)

If we compare all pairs of terms from adjacent groups in the
initial iteration (0) and place in frames terms that can be
simplified and divide the resulting terms in the next iteration
(1) into groups again, then we get:

(0)

(1)

Applying the previous steps to iteration (1), we get:

(1)

(2)

In iteration (2) we have only one group of terms and thus no
simplified terms can be generated and the algorithm finishes.
Its result fm is given by a disjunction of those terms that cannot
be simplified.

mf xz y z x yw xyz xzw= + + + +

Let us consider the same example and solve it using the
Karnaugh map. For the given Boolean function f, we get the
following map

From this map, we get two possible solutions of a minimal

logical function depending on the way of covering the first
two cells with logical 1 in the last columns.

a) 1minf xz yz xyw xyz= + + +
b) 2 minf xz yz xzw xyz= + + +

We can see that the result gained using Karnaugh map
includes a lower number of terms than the result of
computation by means of Quine-McCluskey method.

S. R. Petrick proposed a modification of Quine-McCluskey
method that tries to remove the resulting redundancy [16]. The
Quine-McCluskey simplification technique with special
modifications is presented in [21].

Before describing the second phase of computation, we will
define several notions.
(i) A Boolean term g is an implicant of a Boolean term f if:

• each literal in g is also obtained in f (i.e. if g has the
form g(x1, ... , xn) then f has the form f(x1, ... , xn, y1,
… , ym)), and

• for all combinations of literals the implication g → f
has a value of True.

 We know that the implication is defined by Table 1.
From this definition, we get that g is an implicant of f if
and only if g ≤ f.

 In our case, that means that the second property is
satisfied if g(x1, ... , xn) ≤ f(x1, ... , xn, y1, … , ym) for each
selection of x1, ... , xn and each selection of y1, … , ym.

TABLE I
IMPLICATION

g f g → f
0 0 1
0 1 1
1 0 0
1 1 1

 Therefore, we can consider only those values of
variables at which g is true and, for all these cases, f must
also be true.

(ii) The terms resulting from the Quine-McCluskey method
are called prime implicants.

; ; ;

; ; ; ; ;

xyzw x yzw xyzw

xyzw x y zw xyz w x y zw x y zw

x y zw

; ; ;

; ; ; ; ;

xyzw x yzw xyzw

xyzw x y zw xyz w x y zw x y zw

x y zw

; ; ; ; ; ; ;

; ; ;

x yz x zw x y z y zw x y w xyz xz w

xzw y zw x y z

;xz y z

; ; ; ; ; ; ;

; ; ;

xyz xzw x y z y zw x yw xyz xzw

xzw y zw x y z

f x yzw x y zw xyz w

x yz w x y z w xyz w x y zw x y zw

x y zw

= + + +

+ + + + + +

+

 1 1

 1 1 1

 1 1

1 1

x

y

z

w

Fig. 1 Karnaugh map

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:5, 2007

1254

In the Petrick modification of the Quine-McCluskey
method, a table of prime implicants given by the results of the
first phase is built. It has prime implicants in the heads of
columns, minterms from a given CNDF are in the heads of
rows and, in cells representing intersections of rows and
columns, a selected symbol (e.g. ∗) is placed if the prime
implicant in question is a subset of a corresponding minterm.
We say that prime implicants cover minterms.
 In our example then we get Table II as follows.

TABLE II
COVERING OF MINTERMS BY PRIME IMPLICANTS

 xz y z x y w xyz xzw

xyzw ∗

x y zw ∗ ∗

xyzw ∗ ∗
xyzw ∗

x y zw ∗

xyz w ∗

x y zw ∗ ∗

x y zw ∗ ∗

x y zw ∗ ∗

Although the prime implicants cannot be simplified, some

of them can be redundant and thus may be omitted. However,
symbols ∗ in columns of considered prime implicants must be
spread into all rows, otherwise the disjunction of prime
implicants would not express the initial canonical (complete)
disjunctive normal form, i.e., there would be a non-covered
minterm.

If there is a row in which ∗ occurs only once, then the prime
implicant in the corresponding column cannot be omitted.
Such implicants are called essential prime implicants. In our
example there are three essential prime implicants: xz , y z

and xyz .
Now we will simplify Table II by deleting columns of

essential prime implicants and rows that contain their ∗
symbols.

We get Table 3.

TABLE III
 x y w xzw

x y z w ∗ ∗

It can be easily seen that, in simplified Table III, the minterm
x y zw may be covered by the prime implicant x y w or by

xzw . Hence we get two minimal disjunctive forms:

1minf xz yz xyw xyz= + + + and

2 minf xz yz xzw xyz= + + + ,

which agrees with the previous solution by the Karnaugh map.

Although computations by the Quine-McCluskey method
with the Petrick modification have a wider use than the
approach based on the Karnaugh map, however, this improved
method has also its restrictions. The main problem is in the
procedure of covering minterms by prime implicants. It can be
easily found if the number of the essential prime implicants is
high and thus the table of prime implicants will be very
reduced. In general, we cannot expect this, and it is even
possible that none of the prime implicants is essential. From
the combinatorial optimisation theory, it is known that the set
covering problem is NP-hard and its time complexity grows
exponentially with the growing input size.

It can be shown that, for a CNDF with n minterms, the
upper bound of the number of prime implicants is 3n/n. If
n=32, we can get more than 6.5 * 1015 prime implicants. To
solve such a large instance of the set covering problem is only
possible by heuristics (stochastic or deterministic) [1], [2], [4],
[6], [10], [11], [14], [15], [20], [22] or by approximation [7],
[8] methods. However, they do not guarantee an optimal
solution.

A formal definition of the problem and possible solution by
a genetic algorithm is proposed in the next section.

III. SET COVERING PROBLEM (SCP)
The set covering problem (SCP) is the problem of covering
the rows of a m-row, n-column, zero-one matrix (aij) by a
subset of columns at a minimal cost. Defining xj=1 if column j
(with cost cj=>0) is in the solution and xj=0 otherwise, the
SCP is:

 Minimise
1

n

j j
j

c x
=

∑ (5)

subject to

1

1, 1, 2,..., ,
n

ij j
j

a x i m
=

≥ =∑ (6)

 {0,1}, 1, 2,...,jx j n∈ = (7)

Constraints (6) ensure that each row is covered by at least one
column and (7) is a constraint guaranteeing integers.

In general, the cost coefficients cj are positive integers.
Here, in the application of the SCP for the second phase of the
Quine-McCluskey method, we assume all cj equal to 1
because we try to minimise the number of the covering
columns. This special case of SCP is called a unicost SCP.

SCP has, besides Quine-McCluskey method, a wide range
of applications, for example vehicle and crew scheduling [12],
facilities location [1], assembly line balancing and Boolean
expression simplification. There are number of other
combinatorial problems that can be formulated as, or
transformed to, SCP such as the graph colouring problem [1]
and the independent vertex set problem [7].

A fuzzy version of SCP is studied in [3] and [9].

Since we use, for solving the SCP, a modified version of
the genetic algorithm (GA) proposed by Beasley and Chu [2],
[4] for the non-unicost SCP, we summarise the basic

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:5, 2007

1255

properties of GAs

IV. GENETIC ALGORITHM
The skeleton for GA can be described as follows:

generate an initial population ;
evaluate fitness of individuals in the population ;
repeat
 select parents from the population;
 recombine (mate) parents to produce children ;
 evaluate fitness of the children ;
 replace some or all of the population by the children
until a satisfactory solution has been found ;

Since the principles of GAs are well-known, we will only
deal with GA parameter settings for the problems to be
studied. Now we describe the general settings.

Individuals in the population (chromosomes) are
represented as binary strings of length n, where a value of 0 or
1 at the i-th bit (gene) implies that xi = 0 or 1 in the solution
respectively.

The population size N is usually set between n and 2n.
Many empirical results have shown that population sizes in
the range [50, 200] work quite well for most problems.

Initial population is obtained by generating random strings
of 0s and 1s in the following way: First, all bits in all strings
are set to 0, and then, for each of the strings, randomly
selected bits are set to 1 until the solutions (represented by
strings) are feasible.

The fitness function corresponds to the objective function to
be maximised or minimised.

There are three most commonly used methods of selection
of two parent solution for reproduction: proportionate
selection, ranking selection, and tournament selection. The
tournament selection is perhaps the simplest and most efficient
among these three methods. We use the binary tournament
selection method where two individuals are chosen randomly
from the population. The more fit individual is then allocated
a reproductive trial. In order to produce a child, two binary
tournaments are held, each of which produces one parent.

The recombination is provided by the uniform crossover
operator, which has a better recombination potential than do
other crossover operators as the classical one-point and two-
point crossover operators. The uniform crossover operator
works by generating a random crossover mask B (using
Bernoulli distribution) which can be represented as a binary
string B = b1b2b3 ··· bn-1bn where n is the length of the
chromosome. Let P1 and P2 be the parent strings
P1[1], ... ,P1[n] and P2[1], ... ,P2[n] respectively. Then the
child solution is created by letting: C[i] = P1[i] if bi = 0 and
C[i] = P2[i] if bi = 1. Mutation is applied to each child after
crossover. It works by inverting M randomly chosen bits in a
string where M is experimentally determined. We use a
mutation rate of 5/n as a lower bound on the optimal mutation
rate. It is equivalent to mutating five randomly chosen bits per
string.

When v child solutions have been generated, the children
will replace v members of the existing population to keep the
population size constant, and the reproductive cycle will
restart. As the replacement of the whole parent population

does not guarantee that the best member of a population will
survive into the next generation, it is better to use steady-state
or incremental replacement which generates and replaces only
a few members (typically 1 or 2) of the population during
each generation. The least-fit member, or a randomly selected
member with below-average fitness, are usually chosen for
replacement.

Termination of a GA is usually controlled by specifying a
maximum number of generations tmax or relative improvement
of the best objective function value over generations. Since
the optimal solution values for most problems are not known,
we choose tmax ≤ 5000.

V. GENETIC ALGORITHM FOR SCP
The chromosome is represented by an n-bit binary string S

where n is the number of columns in the SCP. A value of 1 for
the j-th bit implies that column j is in the solution and 0
otherwise.

Since the SCP is a minimisation problem, the lower the
fitness value, the more fit the solution is. The fitness of a
chromosome for the unicost SCP is calculated by (8).

1

() []
n

j
f S S j

=
= ∑ (8)

The binary representation causes problems with generating
infeasible chromosomes, e.g. in initial population, in
crossover and/or mutation operations. To avoid infeasible
solutions a repair operator is applied.

Let
I = {1, … , m} = the set of all rows;
J = {1, … , n} = the set of all columns;
α i = {j∈J | aij =1} = the set of columns that cover row i, i∈I;
β j = {i∈I | aij =1} = the set of rows covered by column j, j∈J;
S = the set of columns in a solution;
U = the set of uncovered rows;
wi = the number of columns that cover row i, i∈I in S.

The repair operator for the unicost SCP has the following
form:
initialise wi : = | S ∩ α i | , ∀i ∈ I ;
initialise U : = { i | wi = 0 , ∀i ∈ I } ;
for each row i in U (in increasing order of i) do

begin find the first column j (in increasing order of j)
 in α i that minimises 1/ |U ∩ β j | ;

 S : = S + j ;
 wi : = wi + 1, ∀i ∈β j ;
 U : = U − β j

end ;
for each column j in S (in decreasing order of j) do

if wi ≥ 2 , ∀i ∈β j
 then begin S : = S − j ;
 wi : = wi − 1, ∀i ∈β j
 end ;
{ S is now a feasible solution to the SCP and contains no
redundant columns }

 Initialising steps identify the uncovered rows. For
statements are “greedy” heuristics in the sense that in the 1st

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:5, 2007

1256

for, columns with low cost-ratios are being considered first
and in the 2nd for, columns with high costs are dropped first
whenever possible.

VI. CONCLUSION
 In this paper, we studied the problem of minimising the
Boolean functions with a rather high number of variables.
Since traditional approaches based on the Boolean algebra or
Karnaugh maps have restrictions in the number of variables
and the sequence of laws that could be applied is not unique,
we focus on the well-known Quine-McCluskey method. Since
it does not guarantee the finding of an optimal solution, we
must apply a postprocessing phase. Unfortunately, the data
resulting from the Quine-McCluskey method are in the form
of a unicost set covering problem, which is NP-hard.
Therefore, for logical functions, the obvious Petrick’s
extension of the Quine-McCluskey method cannot be applied,
and heuristic or approximation method must be used instead.
We proposed a genetic algorithm-based approach and
discussed problem-oriented parameter settings.
 In the future, we are going to implement also other
stochastic heuristics, such as simulated annealing and tabu-
search, and compare them with the genetic algorithm.

REFERENCES
[1] L. Brotcorne, G. Laporte and F. Semet, “Fast Heuristics for Large Scale

Covering-Location Problems,” Computers & Operations Research, vol.
29, pp. 651-665, 2002.

[2] J.E. Beasley P.C. Chu, “A Genetic Algorithm for the Set Covering
Problem,” Journal of Operational Research, vol. 95, no. 2, pp. 393-404,
1996.

[3] C.I. Chiang, M.J. Hwang and Y.H. Liu, “An Alternative Formulation for
Certain Fuzzy Set-Covering Problems,” Mathematical and Computer
Modelling, vol. 42, pp. 363-365, 2005.

[4] P. Chu, “A Genetic Algorithm Approach for Combinatorial Optimisation
Problems,” PhD thesis, The Management School Imperial College of
Science, Technology and Medicine, London, 1997.

[5] K. Čulík, M. Skalická, I. Váňová, Logic (in Czech). Brno: VUT FE,
1968.

[6] P. Galinier and A. Hertz, “Solution Techniques for the Large Set
Covering Problem,” Discrete Applied Mathematics, vol. 155, pp. 312-
326, 2007.

[7] F.C. Gomes, C.N. Meneses, P.M. Pardalos and G.V.R. Viana,
“Experimental Analysis of Approximation Algorithms for the Vertex
Cover and Set Covering Problems,” Computers & Operations
Research, vol. 33, pp. 3520-3534, 2006.

[8] T. Grossman and A. Wool, “Computational Experience with
Approximation Algorithms for the Set Covering Problem,” European
Journal of Operational Research, vol. 101, pp. 81-92, 1997.

[9] M.J. Hwang, C.I. Chiang and Y.H. Liu, “Solving a Fuzzy Set-Covering
Problem,” Mathematical and Computer Modelling, vol. 40, pp. 861-865,
2004.

[10] G. Lan and G.W. DePuy, “On the Effectiveness of Incorporating
Randomness and Memory into a Multi-Start Metaheuristic with
Application to the Set Covering Problem,” Computers & Industrial
Engineering, vol. 51, pp. 362-374, 2006.

[11] G. Lan, G.W. DePuy and G.E. Whitehouse, “An Effective and Simple
Heuristic for the Set Covering Problem,” European Journal of
Operational Research, vol. 176, pp. 1387-1403, 2007.

[12] M. Mesquita and A. Paias, “Set Partitioning/Covering-Based
Approaches for the Integrated Vehicle and Crew Scheduling Problem,”
Computers & Operations Research, in press, 2006.

[13] E.J. McCluskey, “Minimization of Boolean Functions,” Bell System
Technical Journal, vol. 35, no. 5, pp. 1417-1444, 1956.

[14] A. Monfroglio, “Hybrid Heuristic Algorithms for Set Covering,”
Computers & Operations Research, vol. 25, pp. 441-455, 1998.

[15] M. Ohlsson, C. Peterson and B. Söderberg, “An Efficient Mean Field
Approach to the Set Covering Problem,” European Journal of
Operational Research, vol. 133, pp. 583-595, 2001.

[16] S.K. Petrick, “On the Minimization of Boolean Functions,” in
Proceedings of the International Conference Information Processing,
Paris, 1959, pp. 422-423.

[17] Ch. Posthoff and B. Steinbach, Logic Functions and Equations: Binary
Models for Computer Science. Berlin: Springer-Verlag, 2005.

[18] W.V. Quine, “The Problem of Simplifying Truth Tables,” American
Mathematical Monthly, vol. 59, no. 8, pp. 521-531, 1952.

[19] L. Sekanina, Evolvable Components. Berlin: Springer-Verlag, 2003.
[20] M. Solar, V. Parada and R. Urrutia, “A Parallel Genetic Algorithm to

Solve the Set-Covering Problem,” Computers & Operations
Research, vol. 29, pp. 1221-1235, 2002.

[21] S.P. Tomaszewski, I.U. Celik and G.E. Antoniou, “WWW-Based
Boolean Function Minimization,” International Journal of Applied
Mathematics and Computer Science, vol. 13, no. 4, pp. 577–583, 2003.

[22] M. Yagiura, M. Kishida and T. Ibaraki, “A 3-Flip Neighborhood Local
Search for the Set Covering Problem,” European Journal of Operational
Research, vol. 172, pp. 472-499, 2006.

