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Abstract—Finding the minimal logical functions has important 

applications in the design of logical circuits. This task is solved by 
many different methods but, frequently, they are not suitable for a 
computer implementation. We briefly summarise the well-known 
Quine-McCluskey method, which gives a unique procedure of 
computing and thus can be simply implemented, but, even for simple 
examples, does not guarantee an optimal solution. Since the Petrick 
extension of the Quine-McCluskey method does not give a generally 
usable method for finding an optimum for logical functions with a 
high number of values, we focus on interpretation of the result of the 
Quine-McCluskey method and show that it represents a set covering 
problem that, unfortunately, is an NP-hard combinatorial problem. 
Therefore it must be solved by heuristic or approximation methods. 
We propose an approach based on genetic algorithms and show 
suitable parameter settings. 

 
Keywords—Boolean algebra, Karnaugh map, Quine-McCluskey 

method, set covering problem, genetic algorithm.  

I. INTRODUCTION 

OR minimisation of logical functions, laws of the Boolean 
algebra and the Karnaugh maps are mostly used.  

The Karnaugh maps represent a very efficient graphical tool 
for minimising logical functions with no more than 6 
variables. However, their use is based on visual recognition of 
adjacent cells and, therefore, the method is not suitable for 
automated processing on computers. A direct application of 
the Boolean algebra laws is not restricted in this way, but 
there is no general algorithm defining the sequence of their 
application and thus this approach is not suitable for computer 
implementation either.   

With the growing strength of computational techniques, 
further investigations were focused on an algorithm-based 
technique for simplifying Boolean logic functions that could 
be used to handle a large number of variables.  

The well-known method usable on computers is the 
algorithm proposed by Edward J. McCluskey, professor of 
electrical engineering at University of Standford, and 
philosopher Willard van Orman Quine from Harvard 
University [13], [18].  

We will assume that the number of variables n may be high 
but restricted in the sense that all 2n rows of the corresponding 
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truth table may be saved in a memory and thus may be 
processed. If this condition is not satisfied, then we could only 
work with a selected number of truth table rows. This 
approach is possible, e.g., in image filters [19]. Of course, this 
is inacceptable in real logic control applications where all 
input combinations must be tested. In the next considerations 
we will assume the full truth table.  

II. QUINE-MCCLUSKEY METHOD 
The Quine-McCluskey method [13], [17], [18] is an exact 

algorithm based on systematic application of the distributive 
law (1), complement law (2) and idempotence law (3), i.e. the 
laws as follows: 
 .( )x y z xy xz+ = +  (1)  

 1x x+ =  (2) 
 x x x+ =  (3) 

From (1) and (2), we can easily derive the uniting theorem 
(4)  
 .( ) .1xy x y x y y x x+ = + = =  (4) 

In general, this means that two expressions with the same 
set of variables differing only in one variable with 
complementary occurrence may be reduced to one expression 
given by their common part, e.g.  

( ) .1f xyzw xyzw xzw x x xzw xzw= + = + = =  
For next considerations we will need the following notions: 
Literal is a variable or its negation. 
Term is a conjunction (= product) of literals. 
Minterm is a conjunction of literals including every variable 

of the function exactly once in true or complemented form.  
For example, if ( , , )f x y z x yz xy= + , then x yz and xy are 

terms and minterms are represented by conjunctions 
,  x yz xyz and xyz  because ( )xy xy z z xyz xyz= + = + . 

Disjunctive normal form (DNF) of a formula f is a formula 
f’ such that f’ is equivalent to f and f’ has the form of a 
disjunction of conjunctions of literals.  

Canonical (or complete) disjunctive normal form (CDNF) 
is a DNF where all conjunctions are represented by minterms. 

Now we can describe a skeleton of the Quine-McCluskey 
method: 

1. Minterms of a given Boolean function in CDNF are 
divided into groups such that minterms with the same 
number of negations are in the same group. 

2. All pairs of terms from adjacent groups (i.e. groups 
whose number of negations differ by one) are 
compared.  
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3. If compared terms differ only in one literal (and the 
uniting theorem may be applied) then these terms are 
removed and a term reduced to a common part is 
carried to the next iteration.  

4. All terms are used only once, i.e. if necessary the 
idempotence law is applied. 

5. If the number of terms in the new iteration is 
nonzero, then steps 2-5 are repeated, otherwise the 
algorithm finishes.  

The result of the algorithm is represented by the terms 
that were not removed, i.e. that could not be simplified.  

Now, we will apply the Quine-McCluskey method to a 
simple logical function from [5] and, by means of the 
Karnaugh map, we will show that it will not find its minimal 
form. 

 Example 1   Minimise the following logical function in 
CDNF. 
 
 
 
 
 

Solution:  If we divide the minterms into groups by the 
number of their negations, then we get this initial iteration:  
 
(0) 
 
 
 

If we compare all pairs of terms from adjacent groups in the 
initial iteration (0) and place in frames terms that can be 
simplified and divide the resulting terms in the next iteration 
(1) into groups again, then we get: 
  
(0) 
 
 
 
 
(1) 
 
 
Applying the previous steps to iteration (1), we get: 
 
(1) 
 
                                         
(2)  
 
In iteration (2) we have only one group of terms and thus no 
simplified terms can be generated and the algorithm finishes. 
Its result fm is given by a disjunction of those terms that cannot 
be simplified.  

mf xz y z x yw xyz xzw= + + + +  

Let us consider the same example and solve it using the 
Karnaugh map. For the given Boolean function f, we get the 
following map 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
From this map, we get two possible solutions of a minimal 

logical function depending on the way of covering the first 
two cells with logical 1 in the last columns.  

a) 1minf xz yz xyw xyz= + + +  
b) 2 minf xz yz xzw xyz= + + +  

We can see that the result gained using Karnaugh map 
includes a lower number of terms than the result of 
computation by means of Quine-McCluskey method.  

S. R. Petrick proposed a modification of Quine-McCluskey 
method that tries to remove the resulting redundancy [16]. The 
Quine-McCluskey simplification technique with special 
modifications is presented in [21]. 

Before describing the second phase of computation, we will 
define several notions. 
(i) A Boolean term g is an implicant of a Boolean term f if: 

• each literal in g is also obtained in f (i.e. if g has the 
form g(x1, ... , xn) then f has the form f(x1, ... , xn, y1, 
… , ym)), and 

• for all combinations of literals the implication g → f 
has a value of True.  

 We know that the implication is defined by Table 1. 
From this definition, we get that g is an implicant of f if 
and only if g ≤ f.  

 In our case, that means that the second property is 
satisfied if g(x1, ... , xn) ≤ f(x1, ... , xn, y1, … , ym) for each 
selection of x1, ... , xn and each selection of y1, … , ym. 

TABLE I 
IMPLICATION 

g f g → f 
0 0 1 
0 1 1 
1 0 0 
1 1 1 

  
 Therefore, we can consider only those values of 
variables at which g is true and, for all these cases, f must 
also be true.  

(ii) The terms resulting from the Quine-McCluskey method 
are called prime implicants.  

; ; ;
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Fig. 1  Karnaugh map 
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In the Petrick modification of the Quine-McCluskey 
method, a table of prime implicants given by the results of the 
first phase is built. It has prime implicants in the heads of 
columns, minterms from a given CNDF are in the heads of 
rows and, in cells representing intersections of rows and 
columns, a selected symbol (e.g. ∗) is placed if the prime 
implicant in question is a subset of a corresponding minterm. 
We say that prime implicants cover minterms.  
 In our example then we get Table II as follows. 
  

TABLE II 
COVERING OF MINTERMS BY PRIME IMPLICANTS 

 xz  y z  x y w  xyz  xzw  

xyzw  ∗     

x y zw   ∗ ∗   

xyzw     ∗ ∗ 
xyzw  ∗     

x y zw   ∗    

xyz w     ∗  

x y zw  ∗ ∗    

x y zw    ∗  ∗ 

x y zw  ∗ ∗    

 
Although the prime implicants cannot be simplified, some 

of them can be redundant and thus may be omitted.  However, 
symbols ∗ in columns of considered prime implicants must be 
spread into all rows, otherwise the disjunction of prime 
implicants would not express the initial canonical (complete) 
disjunctive normal form, i.e., there would be a non-covered 
minterm.  

If there is a row in which ∗ occurs only once, then the prime 
implicant in the corresponding column cannot be omitted. 
Such implicants are called essential prime implicants. In our 
example there are three essential prime implicants: xz , y z  

and xyz .  
Now we will simplify Table II by deleting columns of 

essential prime implicants and rows that contain their ∗ 
symbols.  

We get Table 3. 
 

TABLE III 
 x y w  xzw  

x y z w  ∗ ∗ 

 
It can be easily seen that, in simplified Table III, the minterm 
x y zw  may be covered by the prime implicant x y w  or by 

xzw . Hence we get two minimal disjunctive forms: 

1minf xz yz xyw xyz= + + +  and  

2 minf xz yz xzw xyz= + + + , 

which agrees with the previous solution by the Karnaugh map.  

Although computations by the Quine-McCluskey method 
with the Petrick modification have a wider use than the 
approach based on the Karnaugh map, however, this improved 
method has also its restrictions. The main problem is in the 
procedure of covering minterms by prime implicants. It can be 
easily found if the number of the essential prime implicants is 
high and thus the table of prime implicants will be very 
reduced. In general, we cannot expect this, and it is even 
possible that none of the prime implicants is essential. From 
the combinatorial optimisation theory, it is known that the set 
covering problem is NP-hard and its time complexity grows 
exponentially with the growing input size.  

It can be shown that, for a CNDF with n minterms, the 
upper bound of the number of prime implicants is 3n/n. If 
n=32, we can get more than 6.5 * 1015 prime implicants. To 
solve such a large instance of the set covering problem is only 
possible by heuristics (stochastic or deterministic) [1], [2], [4], 
[6], [10], [11], [14], [15], [20], [22] or by approximation [7], 
[8] methods. However, they do not guarantee an optimal 
solution.  

A formal definition of the problem and possible solution by 
a genetic algorithm is proposed in the next section. 

III. SET COVERING PROBLEM (SCP) 
The set covering problem (SCP) is the problem of covering 
the rows of a m-row, n-column, zero-one matrix (aij) by a 
subset of columns at a minimal cost. Defining xj=1 if column j 
(with cost cj=>0) is in the solution and xj=0 otherwise, the 
SCP is:  

 Minimise 
1

n

j j
j

c x
=

∑  (5) 

subject to  

 
1

1, 1, 2,..., ,
n

ij j
j

a x i m
=

≥ =∑  (6) 

 {0,1}, 1, 2,...,jx j n∈ =  (7) 

Constraints (6) ensure that each row is covered by at least one 
column and (7) is a constraint guaranteeing integers.  

In general, the cost coefficients cj are positive integers. 
Here, in the application of the SCP for the second phase of the 
Quine-McCluskey method, we assume all cj equal to 1 
because we try to minimise the number of the covering 
columns. This special case of SCP is called a unicost SCP.  

SCP has, besides Quine-McCluskey method, a wide range 
of applications, for example vehicle and crew scheduling [12], 
facilities location [1], assembly line balancing and Boolean 
expression simplification. There are number of other 
combinatorial problems that can be formulated as, or 
transformed to, SCP such as the graph colouring problem [1] 
and the independent vertex set problem [7].  

A fuzzy version of SCP is studied in [3] and [9].  

Since we use, for solving the SCP, a modified version of 
the genetic algorithm (GA) proposed by Beasley and Chu [2], 
[4] for the non-unicost SCP, we summarise the basic 
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properties of GAs 

IV. GENETIC ALGORITHM 
The skeleton for GA can be described as follows: 

generate an initial population ; 
evaluate fitness of individuals in the population ; 
repeat  
 select parents from the population; 
 recombine (mate) parents to produce children ; 
 evaluate fitness of the children ; 
 replace some or all of the population by the children 
until a satisfactory solution has been found ; 

Since the principles of GAs are well-known, we will only 
deal with GA parameter settings for the problems to be 
studied. Now we describe the general settings.  

Individuals in the population (chromosomes) are 
represented as binary strings of length n, where a value of 0 or 
1 at the i-th bit (gene) implies that xi = 0 or 1 in the solution 
respectively.   

The population size N is usually set between n and 2n. 
Many empirical results have shown that population sizes in 
the range [50, 200] work quite well for most problems.  

Initial population is obtained by generating random strings 
of 0s and 1s in the following way: First, all bits in all strings 
are set to 0, and then, for each of the strings, randomly 
selected bits are set to 1 until the solutions (represented by 
strings) are feasible. 

The fitness function corresponds to the objective function to 
be maximised or minimised. 

There are three most commonly used methods of selection 
of two parent solution for reproduction: proportionate 
selection, ranking selection, and tournament selection. The 
tournament selection is perhaps the simplest and most efficient 
among these three methods.  We use the binary tournament 
selection method where two individuals are chosen randomly 
from the population. The more fit individual is then allocated 
a reproductive trial. In order to produce a child, two binary 
tournaments are held, each of which produces one parent.  

The recombination is provided by the uniform crossover 
operator, which has a better recombination potential than do 
other crossover operators as the classical one-point and two-
point crossover operators. The uniform crossover operator 
works by generating a random crossover mask B (using 
Bernoulli distribution) which can be represented as a binary 
string B = b1b2b3 ··· bn-1bn where n is the length of the 
chromosome. Let P1 and P2 be the parent strings 
P1[1], ... ,P1[n] and P2[1], ... ,P2[n] respectively. Then the 
child solution is created by letting: C[i] = P1[i] if bi = 0 and 
C[i] = P2[i] if bi = 1. Mutation is applied to each child after 
crossover. It works by inverting M randomly chosen bits in a 
string where M is experimentally determined. We use a 
mutation rate of 5/n as a lower bound on the optimal mutation 
rate. It is equivalent to mutating five randomly chosen bits per 
string.  

When v child solutions have been generated, the children 
will replace v members of the existing population to keep the 
population size constant, and the reproductive cycle will 
restart. As the replacement of the whole parent population 

does not guarantee that the best member of a population will 
survive into the next generation, it is better to use steady-state 
or incremental replacement which generates and replaces only 
a few members (typically 1 or 2) of the population during 
each generation. The least-fit member, or a randomly selected 
member with below-average fitness, are usually chosen for 
replacement.  

Termination of a GA is usually controlled by specifying a 
maximum number of generations tmax or relative improvement 
of the best objective function value over generations. Since 
the optimal solution values for most problems are not known, 
we choose  tmax ≤ 5000. 

V. GENETIC ALGORITHM FOR SCP 
The chromosome is represented by an n-bit binary string S 

where n is the number of columns in the SCP. A value of 1 for 
the j-th bit implies that column j is in the solution and 0 
otherwise. 

Since the SCP is a minimisation problem, the lower the 
fitness value, the more fit the solution is. The fitness of a 
chromosome for the unicost SCP is calculated by (8). 

 
1

( ) [ ]
n

j
f S S j

=
= ∑  (8) 

The binary representation causes problems with generating 
infeasible chromosomes, e.g. in initial population, in 
crossover and/or mutation operations. To avoid infeasible 
solutions a repair operator is applied. 

Let   
I = {1, … , m} = the set of all rows;   
J = {1, … , n} = the set of all columns;  
α i = {j∈J | aij =1} = the set of columns that cover row i, i∈I;   
β j = {i∈I | aij =1} = the set of rows covered by column j, j∈J;   
S = the set of columns in a solution;   
U = the set of uncovered rows;  
wi = the number of columns that cover row i, i∈I  in  S. 

The repair operator for the unicost SCP has the following 
form: 
initialise wi : = | S ∩ α i | , ∀i ∈ I ; 
initialise U : = { i | wi = 0 , ∀i ∈ I } ; 
for each row i  in  U  (in increasing order of i) do 

begin find the first column j (in increasing order of j)  
  in α i that minimises  1/ |U ∩ β j | ; 

 S : = S + j ;      
 wi : = wi + 1,  ∀i ∈β j ;     
 U : = U − β j  

end ; 
for each column j  in  S  (in decreasing order of j) do 

if wi ≥ 2 , ∀i ∈β j 
 then begin S : = S − j ;      
 wi : = wi − 1,  ∀i ∈β j  
 end ; 
{ S is now a feasible solution to the SCP and contains no 
redundant columns } 

 Initialising steps identify the uncovered rows. For 
statements are “greedy” heuristics in the sense that in the 1st 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:5, 2007

1256

 

 

for, columns with low cost-ratios are being considered first 
and in the 2nd for, columns with high costs are dropped first 
whenever possible. 

VI. CONCLUSION 
 In this paper, we studied the problem of minimising the 
Boolean functions with a rather high number of variables. 
Since traditional approaches based on the Boolean algebra or 
Karnaugh maps have restrictions in the number of variables 
and the sequence of laws that could be applied is not unique, 
we focus on the well-known Quine-McCluskey method. Since 
it does not guarantee the finding of an optimal solution, we 
must apply a postprocessing phase. Unfortunately, the data 
resulting from the Quine-McCluskey method are in the form 
of a unicost set covering problem, which is NP-hard. 
Therefore, for logical functions, the obvious Petrick’s 
extension of the Quine-McCluskey method cannot be applied, 
and heuristic or approximation method must be used instead. 
We proposed a genetic algorithm-based approach and 
discussed problem-oriented parameter settings. 
 In the future, we are going to implement also other 
stochastic heuristics, such as simulated annealing and tabu-
search, and compare them with the genetic algorithm.  
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