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Stability analysis of linear fractional order neutral
system with multiple delays by algebraic approach

Lianglin Xiong, Yun Zhao, and Tao Jiang

Abstract—In this paper, we study the stability of n-dimensional
linear fractional neutral differential equation with time delays. By
using the Laplace transform, we introduce a characteristic equation
for the above system with multiple time delays. We discover that
if all roots of the characteristic equation have negative parts, then
the equilibrium of the above linear system with fractional order is
Lyapunov globally asymptotical stable if the equilibrium exist that is
almost the same as that of classical differential equations. An example
is provided to show the effectiveness of the approach presented in
this paper.

Keywords—Fractional neutral differential equation, laplace trans-
form, characteristic equation.

I. INTRODUCTION

FRACTIONAL Fractional differential equations have
gained considerable importance due to their application

in various sciences, such as viscoelasticity, electroanalytical
chemistry, electric conductance of biological systems, mod-
eling of neurons, diffusion processes, damping laws, rheol-
ogy, etc. Fractional order differential equation is represented
in continuous-time domain by differential equations of non
integer-order. Moreover, time delay is often present in real
processes due to transportation of materials or energy. There-
fore, most fractional systems may contain a delay term, such
as fractional order neutral systems or some other fractional
order delay systems.

Analysis of stability is fundamental to any control system.
Recently, considerable attention has given to the stability
problems arising from neutral systems. And various analysis
techniques have been utilized to derive stability criteria for
the systems by many researchers [1]-[8], and the references
therein. On the other hand, although the problem of stability is
a very essential and crucial issue for control systems including
fractional order systems, due to the complexity of the relations,
it has been discussed and investigated only in some recent
literature [9]-[20], and the references therein. In the last five
years, considerable attention has also been paid to obtain
analytical robust stability conditions for fractional order linear
time invariant (FO-LTI) systems, and the Cauchy initial value
problem for various kinds of fractional order systems. The
Cauchy initial value problem were discussed for various type
fractional neutral functional differential equations and many
criteria on existence and uniqueness were obtained. However,
there is not much work on the subject of stability for fractional
order neutral system, besides [21]-[29]. More recently, used
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the characteristic equation of the neutral system with single
delay, stability criteria were derived in terms of the spectral
radius of modulus matrices in [30]-[31], and the examples
were showed that the conditions obtained in those paper
are less conservative than some existing results. However,
the stability for the fractional neutral functional differential
equations hasn’t been get attention by many researchers. All
of those have motivated our research.

In this paper, we are interested in the stability of n-
dimensional linear fractional neutral differential equation with
multiple time delays. Similar to the approach of [9], making
use of the Laplace transform, a characteristic equation for the
above system with multiple time delays is introduced. We
discover that if all roots of the characteristic equation have
negative parts, then the equilibrium of the above linear system
with fractional order is Lyapunov globally asymptotical stable
if the equilibrium exist that is almost the same as that of
classical differential equations. Finally, one special numerical
example is given to illustrate the effectiveness of the obtained
results.

II. PROBLEM STATEMENT

This section start with recalling the essentials of the frac-
tional calculus. The idea of fractional calculus has been
known since the development of the regular calculus, with
the first reference probably being associated with Leibniz and
L’Hospital in 1695 where half-order derivative was mentioned.

The fractional calculus is a name for the theory of in-
tegrals and derivatives of arbitrary order, which unifies and
generalizes the notions of integer-order differentiation and n-
fold integration. There are three main uesed definitions of
fractional integration and differentiation, such as Grunwald-
Letnikov’s definition, Riemann-Liouville’s definition, Caputo’s
fractional derivative. The former two definitions are often used
by pure mathematicians, while the last one is adopted by
applied scientists, since it is more convenient in engineering
applications. Here we only discuss Caputo derivative:

C
0 D

α
t x(t) =

dqx(t)

dtq
= Jm−qx(m)(t), α > 0

where m = [q], i.e., m is the first integer that is not less than
q, x(m) is a conventional mth order derivative, Jβ is the βth
order Riemann-Liouville integral operator, which is expressed
as follows:

Jβx(t) =
1

Γ(β)

∫ t

0

(t− s)β−1x(s)ds, β > 0.
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In engineering, the fractional order q often lies in (0, 1), so
we always suppose that the ’order’ q is a positive number but
less than 1 in this paper.

In the present article, we study the following
n−dimensional linear fractional order neutral systems
with multiple time delays:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C
0 D

α1
t x1(t)−

n∑

i=1

c1i
C
0 D

α1
t xi(t− r1i) =

n∑

i=1

[a1ixi(t) + b1ix(t− τ1i)]

C
0 D

α2
t x2(t)−

n∑

i=1

c2i
C
0 D

α2
t xi(t− r2i) =

n∑

i=1

[a2ixi(t) + b2ix(t− τ2i)]

...

C
0 D

αn
t xn(t)−

n∑

i=1

cni
C
0 D

αn
t xi(t− rni) =

n∑

i=1

[anixi(t) + bnix(t− τni)]

(1)

where αj is real and lies in (0, 1). the initial values xj(t) =
φj(t) are given for −maxi,j(τji, rji) = −ρmax ≤ 0 and j =
1, · · · , n.

Next, we study the stability of system (1). Taking Laplace
transform [32] on both sides of (1) gives

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sα1X1(s)−
n∑

i=1

c1i[s
α1e−sr1iXi(s)− e−sr1isα1−1φi(0)

+

∫ 0

−r1i

e−s(r1i+t) C
0 Dα1

t φi(t)dt]

= sα1−1φ1(0) +
n∑

i=1

[a1iXi(s) + b1ie
−sτ1i (Xi(s)

+

∫ 0

−τ1i

e−stφi(t)dt)]

sα2X2(s)−
n∑

i=1

c2i[s
α2e−sr2iXi(s)− e−sr2isα2−1φi(0)

+

∫ 0

−r2i

e−s(r2i+t) C
0 Dα2

t φi(t)dt]

= sα2−1φ2(0) +
n∑

i=1

[a2iXi(s) + b2ie
−sτ2i (Xi(s)

+

∫ 0

−τ2i

e−stφi(t)dt)]

...

sαnXn(s)−
n∑

i=1

cni[s
αne−srniXi(s)− e−srnisαn−1φi(0)

+

∫ 0

−rni

e−s(rni+t) C
0 Dαn

t φi(t)dt]

= sαn−1φn(0) +

n∑

i=1

[aniXi(s) + bnie
−sτni (Xi(s)

+

∫ 0

−τni

e−stφi(t)dt)]

where Xi(s) is the Laplace transform of xi(t) with Xi(s) =
L(xi(t)), 1 ≤ i ≤ n. We can rewrite (2) as follows:

Δ(s) •

⎛
⎜⎜⎜⎝

X1(s)
X2(s)

...
Xn(s)

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

d1(s)
d2(s)

...
dn(s)

⎞
⎟⎟⎟⎠ , (2)

in which

dj(s) =
n∑

i=1

bjie
−sτji

∫ 0

−τji

e−stφi(t)dt

+
n∑

i=1

cjie
−srji

∫ 0

−rji

e−st C
0 D

αj
t φi(t)dt

+
n∑

i=1

cjie
−srjisαj−1φi(0) + sαj−1φj(0),

j = 1, · · · , n. (3)

Δ(s) =

⎛
⎜⎜⎜⎝

Δ11(s) Δ12(s) · · · Δ1n(s)
0 Δ22(s) · · · Δ2n(s)
...

...
. . .

...
0 · · · · · · Δnn(s)

⎞
⎟⎟⎟⎠ (4)

where

Δ11(s) = sα1 − c11sα1e−sr11 − a11 − b11e−sτ11 ,

Δ22(s) = sα2 − c22sα2e−sr22 − a22 − b22e−sτ22 ,

Δnn(s) = sαn − cnnsαne−srnn − ann − bnne−sτnn ,

Δji(s) = sαj − cjisαje−srji − aji − bjie−sτji .

We call Δ(s) a characteristic matrix of system (1) for sim-
plicity and det(Δ(s)) a characteristic polynomial of (1). The
distribution of det(Δ(s))

′
s eigenvalues totally determines the

stability of system (1). This can be seen from the following
discussion.

III. MAIN RESULTS

In this section, we establish several stability condition for
fractional order neutral systems.

Obviously, if a linear fractional differential equation has a
non-zero equilibrium, we can move this equilibrium to the
origin by the translation transform. Throughout the paper, we
always suppose that (1) has a zero solution and all complex
computations are done in the branch of the principle value of
argument.

Theorem 1: If all the roots of the characteristic equation
det(Δ(s)) = 0 have negative real parts, then the zero solution
of system (1) is Lyapunov globally asymptotically stable.

Proof: Multiplying s on both sides of (2) gives

Δ(s) •

⎛
⎜⎜⎜⎝

sX1(s)
sX2(s)

...
sXn(s)

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

sd1(s)
sd2(s)

...
sdn(s)

⎞
⎟⎟⎟⎠ . (5)

If all roots of the transcendental equation det(Δ(s)) = 0 lie in
open left half complex plane,i.e., Re(s) < 0, then we consider
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(5) in Re(s) ≥ 0. In this restricted area, (5) has a unique
solution

(
sX1(s) sX2(s) · · · sXn(s)

)
So, we have

lim
s→0,Re(s)≥0

sXi(s) = 0, i = 1, 2, · · · , n.

From the assumption of all roots of the characteristic equa-
tion det(Δ(s)) = 0 and the final-value theorem of Laplace
transform [32], we get

lim
t→+∞xi(t) = lim

s→0,Re(s)≥0
sXi(s) = 0, i = 1, 2, · · · , n.

It implies that the fractional order neutral system is Lyapunov
globally asymptotically stable. It completes the proof.

Remark 1. This result contains that of Theorem 1 in [9].
In fact, when C = 0, the neutral system is typical fractional
order system with multiple time delay system, the result is
obviously consist with that of [9]. Although this theorem is
an extension of [9] in some sense, this results will be important
to the stability analysis for fractional order neutral systems.

Remark 2. If τji = τ > 0, rji = r > 0 for i, j =
1, 2, · · · , n and α1 = α2 = · · · = αn = 1, then the
characteristic matrix and characteristic equation of (1) are
reduced to sI−se−srC−A−e−sτB and det(sI−se−srC−
A − e−sτB) = 0 respectively. They coincide with the usual
definitions of the characteristic matrix and characteristic equa-
tion of neutral delayed equations. Especially, if B = C = 0,
then the characteristic matrix and characteristic equation of
(1) are respectively reduced to sI − A and det(sI − A) = 0,
which agree with the typical definitions for typical differential
equations.

Further more, If τji = rji = τ = r > 0 for i, j =
1, 2, · · · , n and α1 = α2 = · · · = αn = α, then systems
(1) become as

C
0 D

α
t xj(t)−

n∑

i=1

cji
C
0 D

α
t xi(t−τ) =

n∑

i=1

[ajixi(t)+bjix(t−τ)]
(6)

In short, equation (6) can be written as
C
0 D

α
t x(t)− C C

0 D
α
t x(t− τ) = Ax(t) +Bx(t− τ) (7)

where A = (aij)n×n, B = (bij)n×n, C = (cij)n×n, xT (t) =
( x1(t) x2(t) · · · xn(t) )T , and the characteristic matrix
of (1) is reduced to

sαI − sαe−sτC −A− e−sτB

and the characteristic equation is reduced to

det(sαI − sαe−sτC −A− e−sτB) = 0 (8)

Moreover, If τji = τ, rji = r > 0 for i, j = 1, 2, · · · , n and
α1 = α2 = · · · = αn = α, then systems (1) return to

C
0 D

α
t xj(t)−

n∑

i=1

cji
C
0 D

α
t xi(t−r) =

n∑

i=1

[ajixi(t)+bjix(t−τ)]
(9)

Similarly, equation (9) can be given as
C
0 D

α
t x(t)− C C

0 D
α
t x(t− r) = Ax(t) +Bx(t− τ) (10)

and the characteristic matrix of (1) is reduced to

sαI − sαe−srC −A− e−sτB

and the characteristic equation is reduced to

det(sαI − sαe−srC −A− e−sτB) = 0 (11)

Therefore, based on these characteristic equations (8) and (11),
one can obtain the stability analysis for the fractional order
neutral systems in different case, similar to some existing
results for neutral systems.

IV. EXAMPLE

This section will list one example to show the effectiveness
of our new criteria for asymptotic stability of fractional order
neutral systems.

Example 1. Consider system (7) with

A =

(
4 1
−2 5

)
, B =

(
1.4 −0.2
−0.5 2.1

)
,

C =

( −0.71 0.44
−0.64 0.32

)
, τ = 0.9874, α = 0.18

Clearly, the characteristic equation of this systems is

det(s0.18I − s0.18e−0.9874sC −A− e−0.9874sB) = 0 (12)

With a simple calculation in the Matlab toolbox, all the roots of
the characteristic equation have negative real parts. According
to Theorem 1, the system is asymptotically stable.

V. CONCLUSION

Some new stability conditions for of a class of fractional
order neutral systems are achieved in this paper. By using
the Laplace’s transformation the characteristic equation is
introduced for the fractional order neutral systems. All
the roots of the characteristic equation have negative real
parts implies the asymptotically stable for the corresponding
systems. An Illustrative example is given to demonstrate the
effectiveness of the main results presented in this paper.
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