
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:3, 2009

612

A Reconfigurable Distributed Multiagent System
Optimized for Scalability

Summiya Moheuddin, Afzel Noore, and Muhammad Choudhry

Abstract—This paper proposes a novel solution for optimizing
the size and communication overhead of a distributed multiagent
system without compromising the performance. The proposed ap-
proach addresses the challenges of scalability especially when the
multiagent system is large. A modified spectral clustering technique
is used to partition a large network into logically related clusters.
Agents are assigned to monitor dedicated clusters rather than monitor
each device or node. The proposed scalable multiagent system is
implemented using JADE (Java Agent Development Environment)
for a large power system. The performance of the proposed topology-
independent decentralized multiagent system and the scalable mul-
tiagent system is compared by comprehensively simulating different
fault scenarios. The time taken for reconfiguration, the overall com-
putational complexity, and the communication overhead incurred are
computed. The results of these simulations show that the proposed
scalable multiagent system uses fewer agents efficiently, makes faster
decisions to reconfigure when a fault occurs, and incurs significantly
less communication overhead.

Keywords—Multiagent system, scalable design, spectral clustering,
reconfiguration.

I. INTRODUCTION

AMultiagent system (MAS) is a collection of collaborat-
ing intelligent and autonomous computational entities

called agents [1], perceiving the environment using sensors
and acting upon it through actuators [2]. The flexibility and
adaptability of multiagent systems make them attractive for
several real world applications. Multiagent systems are suitable
where scalability is an important requirement, especially where
the number of entities to be monitored and controlled is large,
processing is performed in a distributed and parallel environ-
ment, and there is an exponential growth in the computational
complexity. This has been demonstrated by using the agent
paradigm to build a biological model simulating polypeptide
generation [3]. A combination of cluster computing and multi-
agent systems has also been used for achieving scalability. This
concept is used in a distributed multiagent model for network-
based financial computing and economic analysis [4], and
for developing scalable software systems on heterogeneous
networks [5].

The performance and scalability of a multiagent system
is measured using indicators such as number of concurrent
agents and associated tasks, organizational pattern of agents,
coordination protocols used, and communication and com-
putational overheads [6]. Coordination policies employed by
agents are an important indicator of scalability as these are
used to determine the total number of messages necessary to

S. Moheuddin, A. Noore, and M.A. Choudhry are with the Lane Department
of Computer Science & Electrical Engineering,West Virginia University, USA.

Manuscript received February 21, 2009

converge to a solution [7]. The authors also discuss additional
dimensions along which a distributed solution using agent
technology needs to scale, including total number of agents,
size of data and agent diversity. In [8] the authors analyze
the increase in communication load in terms of the number of
messages, as the number of agents connected in a number of
different topologies is increased. The concept of self building
and self organizing MAS to achieve higher scale tolerance by
defining scalability in terms of the total processing require-
ments for agents has been introduced in [9]. MAS that have
fixed organizational structures are less scalable than those that
adapt to the demands of an application. The issues related to
scalability and communication overheads involved in model
based teamwork approaches using agents which do not rely
on accurate models and further makes use of dynamically
evolving and overlapping sub teams are discussed in [10].
Another approach to scalability is to employ a locality model
to limit the number of agent interactions thereby making an
agent interact only with agents located in a local region [3].

While previous research has broadly focused on achieving
scalability by inspecting the organizational patterns of mul-
tiagent communities, we investigate achieving scalability by
optimally reducing the total number of agents in the multiagent
system without compromising the performance. The reduction
in the number of agents decreases the resource requirements,
simplifies the agent system topology, reduces the communica-
tion overhead by limiting the number of possible interactions
and minimizes the overall complexity of the system. The
proposed scalable multiagent architecture is applied to power
system reconfiguration as a case study.

II. MAS APPLICATIONS IN ELECTRIC POWER SYSTEMS

The evolution of electric power industry due to recent
restructuring and deregulation has led to a major paradigm
shift from centralized system towards decentralized solutions.
Motivations for this change are discussed in [11]-[13]. Con-
sidering power system reconfiguration in particular, centralized
solutions based on artificial neural networks, genetic algorithm
and expert systems have been proposed [14], [15]. However,
such solutions do not adequately address the requirements of
modern power systems. Efficient monitoring, control, restora-
tion and reconfiguration of power systems require distributed
decentralized control. Multiagent systems have been applied
for solving problems such as reconfiguration, restoration, fault
identification, diagnosis and power system protection [16]-
[19].

Most of the work employing multiagent systems for power
system reconfiguration and restoration use an agent to rep-

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:3, 2009

613

resent an electric component such as buses, switches, and
circuit breakers etc. [11], [20], [21]. A major problem with
such solutions is the limited application especially for large
scale power systems with hundreds of components. The size
of the multiagent system used in addressing the problem
and interactions among agents introduce challenges due to
scalability.

Another issue that becomes more and more important as
the size of target system increases is that of communication
overhead. As discussed previously, communication and coor-
dination policies used in a multiagent system can have serious
impact on scalability. The issue of increased communication
overhead has been discussed in a multiagent based algorithm
for reconfiguration of ring structured shipboard power systems
in [22], [23]. Similar concept for reconfiguration has been
proposed for mesh structure power systems in [24]. Message
passing is used for the identification of a ring structure to
avoid accumulation of redundant information in the system.
As the size of the power system increases, the communication
overhead also increases. Huang et al. [25] introduce a purely
decentralized approach to address this issue. The exponential
increase in message or communication overhead with the
number of loads in a power system and the resulting delay
in decision making has been discussed in [26]. Their solution
uses mobile agents for local data utilization and determining
the impact of power system loads on power quality. Although
such solutions show better performance than a centralized
approach, further improvement can be achieved by optimizing
the size of agent communities and their organizational patterns.

Recently, distributed intelligence has been applied to switch
controls using the concept of teams and coaches [27], [28].
A team represents line segments bounded by switches, while
coaches have the job to monitor and coordinate their teams
and perform restoration by communicating with neighboring
teams. This approach considers the availability of multiple
sources and coaches try to identify alternate sources that
can supply the load in their team. The coaches move to
team members to determine the state of team line segment.
This design decision makes agents more susceptible to faults.
Also, every node has to be configured for starting agents by
providing hardware and software support. On detecting faults,
team members communicate this information to other team
members and to the coach.

There is also the need for a common place where in-
formation and measurements are collected and appropriately
coordinated, even in approaches that are perfectly autonomous
and distributed. This is especially useful in cases where one
out of several possible options is to be selected based on
some criteria. For example, in [20] junction agents act as
coordinators/controllers for negotiation between different bus
agents linked to the transmission line. A common coordinating
entity has also been used in [29] where multiagent technology
has been applied to the dynamic reconfiguration of power
systems by considering time varying loads. In [25] the use
of a root agent to compute the net power of the system by
collecting information from all its children is discussed. This
root agent also acts as a central location where information is
accumulated before any decisions are made.

A major challenge of agent architectures for large scale
power systems is scalability. Most existing architectures, as-
sociate an agent with an electronic component in the system.
The idea is to have agents with local information communicate
with each other to reach a solution. However, the amount of
communication, coordination and other resource requirements
for such solutions will soon outweigh the anticipated benefits
of decentralization. So, no matter how promising the suggested
multiagent system is, its size will always pose a problem. This
triggers the need to find a trade-off between decentralization
and size of the multiagent system. Efficient solutions would
place a bound on the number of agents in the system.

In this research, we have developed clustering techniques
to identify logical power system partitions such that agents
can monitor these dedicated clusters or partitions rather than
employ an agent to monitor each node or device. This reduces
the resources utilized and the complexity of the system. Our
proposed approach significantly reduces the number of agents
in the system and the communication overhead while min-
imizing the system complexity and computational overhead.
Furthermore, in the event of a fault, the affected nodes are
quickly identified for reconfiguration.

Section III proposes a decentralized MAS architecture. The
agents in this decentralized MAS use only local information
and the MAS is topology-independent. Section IV describes
the proposed partitioning of large power system using spectral
clustering based on the properties of electrical distances.
Section V introduces the proposed scalable MAS architecture
which is applied to the partitioned power system. We use the
decentralized MAS as a baseline to compare the performance
of the proposed scalable MAS and the time taken to reconfig-
ure in the event a fault is detected. The implementation details
of the proposed multiagent system are presented in Section VI.
Simulation results obtained for the decentralized MAS and the
scalable MAS are analyzed in Section VII.

III. PROPOSED TOPOLOGY-INDEPENDENT

DECENTRALIZED MULTIAGENT SYSTEM ARCHITECTURE

The proposed topology-independent MAS uses three types
of agents and their functions are briefly described.
Bus Agent (BA) represents buses in the power system. Agents
representing neighboring buses are defined as neighbors in the
corresponding multiagent system. As a completely decentral-
ized approach, only local information is used by these agents.
The agents have no topology information and only neighboring
agents in the system are allowed to communicate with each
other.
Processor Agent (PA) represents a common place in the
multiagent system where information from other agents is
accumulated. PA is the common coordinating entity in the
system. It is used to collect the dynamic operational profile of
the system and identify nodes that are affected in the system
in the event of a fault.
Switch Agent (SA) monitors and controls switches in the power
system and performs the task of turning a switch on or off.

The proposed topology-independent decentralized MAS was
applied to the Circuit of the Future (COF) system, developed

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:3, 2009

614

by Southern California Edison (SCE) [30]. The CoF has a
single substation with three main feeders. These feeders are
also connected for flexible re-routing of power flow, through
seven switches which are normally open. There are 14 loads
in the circuit with a total real power demand of 24 MW and
reactive power load of 12.96 MVar. There are a total of 66
buses and 7 switches in the system requiring 66 bus agents
and 7 switch agents.

A. Identification and reconfiguration of nodes affected by fault

As soon as a bus agent detects a loss of power, it starts
communicating with its neighboring agents about the problem.
A message is sent to each neighbor, to determine the status of
power availability. If the neighboring agents also do not have
power, they forward the message further to their neighbors. As
the messages are forwarded, agents append their identifiers to
the message. When the message reaches an agent whose cor-
responding bus has power or reaches an agent whose identifier
is already in the message content, the forwarding stops. The
flow of message also stops at the terminal nodes (TN). We
define terminal nodes as buses corresponding to agents which
have no neighbors except the sender of the message. When
a message reaches a terminal node, the corresponding agent
appends its identifier to the message content and forwards it
to the processor agent (PA). The information about different
paths a message took generates the knowledge of all nodes or
buses involved in a fault. Therefore, every bus agent where the
message flow stops, forwards the final message it receives to
the processor agent . The processor agent then processes the
message received and compiles a list of all the agents affected
by the fault.

While disseminating information about the fault, if a bus
has a neighboring switch, the corresponding bus agent sends
a message to the bus agent at the other end of the switch to
determine if it has power. If the other bus agent informs that its
corresponding bus has power, by turning the switch on, the de-
energized area can be supplied power. A message is sent to the
processor agent suggesting the switch position as a potential
choice for reconfiguration. However, there can be situations
where buses at both ends of the switch are without power.
Such a switch is ruled out as a choice for reconfiguration.
The processor agent compiles a list of all the suggested
switch positions and then selects a switch or a possible
combination for reconfiguration. Switch agents corresponding
to these selected switches control the final switching operation
for reconfiguration. The coordination of different tasks by all
the agents involved in fault identification and reconfiguration
is described in Algorithm I.

Fig.1 is a graphical representation of the Circuit of the
Future (CoF). Using this circuit the algorithm is described
for various fault scenarios and the interaction among agents
to perform reconfiguration is discussed. With Bus 1 as the
source node, suppose there is a fault between Bus 5 and Bus
17 as indicated by Fault 1 in the figure. Bus agent at Bus 5 i.e.
BA5 senses that it has no power and forwards the message to
its neighbors BA17, BA6 and BA14. Since BA17 has power,
the message flow stops there. The other neighbors of BA5

Algorithm I

(Function and coordination of agents after a fault is detected
between Bus i and Bus j)

Bus Agent
BAj communicates with neighbors to disseminate fault

information

An agent BAx receives a message and performs the

following tasks:

IF BAx has power and a neighboring switch THEN

Inform sender that BAx is energized

ELSE

IF BAx has neighboring switch THEN

Check if bus at other end of switch is energized

IF bus is energized THEN

Suggest switch position to PA

ENDIF

ENDIF

IF BAx is at terminal node THEN

Send an intermediate list of agents affected by

a fault to PA

ELSE

Add self to the list of agents affected by the

fault

FOR all elements in the list of neighbors

Send the list generated in previous step

ENDFOR

ENDIF

Processor Agent
Determines all agents affected by the fault

Determines all potential switches for reconfigura-

tion

Selects a switch for reconfiguration

Switch Agent
Performs the final task of changing the switch

status

keep forwarding the message by adding their ID. When the
message reaches BA6 it has two possible paths.

One is to BA10 and the other is to BA7. The message flow
continues as normal along the path through BA7. On reaching
BA10, since it is a terminal node the message flow stops. At
this point, BA10 forwards the message to the PA. The same
steps take place at Buses 16, 15, 13, 14, since they are all
terminal nodes. Also, BA10 suggests to PA the neighboring
switch SW6 as a possible option for reconfiguration after
consulting BA63. BA15, BA5, and BA8 also recommend their
neighboring switches SW1, SW2 and SW4, SW7 respectively
to PA. However, SW5 between Buses 13 and 14 does not
make the list of possible switches for reconfiguration as buses
at both end of the switch are de-energized. After bus agents
have finished communicating, the processor agent will have
acquired knowledge of the nodes affected by the fault. The
processor agent then uses this information and suggested

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:3, 2009

615

12555657586162

66

596563

11 60 64

3417

5

6

1413

7

8

16

1819

20

9

12

15 44

45

46

47

48

30 29 28

43 42

27 26

41

31

32 33 34 35

49

36

50

54

37

53

38 39

52 51

25 24 23 22

40

21

10

TN TN

TN

TN

TN

FAULT-1

FAULT-2

FAULT-3

SW1

SW2

SW3

SW4
SW5

SW6

SW7

x

x

x

Fig. 1. Graphical representation of the Circuit of the Future and example
fault scenarios

switch positions to direct the switch agents to perform the
switching operation for reconfiguration.

All possible single fault scenarios for the test system are
simulated using the proposed topology-independent decentral-
ized multiagent system. Some example scenarios and results
are listed in Table I. Although the same number of nodes is
involved in Fault 1 and Fault 2 in Table I, the number of mes-
sages passed is different. The reason is that the communication
involved in any fault scenario has two main components. The
first component pertains to the messages for propagating the
information about the fault. This happens between the bus
agents. The second component is the communication between
the bus agents and the processor agent . This depends on the
number of terminal nodes affected by a fault and the number
of nodes having neighboring switches. Therefore, although the
first communication component in both the faults is the same,
it is the second component that makes the difference.

An analysis of the proposed topology-independent decen-
tralized MAS architecture and the agent interactions shows that
the size of the multiagent system is very large. The agents in
the system mostly perform simple message forwarding tasks
while consuming resources. Also, the large communication
overhead is due to communication between agents when a fault
is detected and to determine the affected nodes. Depending
upon the number of nodes involved in a fault, this overhead can
cause significant delays in decision making. After the affected
nodes have been identified, a switching position is selected for
reconfiguration. While the proposed approach works well for
power systems of smaller size, for larger power systems we
need a scalable solution to perform effective reconfiguration
when a fault occurs. The design of a scalable MAS architecture
in presented in Section V.

IV. SPECTRAL CLUSTERING TECHNIQUES FOR POWER

SYSTEM PARTITIONING

In this section we propose a spectral clustering algorithm to
logically partition the power network into clusters of connected
buses. In the algorithm we select a clustering parameter

that represents the notion of electric distances. To tune the
clustering algorithm for partitioning a power system and to
give importance to electrical properties of the system, the bus
impedance matrix is used to acquire the necessary information
for clustering. Agents are then assigned to each cluster or
partition. This modified approach scales well as the size of
the power system increases by reducing both the total number
of agents in the system and the communication overhead.
However, to gain these benefits, the agents in the clusters
acquire additional knowledge about the topology in their
cluster.

By partitioning a power system network into strongly con-
nected components significant performance gains are obtained.
It has been shown that many control actions and small distur-
bances impact only a small portion of the system [31]. Also,
power system applications that require load-flow calculations
and contingency analysis take more time as the size of the
matrices increases. So dimensionality reduction by focusing
only on the most affected portion of the network can be
highly efficient. We first represent the power system as a
weighted graph G(V, E) where every bus in the power system
is defined as a vertex/node. The edges of the graph represent
the connection between different buses in the power system
and the edge weights are based on the electrical distances
between different buses in the power system. It is important
to take into consideration the electrical properties of the
clusters, if a partitioning algorithm is to be applied to a power
system graph. We have chosen the electrical distances between
different buses as the clustering parameter. These distances are
obtained from the bus impedance matrix, Zbus. Each element
in the symmetric Zbus matrix indicates the electrical closeness
of two buses in a power system. The closer the buses in the
power system, the lower the value of the corresponding Zbus
elements. In our clustering algorithm, the final edge weights
are obtained by inverting the absolute values of the Zbus matrix
so that the edge weights are higher when the buses are closer
and vice versa.

A. Spectral clustering for partitioning a power system

Clustering is the process of identifying the underlying
structure in data and determining groups of similar behavior
[32]. Spectral clustering algorithm is based on the spectral
graph theory. The spectrum of a matrix representing a graph
is analyzed by computing the eigen vectors of a graph, and
ordering by the magnitude of their corresponding eigen values.
Spectral clustering algorithms usually outperform traditional
clustering algorithms [33]. The clustering algorithm used in
the proposed architecture is based on the work done by
Zelnik-Manor and Perona [34] and Ng et al. [35]. Their work
introduces local scales to improve clustering performance and
the automatic determination of number of groups that naturally
exist in the data by exploiting the eigen vector structure. We
briefly present a general outline of the spectral clustering
algorithm.

First, a matrix representation of the large scale structure
is constructed. Eigen values and eigen vectors of the matrix
are calculated. These eigen values and vectors provide global

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:3, 2009

616

TABLE I
SIMULATION RESULTS OF SELECTED FAULT SCENARIOS IN THE TOPOLOGY-INDEPENDENT DECENTRALIZED MAS

Fault Source Destination Nodes Affected by No. of Nodes Messages Time Suggested Switch Positions
No. Node Node a Fault Affected Passed Taken (ms) for Reconfiguration

5, 6, 7, 8, 10, 16, 18, 19,
1 17 5

20, 9, 12, 13, 14, 15
14 49 40.7 SW-4, SW-2, SW-6, SW-7, or SW-1

32, 33, 34, 35, 36, 49, 50,
2 31 32

54, 37, 53, 38, 52, 39, 51
14 31 31.5 SW-3

65, 11, 60, 64, 59, 66, 58,
3 57 58

61, 63, 62
10 29 46.7 SW-4, SW-6, or SW-7

information about the structure of the matrix and its connec-
tivity. Also, a mapping of data points to a lower dimensional
representation is performed based on one or more eigen vec-
tors. Finally, the data points are assigned to different clusters.
We tailor the spectral clustering algorithm for partitioning a
power system. The modified algorithm is used on a WSCC-9
bus system [36]. Let S represent the set of buses in the power
system. Then,

N = |S| (1)

A = [aij] is the N x N adjacency matrix (2)

Z = [Zbusij] (3)

aij =
1

abs(zij)
(4)

After obtaining the adjacency matrix, the N x N diagonal
degree matrix is obtained using

D(i, j) =
N∑

j=1

A(i, j) (5)

The spectral clustering algorithm uses the normalized Lapla-
cian matrix defined as,

Â = D−(1
2)AD−(1

2) (6)

Â contains all the information necessary to perform spectral
clustering. The eigen vectors and eigen values of this matrix
are used to determine the specified number of groups K, in
the original power system. The K largest eigen vectors of
Â are then used to obtain an N x K matrix, V . The rows
of V are renormalized to have unit length generating an
N x K matrix Y . Each row of Y acts as a point in the K
dimensional space. K-means algorithm is then applied on this
matrix for clustering.

The buses in the WSCC-9 bus power system are transformed
into 9 vertices of a graph. The edges in the graph represent the
connectivity between the buses. The WSCC-9 bus system and
the corresponding graph are shown in Fig. 2. We first construct
the adjacency matrix A from the weighted graph. There are
a total of nine buses in the power system. This results in a
9 x 9 adjacency matrix representing the adjacency between
the buses of the power system.

1

2 3

4

5 6

7

82

8

3

7

5 6

4

1

9

9

Fig. 2. WSCC-9 bus system and its corresponding graph

In our proposed algorithm we have modified the adjacency
matrix to represent the notion of electric distances. A bus in
a power system can be electrically closer to another, although
not directly connected. To give importance to such electrical
properties and to fully capture the information provided by the
Zbus, the modified adjacency matrix we used has a different
structure. The resulting 9 x 9 adjacency matrix A for the
WSCC-9 bus system is shown. It can be observed that the
diagonal entries in the matrix A are the largest in each
row since a bus is electrically closest to itself. We have
experimentally verified that this choice of adjacency matrix
based on electrical properties of the system generated better
results. The 9 x 9 diagonal degree matrix is obtained from the
adjacency matrix using Equation (5). Finally, using both the
adjacency matrix and the degree matrix, we obtain the 9 x 9
Laplacian matrix Â using Equation (6). The matrix Â for the
WSCC-9 bus system is shown. The eigen vectors and eigen
values of the Laplacian matrix are calculated. From these eigen
vectors the 9 x 3 matrix V is constructed, where v1, v2, and
v3 are the three largest eigen vectors of Â. The structure of the
eigen vectors of the Laplacian matrix encodes the structure of
the resulting clusters.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:3, 2009

617

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3 4 5 6 7 8 9

1 1.6039 1.3134 1.3082 1.4702 1.3930 1.3873 1.3134 1.3014 1.3082
2 1.3134 1.6144 1.3362 1.3134 1.3443 1.3010 1.4664 1.3986 1.3362
3 1.3082 1.3362 1.6001 1.3082 1.3001 1.3378 1.3362 1.3758 1.4630
4 1.4702 1.3134 1.3082 1.4702 1.3930 1.3873 1.3134 1.3014 1.3082
5 1.3930 1.3443 1.3001 1.3930 1.4697 1.3380 1.3443 1.3156 1.3001
6 1.3873 1.3010 1.3378 1.3873 1.3380 1.4682 1.3010 1.3062 1.3378
7 1.3134 1.4664 1.3362 1.3134 1.3443 1.3010 1.4664 1.3986 1.3362
8 1.3014 1.3986 1.3758 1.3014 1.3156 1.3062 1.3986 1.4639 1.3758
9 1.3082 1.3362 1.4630 1.3082 1.3001 1.3378 1.3362 1.3758 1.4630

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Â =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3 4 5 6 7 8 9

1 0 0.1293 0.1295 0.1162 0.1204 0.1205 0.1293 0.1287 0.1295
2 0.1293 0 0.1270 0.1293 0.1245 0.1281 0.1165 0.1203 0.1270
3 0.1295 0.1270 0 0.1295 0.1281 0.1245 0.1270 0.1219 0.1162
4 0.1162 0.1293 0.1295 0 0.1204 0.1205 0.1293 0.1287 0.1295
5 0.1204 0.1245 0.1281 0.1204 0 0.1226 0.1245 0.1253 0.1281
6 0.1205 0.1281 0.1245 0.1205 0.1226 0 0.1281 0.1259 0.1245
7 0.1293 0.1165 0.1270 0.1293 0.1245 0.1281 0 0.1203 0.1270
8 0.1287 0.1203 0.1219 0.1287 0.1253 0.1259 0.1203 0 0.1219
9 0.1295 0.1270 0.1162 0.1295 0.1281 0.1245 0.1270 0.1219 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

V =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v1 v2 v3

1 −0.3344 −0.4768 0.0161
2 −0.334 0.2936 0.4534
3 −0.3344 0.2724 −0.4998
4 −0.3344 −0.4768 0.0161
5 −0.3316 −0.2469 0.2048
6 −0.3318 −0.2499 −0.2063
7 −0.334 0.2936 0.4534
8 −0.3312 0.3181 0.0641
9 −0.3344 0.2724 −0.4998

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

A closer look at the second column corresponding to v2

shows the structure of the resulting clusters or partitions. Buses
that will be placed in the same cluster have very similar values,
differing by a small fraction. All buses having negative eigen
values in eigen vector v2 will be grouped in the same cluster.
Cluster 1 includes Buses 1, 4, 5, and 6. Similarly Cluster 2
includes Buses 3 and 9, and Cluster 3 includes Buses 2, 7,
and 8.

The proposed spectral clustering algorithm was extended to
the Southern California Edison’s Circuit of the Future (CoF),
which is a larger system compared to the WSCC-9 bus system.
As shown in Fig. 1 there are a total of 66 buses in this system

TABLE II
RESULTS OBTAINED AFTER APPLYING SPECTRAL CLUSTERING ON

CIRCUIT OF THE FUTURE

Cluster Total Bus Buses in the Cluster
No. Count

1, 2, 3, 55, 56, 57, 58, 61, 62, 66, 59, 65,
Cluster 1 22

63, 64, 60, 11, 21, 22, 40, 23, 24, 25

4, 17, 5, 6, 14, 7, 10, 8, 16, 18, 19, 20, 9,
Cluster 2 16

12, 13, 15

47, 46, 45, 44, 48, 30, 29, 28, 43, 42,
Cluster 3 13

27, 26, 41

Cluster 4 6 31, 32, 33, 34, 35, 49

Cluster 5 9 36, 50, 54, 37, 53, 38, 52, 39, 51

[30]. A 66 x 66 Laplacian matrix is obtained. As before, the
eigen values are used to group the 66 buses into 5 clusters.
Table II summarizes the details of the five clusters in the CoF
after applying the proposed spectral clustering algorithm.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:3, 2009

618

V. PROPOSED SCALABLE MULTIAGENT SYSTEM

ARCHITECTURE

In this section we describe a scalable multiagent architecture
using fewer agents. The MAS architecture uses two types of
agents.
Cluster Agent is assigned to each cluster or partition instead
of assigning an agent to each bus as proposed in the decen-
tralized topology-independent MAS. This results in a smaller
agent system. We designate these agents as cluster agents
or CAs. Fig. 3 shows the 5 cluster agents CA1-CA5 and
7 reconfiguration switches, SW1-SW7. These cluster agents
can communicate with each other and work in coordination
to perform different functions. By dividing the large system
into logical clusters and assigning these to different agents
we reduce the size and complexity of the problem for each
agent, thereby making the load flow calculations, monitoring,
reconfiguration, or restoration efficient and manageable.
Switch Agent turns a reconfiguration switch on or off based
on the chosen path and given constraints.

12555657586162

66

596563

11 60 64

3417

5

6

1413

7

8

16

1819

20

9

12

15

44

45

46

47

48

30 29 28

43 42

27 26

41

31

32 33 34 35

49

36

50

54

37

53

38 39

52 51

25

24 23 22

40

21

10

SW7

SW4SW5

SW1

SW6

SW2

SW3

Cluster 2

Cluster 1

Cluster 3

Cluster 4

Cluster 5

CA2

CA4

CA5

CA1

CA3

Fig. 3. Assigning cluster agent CAi to each cluster obtained in the Circuit
of the Future

A. Functionality of the proposed scalable multiagent system

Each CA has knowledge of the topology of the nodes or
buses in the cluster it is monitoring. It is provided in the form
of a matrix which contains the weighted adjacency information
of only the buses in the cluster associated with an agent. For
example, there are 16 buses in the cluster associated with CA2,
and so a 16 x 16 symmetric matrix is provided to the associated
CA. Thus each agent has a lower dimensional matrix compared
to the actual system size. The overall algorithm describing the
interaction between agents in the proposed scalable MAS is
described in Algorithm II.

The edge weights forming entries of the weighted adjacency
matrix can represent different constraints in the system. Once

Algorithm II

Step 1: Obtain a weighted graph G(V,E) from the
power system

Step 2: Apply spectral clustering algorithm to
obtain K partitions

Step 3: Assign agents to clusters obtained
Interaction of cluster agent CAj with a
faulty cluster agent CAi

Step 4: CAj sends a list of potential source nodes
and associated costs to CAi

For a cluster agent with fault

Step 4a: Dynamically update model of cluster topology

Step 5: CAi communicates with its neighboring
cluster agents for finding a solution

Step 6: CAi determines nodes affected by the fault

Step 7: CAi performs analysis of each alternate
source node Si in parallel

Step 8: CAi evaluates potential reconfiguration
solutions from neighbors

Step 9: CAi determines a feasible best solution
based on constraints

Step 10: CAi communicates with selected switch agent
to perform the final reconfiguration

a fault is detected, the CAs can identify possible solutions and
an optimal solution is selected based on these constraints. For
example, edge weights can represent the power flow between
each node. These edge weights can also be assigned the values
of voltage drop between nodes. In this manner we can identify
paths which have minimum voltage drops. Also, priorities can
be encoded into these edge weights. For example, if certain
paths in the power system are known to be more reliable
than others, this information can be encoded in the edge
weights such that their priority is reflected in the decision
making process. A cost function is used to identify an optimal
solution for reconfiguration, depending on system constraints.
We define the cost function as,

Cost =
K∑

i=1

C(i)W (i) (7)

where W(i) represents the weight of each edge in the path,
K is the length of the path and C(i) is a Cost Adjustment
Factor, which models different constraints. For example, it can
be used to give importance to load priorities when both a high
priority load and a low priority load need power at the same
time. C(i) can be adjusted to minimize the cost of the path to
the high priority load making sure it is served before any other
load in the system, or the C(i) can be adjusted to select a more
reliable path by reducing the overall cost of the path. Since our
aim for this case study is the demonstration of effectiveness of
cluster agents interaction, we consider simple fault scenarios
resulting in loss of line. A fault is modeled as a loss of line

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:3, 2009

619

between two buses in the power system where certain nodes
in the power system are unsupplied.

12555657586162

66

596563

11 60 64

3417

5

6

1413

7

8

16

1819

20

9

12

15

44

45

46

47

48

30 29 28

43 42

27 26

41

31

32 33 34 35

49

36

50

54

37

53

38 39

52 51

25

24 23 22

40

21

10

SW7

SW4
SW5

SW1

SW6

SW2

SW3

Cluster 2

Cluster 1

Cluster 3

Cluster 4

Cluster 5

CA2

CA4

CA5

CA1

CA3

Fault 2

Fault 1

x

x

Fig. 4. Example fault scenarios in the Circuit of the Future

B. Identification and reconfiguration of nodes affected by fault

When a fault is first detected in a particular cluster, the
cluster agent associated with that cluster updates its model
of cluster topology. It then determines the nodes affected by
the fault. The agent determines the minimal cost of paths
between its current source node and all other nodes in its
graph structure. The agent also finds the parent nodes of all
the nodes involved in the shortest path from the source node. In
this manner an agent acquires knowledge of the paths and the
associated costs for all nodes in its cluster. After application of
this algorithm, all the nodes for which the cost of the path is
greater than a maximum value are identified as those affected
by the fault.

Certain faults can propagate from one cluster to neighboring
clusters. Under such circumstances, the cluster agent associ-
ated with the cluster where the fault actually occurs first iden-
tifies a list of neighbors which can be potentially affected by
the current fault in the system. The cluster agent then informs
these neighbors about the problem. The neighboring cluster
agents also update their model of the cluster topology and
pass this information to its neighbors which can be affected
by the newly introduced fault in their cluster. All affected
cluster agents get involved in the process of reconfiguration
in parallel. Fig. 4 shows such a scenario where a fault in
Cluster 1 propagates to Cluster 3, Cluster 4, and Cluster 5.
The affected buses in each cluster are highlighted in gray. The
four cluster agents affected by the fault between Bus 21 and
Bus 22 in Cluster 1, work together to reach a decision for
reconfiguration.

C. Identification of alternate source nodes

For a cluster, a source node is defined as any node which
is connected to a node in some other cluster. These are
called source nodes because they have the potential to provide
power to the de-energized area by switching on the nearest
reconfiguration switch. The agent acquires the position of
source nodes at start up. Some of these source nodes will
be at a location and will have connectivity, such that they can
never provide power to the de-energized buses. For a particular
source node, these will be the buses un-reachable from it
based on the new network connectivity information after the
fault. So the agent tries to rule out all such source nodes. The
cluster agent for the affected cluster also considers the option
of internal reconfiguration if it has switches inside its cluster.
Meanwhile, agents in the neighboring clusters also perform
their computations for finding the best route to redirect the
power to the faulty area. It is important to note that since
each agent is a separate thread, all these computations are
performed in parallel. The neighboring agents determine the
cost from their currently active source node to the nodes which
can potentially provide power to the affected cluster. This
information is shared with the CA in the affected cluster. Since
time is critical in such situations, to reach a decision quickly
the CA has already determined the nodes which cannot act as
source node under the current fault and rules them out. For
the rest of the nodes, the cluster agent chooses the source
node with the minimal cost to the affected nodes. In this
manner the agent with the help of its neighbors determines the
optimal path for reconfiguration, after a fault is detected. The
switching action is then performed to energize the unsupplied
buses through the newly configured path.

As an example, let us assume there is a fault between
Bus 7 and Bus 8, in the cluster assigned to CA2 as shown
in Fig. 4. When the fault is detected, CA2 communicates
with its neighbors CA1 and CA3, to initiate the task of
identifying possible reconfigurable paths and computing their
associated costs. CA2 determines the nodes affected by the
fault. The affected nodes are highlighted in gray in Fig. 4.
The neighboring agents perform their calculations to suggest
alternate routes and associated costs to CA2. CA2 determines
the feasibility of different source nodes. Notice in this case that
switching on SW2, SW4, or SW6 cannot solve the problem
since they will not be able to supply power to the affected
nodes. So CA2 rules these out. The potential alternate source
nodes are identified as Node 11 in Cluster 1, and Node 44 in
Cluster 3. The third option involves internal switching within
Cluster 2 between Nodes 13 and 14. Out of these options the
agent selects the one with the minimum cost. We simulated
all possible single faults for SCEs Circuit of the Future. Some
example scenarios of faults in each cluster of the scalable
multiagent architecture are analyzed. The number of messages
passed, possible switches needed for reconfiguration and the
associated cost, and the time taken to arrive at a solution are
summarized in Table III.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:3, 2009

620

TABLE III
SIMULATION RESULTS OF SELECTED FAULT SCENARIOS IN THE PROPOSED SCALABLE MAS

Cluster Source Destination Clusters Affected by Alternate Source Switch Cost Messages Time
No. Node Node a Fault Nodes for Reconfiguration Passed (ms)

8 SW7 5

C1 2 55 C1 10 SW6 4 4 24.9

5 SW4 2

C1 1 2 C1, C2, C3, C4, C5 None NA NA 20 35.8

14 SW5 3

C2 7 8 C2 11 SW7 10 4 17.1

44 SW1 5

15 SW1 11

C3 27 28 C3, C4, C5 5 SW2 2 12 36.1

C4 31 32 C4, C5 48 SW3 7 5 32.9

C5 36 50 C5 None NA NA 2 14.2

62 SW4 7

11 SW7 10

Between C1 and C2 3 4 C2 63 SW6 9 4 23.5

47 SW2 8

44 SW1 5

VI. IMPLEMENTATION DETAILS OF THE PROPOSED

MULTIAGENT SYSTEM

The proposed multiagent system is implemented using
JADE (Java Agent Development Environment). The JADE
framework simplifies the development and run-time execution
of multiagent applications through a FIPA (Foundation for
Intelligent Physical Agents) compliant middle-ware. It allows
distribution of the agent platform across multiple machines
and allows controlling the configuration through a remote
GUI. A homogeneous set of APIs (Application Programming
Interfaces) is provided that do not depend on the underlying
network or the Java language version. A simple set of APIs
hide the complexity of the middleware. The communication
infrastructure used by agents in the proposed MAS is pro-
vided by JADE. JADE follows FIPA standards which enable
agents written in different languages and running on different
platforms to communicate with each other. JADE messages
adhere to ACL (Agent Communication Language) standards.
An ACL message has several attributes such as performative,
receiver, sender, and content. Performative defines the type of
the message and agents in the implemented MAS take different
actions depending upon the message type. For example, all
cluster agents suggesting alternate sources to a faulty cluster
agent set the performative of the messages sent to ACLMes-
sage.PROPOSE. The faulty cluster agent on receiving this type
of message knows that the content contains proposals sent by
neighbors for reconfiguration [37].

A snapshot of agent communication in JADE during a fault
scenario is shown in Fig. 5. The agent communication was
captured using another feature provided by JADE i.e. the
sniffer agent . A sniffer agent can intercept ACL messages

during agent communication and displays them graphically
using a notation similar to UML sequence diagrams. It is also a
good debugging tool for agent societies as it helps in observing
the message exchange between agents.

Another, important feature offered by JADE which has
been implemented in the proposed MAS is the concept of
behaviours. It is common practice in agent programming to
have several concurrent active tasks within an agent. One
approach for implementing these concurrent activities is to use
Java thread programming. However, since Java threads are not
designed for large scale parallelism this approach proves to be
inefficient. JADE behaviours offer an efficient alternative for
implementing concurrent tasks within an agent. The proposed
MAS uses this feature of JADE as agents are concurrently
involved in many different tasks. Examples of these tasks
include communication with neighbors, identification of nodes
affected by a fault, identification of alternate sources etc.
Also, each agent has several behaviours running in parallel.
For example each of the CAs has a cyclic behaviour, which
executes continuously for the lifetime of the agent and receives
messages indicating a fault in the respective cluster. These
messages are sent by a dedicated agent in the system, which
receives this information from the graphical user interface
during simulation. Cluster agents also have behaviours for
performing the analysis required for the identification of
alternate source nodes etc.

VII. SIMULATION RESULTS

The Circuit of the Future was used to simulate all possible
single faults for both the topology-independent decentralized
MAS architecture and the scalable MAS architecture. The

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:3, 2009

621

CA1 CA2 CA3 CA4 CA5

PROPAGATE

PROPAGATE

PROPAGATE

PROPAGATE

REQUEST

REQUEST

REQUEST

REQUEST

REQUEST

REQUEST

REQUEST

REQUEST

PROPOSE

PROPOSE

PROPOSE

PROPOSE

PROPOSE

PROPOSE

PROPOSE

PROPOSE

Fig. 5. Agent communication in JADE during fault scenario

results obtained from these simulations are shown in Fig. 6,
Fig. 7, and Fig. 8.

0 10 20 30 40 50 60 70
0

20

40

60

80

100

120

140

160

180

Fault Scenarios

C
o

m
m

u
n

ic
at

io
n

 O
ve

rh
ea

d

Scalable MAS
Decentralized MAS

Fig. 6. Comparison of communication overhead

Fig. 6 presents a comparison of the two MAS approaches
in terms of the communication overhead. We define commu-
nication overhead as the total messages passed in the agent
community to reach a decision. It can be clearly seen in the
figure that the scalable MAS experiences a far less commu-

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

Fault Scenarios

C
o

m
p

u
ta

ti
o

n
al

 O
ve

rh
ea

d
 (

m
s)

Scalable MAS
Decentralized MAS

Fig. 7. Comparison of computational overhead

nication overhead to reach the same decision as compared
to the completely decentralized MAS. The average commu-
nication overhead for the scalable MAS is approximately 6
messages. On the other hand, for the decentralized MAS the
average communication overhead is 27 messages. Also, the
scalable MAS performance is mostly uniform, with a few
occasional spikes. A more uniform performance can help
to model the communication infrastructure for the system
in a way that optimizes performance. On the other hand,
communication overhead for the decentralized approach shows
a more irregular pattern. Considering the worst case scenario,
for a fault between Bus 1 and Bus 2 in the test system, the
communication overhead incurred in the topology-independent
decentralized MAS is 172 messages, while for the scalable
MAS it is significantly lower (20 messages).

Next, we compare the two approaches in terms of the
computational overhead. For the purpose of these simulations
we define the computational overhead as the total time taken
by the MAS to arrive at a decision to perform reconfiguration
in the event of a fault. Multiple simulations of all possible
fault scenarios were performed to obtain a comprehensive
profile of the total time taken by each MAS. The results are
shown in Fig. 7. It can be seen that the scalable MAS takes
less total time to reach a decision. The average time taken
by the scalable MAS to reach a decision is 19.47 ms, while
for the decentralized MAS it is 23.92 ms. It is important to
note, that not only does the scalable MAS reach a decision
quickly but also, the decision is more informed. Each cluster
agent in the scalable MAS performs a complete analysis of
the situation, identifying good and bad alternate sources and
based on the input from neighbors selects an optimal switching
position based on the cost function and external constraints.
The decentralized MAS on the other hand takes the time
to propagate the fault information and any viable switching
position is selected. Although the cluster agents in the scalable
MAS are performing more work, yet the overall system is
designed such that the total time taken is less. The worst
case scenario in terms of the computational overhead for the

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:3, 2009

622

topology-independent decentralized MAS is 73.40 ms, while
for the scalable MAS it is 40.60 ms.

Finally, we investigate the relationship between the total
number of buses affected by a fault and the performance
for each of the proposed approaches. The observations are
summarized in Fig. 8. When the number of buses affected
by a fault is small the scalable approach does incur some
overhead. However, when the number of buses affected by a
fault increases, the proposed scalable MAS outperforms the
topology-independent decentralized MAS.

0 10 20 30 40 50 60 70
0

50

100

150

200

C
o

m
m

u
n

ic
at

io
n

 O
ve

rh
ea

d

Number of Buses Affected by Fault
0 10 20 30 40 50 60 70

0

20

40

60

80

C
o

m
p

u
ta

ti
o

n
al

 O
ve

rh
ea

d

Communication Overhead for Decentralized MAS
Computational Overhead for Decentralized MAS
Computational Overhead for Scalable MAS
Communication Overhead for Scalable MAS

Fig. 8. Comparison of performance with respect to buses affected by a fault

We have also made some general observations about the
proposed scalable MAS. Since buses affected by a fault such
as loss of line in a power system are those which are physically
close, they are most likely to fall in the same cluster. This
reflects that the proposed choice of electrical distance as the
clustering parameter is very pragmatic. One problem related
to this choice can be that the electrical distances do not
incorporate the system dynamics. In the future, we plan to use
clustering parameters which also include information about
system dynamics.

By partitioning the entire system into clusters and assigning
an agent to each cluster, task sharing is achieved which re-
duces the problem complexity. In comparison to the topology-
independent decentralized MAS, the proposed scalable MAS
uses fewer number of agents and results in reducing the
resource consumption and communication overhead. Also, the
entire process of communication is more deterministic and
less error prone. As the number of agents involved in the
communication increases, the entire decision making process
becomes more susceptible to faults and errors due to lost
messages or problems with the communication network. Based
on the simulation results and our observations and analysis, the
proposed scalable MAS architecture is robust and performs
well for large scale power systems.

VIII. CONCLUSION

Although multiagent systems and other distributed ap-
proaches offer better scalability as compared to traditional

centralized approaches, yet efficient solutions based on these
technologies need to scale well. Most existing decentralized
multiagent system solutions for power system applications as-
sociate an agent with each component in the system. Although
such solutions offer complete decentralization of control and
are generally topology independent, yet for large scale systems
the large number of agents in the MAS poses scalability
challenges. Also, the amount of computations, communication,
and coordination required for these solutions triggers the need
to find a trade-off between decentralization and size of the
multiagent system. Reduction in the total number of agents
in a multiagent system decreases the resource requirements,
simplifies the agent system topology, reduces the communica-
tion overhead by limiting the number of possible interactions,
and minimizes the overall complexity of the system. The
proposed scalable MAS addresses these issues by limiting
the total number of agents in the system, and reducing the
computational and the communication overhead. Furthermore,
in the event of a fault, the affected nodes are quickly identified
for reconfiguration. Depending on the system constraints, an
optimal solution for reconfiguration is identified using the
cost function. However, to gain these benefits, the agents in
the clusters acquire additional knowledge about the topology
of their cluster. Simulation results show that the proposed
scalable MAS experiences significantly less computational
and communication overhead as compared to the topology
independent decentralized MAS. Also, the performance of the
scalable MAS improves as the number of nodes affected by a
fault increases, making it more attractive for large scale power
systems.

ACKNOWLEDGMENT

This research has been sponsored in part by a grant from
the US Department of Energy (DE-FC26-06NT42793).

REFERENCES

[1] G. Weiss, Multiagent systems a modern approach to distributed artificial
intelligence, The MIT Press, 1999.

[2] S. Russell, and P. Norvig, Artificial intelligence: a modern approach ,
Prentice Hall, 1995.

[3] F. Avellaneda, C. Bustacara, J.P. Garzon, and E. Gonzalez, Imple-
mentation of a molecular simulator based on a multiAgent system ,
in Proceedings of the IEEE/WIC/ACM international conference on
Intelligent Agent Technology, pp. 117-120, 2006.

[4] J. Yen, A. Chung, H. Ho, B. Tam, R. Lau, M. Chua, and K. Hwang, Col-
laborative and scalable financial analysis with multi-agent technology ,
in Proceedings of the 32nd Annual Hawaii International Conference,
vol. Track5, 1999.

[5] K.P. Chow, and Y.K. Kwok, On load balancing for distributed multiagent
computing, in IEEE Transactions on Parallel and Distributed Systems,
vol. 13, no. 8, pp. 787-801, 2002.

[6] L.C. Lee, H.S. Nwana, D.T. Ndumu, and P.D. Wilde, The stability,
scalability and performance of multi-agent systems , in BT Technology
Journal, vol. 16, no. 3, pp. 94-103, 1998.

[7] O.F. Rana, and K. Stout, What is scalability in multi-agent systems ,
in Proceedings of the fourth international conference on Autonomous
agents, pp. 56-63, 2000.

[8] S.H. Nwana, and L.C. Lee, Stability, fairness and scalability of multi-
agent systems, in International Journal of Knowledge-Based Intelligent
Engineering Systems, vol. 3, pp. 3-2, 1999.

[9] P.J. Turner, and N.R. Jennings, Improving the scalability of multi-agent
systems, in Proceedings of 1st International Workshop on Infrastructure
for Scalable Multi-Agent Systems, pp. 246-262, 2000.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:3, 2009

623

[10] P. Scerri, Y. Xu, E. Liao, J. Lai, and K. Sycara, Scaling teamwork to very
large teams, in Proceedings of the Third International Joint Conference
on Autonomous Agents and Multiagent Systems, pp. 888-895, 2004.

[11] K. Huang, Shipboard power system reconfiguration using multi agent
system, Ph.D. dissertation, The Florida state university, 2007.

[12] G.A. Taylor, M.R. Irving, P.R. Hobson, C. Huang, P. Kyberd, and R.J.
Taylor, Distributed monitoring and control of future power systems via
grid computing , in IEEE Power Engineering Society General Meeting,
2006.

[13] D.A. Cartes, and S.K. Srivastava, Agent applications and their future
in the power industry , in IEEE Power Engineering Society General
Meeting, pp. 1-6, 2007.

[14] H. Salazar, R. Gallego, and R. Romero, Artificial neural networks
and clustering techniques applied in the reconfiguration of distribution
systems, in IEEE Transactions on Power Delivery, vol. 21, no. 3, pp.
1735-1742, 2006.

[15] T. Brunner, W. Nejdl, H. Schwarzjirg, and M. Sturm, On-line expert sys-
tem for power system diagnosis and restoration , in Intelligent Systems
Engineering, vol. 2, no. 1, pp. 15-24, 1993.

[16] C.C. Liu, J. Jung, G.T. Heydt, V. Vittal, and A.G. Phadke, Strategic
power infrastructure defense (SPID) system a conceptual design , in
IEEE Control Syst. Mag., vol. 20, no. 4, pp. 40-52, 2000.

[17] L. Liu, K.P. Logan, D.A. Cartes, and S.K. Srivastava, Fault detection,
diagnostics, and prognostics: software agent solutions , in IEEE Trans-
actions on Vehicular Technology, vol. 56, no. 4, pp. 1613-1622, 2007.

[18] J.G. Gomez-Gualdron, M. Velez-Reyes, and L.J. Collazo, Self-
reconfigurable electric power distribution system using multi-agent
systems, in IEEE Electric Ship Technologies Symposium, pp. 180-187,
2007.

[19] I.S. Baxevanos, and D.P. Labridis, Implementing multiagent systems
technology for power distribution network control and protection man-
agement, in IEEE Transactions on Power Delivery, vol. 22, no. 1, pp.
433-43, 2007.

[20] T. Nagata, Y. Tao, H. Sasaki, and H. Fujita, Decentralized approach to
power system restoration by means of multi-agent approach , in Bulk
Power System Dynamics and Control - VI, 2004.

[21] K. Huang, S.K. Srivastava, D.A. Cartes, and M. Sloderbeck, Intelligent
agents applied to reconfiguration of mesh structured power systems , in
International Symposium on Antennas and Propagation, pp. 298-304,
2007.

[22] K. Huang, D.A. Cartes, and S.K. Srivastava, A multiagent-based al-
gorithm for ring-structured shipboard power system reconfiguration , in
The International Conference on System, Man and Cybernetics, vol. 1,
pp. 530-535, 2005.

[23] K. Huang, D.A. Cartes, and S.K. Srivastava, A multiagent-based al-
gorithm for ring-structured shipboard power system reconfiguration ,
in IEEE Transactions on Systems, Man, and Cybernetics, Part C:
Applications and Reviews, vol. 37, no. 5, pp. 1016-1021, 2007.

[24] K. Huang, S. Sanjeev, and D. Cartes, Decentralized reconfiguration
for power systems using multi agent system , in Proceedings of the 1st
Annual 2007 IEEE Systems Conference, pp. 253-258, 2007.

[25] K. Huang, S.K. Srivastava, D.A. Cartes, and M. Sloderbeck, Intelligent
agents applied to reconfiguration of mesh structured power systems , in
International Conference on Intelligent Systems Applications to Power
Systems, pp. 1-7, 2007.

[26] F. Ponci, and A.A. Deshmukh, A mobile agent for measurements
in distributed power electronic systems , in IEEE Instrumentation and
Measurement Technology Conference, pp. 870-875, 2008.

[27] D. Elizalde, D. Staszesky, and M. Meisinger, Use of distributed intelli-
gence for reliability improvement using minimum available distribution
assets, in IEEE/PES Transmission and Distribution Conference and
Exposition, pp. 1-6, 2006.

[28] D.M. Staszesky, Use of virtual agents to effect intelligent distribution
automation, in IEEE Power Engineering Society General Meeting, 2006.

[29] Z. Li, X. Chen, K. Yu, B. Zhao, and H. Liu, A novel approach for
dynamic reconfiguration of the distribution network via multi-agent sys-
tem, in 3rd International Conference on Deregulation and Restructuring
and Power Technologies, pp. 1305-1311, 2008.

[30] S.L. Hamilton, C.K. Vartanian, M.E. Johnson, A. Feliachi, K. Schoder,
and P. Hines, Circuit of the future: interoperability and SCE’s DER
program, Bulk Power System Dynamics and ControlVII. Revitalizing
Operational Reliability 2007 iREP Symposium, pp. 1-9, 2007.

[31] N. Muller, and V.H. Quintana, A sparse eigenvalue-based approach for
partitioning power networks , in IEEE Transactions on Power Systems,
vol. 7, no. 2, pp. 520-527, 1992.

[32] S.E. Schaeffer, Graph clustering, in Computer Science Review, vol. 1,
no. 1, pp. 27-64, 2007.

[33] U. Luxburg, A tutorial on spectral clustering , in Statistics and Comput-
ing, vol. 17, no. 4, pp. 395-416, 2007.

[34] L. Zelnik-Manor, and P. Perona, Self-tuning spectral clustering , in Adv.
Neural Inf. Process. Sys., 2004.

[35] A. Ng, M. Jordan, and Y. Weiss, On spectral clustering: analysis and
an algorithm, in Advances in Neural Information Processing Systems
14, 2001.

[36] P.M. Anderson, and A.A. Fouad, Power system control and stability ,
IEEE Press, 2002.

[37] F.L. Bellifemine, G. Caire, and D. Greenwood, Developing multi-agent
systems with JADE, Wiley, 2007.

Summiya Moheuddin is currently pursuing her M.S. in Computer Science
at the Lane Department of Computer Science and Electrical Engineering at
West Virginia University. She is a Graduate Research Assistant and has been
a member of the Advanced Power & Electricity Research Center at WVU
since 2007. She received her B.S. degree in computer science from National
University of Computer and Emerging Sciences-FAST, Pakistan in 2006. She
worked as a software engineer from 2006-2007. Her research interests include
distributed artificial intelligence, distributed computing, knowledge discovery
techniques, and reliable computing.

Afzel Noore received his Ph.D. in Electrical Engineering from West Virginia
University. He worked as a digital design engineer at Philips India. From 1996
to 2003, Dr. Noore served as the Associate Dean for Academic Affairs and
Special Assistant to the Dean in the College of Engineering and Mineral
Resources at West Virginia University. He is currently a Professor and
Associate Department Chair in the Lane Department of Computer Science
and Electrical Engineering. His research interests include computational intel-
ligence, biometrics, software reliability modeling, machine learning, hardware
description languages, and quantum computing. His research has been funded
by NASA, NSF, Westinghouse, GE, Electric Power Research Institute, the
US Department of Energy, and the US Department of Justice. Dr. Noore has
over 95 publications in refereed journals, book chapters, and conferences. He
has received four best paper awards. Dr. Noore is a member of the IEEE and
serves in the editorial boards of Recent Patents on Engineering and the Open
Nanoscience Journal. He is a member of Phi Kappa Phi, Sigma Xi, Eta Kappa
Nu, and Tau Beta Pi honor societies.

Muhammad Choudhry received his B.Sc. degree in Electrical Engineering
from the University of Engineering and Technology. Lahore. Pakistan in 1973.
He received his M.S. (EE) from University of Kansas in 1977 and Ph.D. degree
from Purdue University in 1981. From August 1973 to December 1975, he was
Assistant Engineer with Water and Power Development Authority in Pakistan.
He joined West Virginia University in 1981 and is currently Professor in
the Lane Department of Computer Science and Electrical Engineering. His
areas of interest are Multiterminal HVDC System, System Stability, Optimal
Control and System Identification.

