
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:1, 2013

48

Abstract—Real-time 3D applications have to guarantee

interactive rendering speed. There is a restriction for the number of
polygons which is rendered due to performance of a graphics hardware
or graphics algorithms. Generally, the rendering performance will be
drastically increased when handling only the dynamic 3d models,
which is much fewer than the static ones. Since shapes and colors of
the static objects don’t change when the viewing direction is fixed, the
information can be reused. We render huge amounts of polygon those
cannot handled by conventional rendering techniques in real-time by
using a static object image and merging it with rendering result of the
dynamic objects. The performance must be decreased as a
consequence of updating the static object image including removing
an static object that starts to move, re-rending the other static objects
being overlapped by the moving ones. Based on visibility of the object
beginning to move, we can skip the updating process. As a result, we
enhance rendering performance and reduce differences of rendering
speed between each frame. Proposed method renders total
200,000,000 polygons that consist of 500,000 dynamic polygons and
the rest are static polygons in about 100 frames per second.

Keywords—Occlusion query, Real-time rendering, Temporal
coherence.

I. INTRODUCTION
OW the 3D graphics technology is getting to be faster and
more sophisticated with advanced rendering techniques

and devices. Most of recent graphic devices can draw about 10
millions of polygon per frame. However, to render a 3D scene
that consists of a huge amount of polygons still takes a long
time. Rendering workload which cannot be handled in
hardware need to be distributed both hardware and software.

In general, both of the real world and virtual world has much
more static objects than dynamic objects. The performance
might be boosted by only rendering dynamic objects and
reusing static objects’ information. Since rendering results of
the static objects in the previous frame and the current frame are
similar, we can present the static objects in the current frame
with the previous frame recycling. The state of object can
change from static into dynamic, so its information cannot be
reused. Therefore, we have to update parts of the previous
frame image. For instance, a dynamic object which was static in
the past, the previous frame, is moving in the current frame,
hence its information, in the previous frame, needs to be
removed or modified. Some pixels of static objects can be

Youngjae Chun is with the Department of Global Media, Soongsil

University, Seoul, Korea (e-mail: dkreformer@ssu.ac.kr).
Kyoungsu Oh is with the Department of Global Media, Soongsil University,

Seoul, Korea (corresponding author to provide phone: +82-10-8886-3924; fax:
+82-2-822-3622; e-mail: oks@ssu.ac.kr).

deleted as deleting a dynamic which locates in front of it. In this
case, we have to render the static objects in order to recover the
deleted pixels and it takes a long time. If the new dynamic
object is overlapped by many another ones, the updating cost is
much more expensive and causes the sudden slowing.
Real-time 3D applications such as 3D games need to avoid this
situation.

Our key idea is that we can provide faster and more stable
rendering speed by updating static objects’ information
efficiently. For this, we examine whether the object that starts
to move is entirely overlapped by other static ones or not. If the
object is invisible, it is unnecessary to delete that object from
the static objects buffer and the renew process can be skipped.
As a result, our rendering technique offers faster average
rendering performance and alleviates the sudden slowing as
updating static the objects buffer every time. Our method has a
definite advantage where we fix the viewpoint. However, some
previous 3D applications which employ top view of quarter
view provided high-quality contents even if the fixed viewpoint
limits user interactions.

The following sections of this paper: Section II discusses
related work, and then in Section III will introduce our system
overview. Data structure and algorithm details will be
explained in section IV and V. After that, comparison results
will be presented in section VI. Proposed algorithm is measured
against the traditional rendering method and the previous TC
(Temporal Coherence) method. At last, in section VII we will
summarize our contribution, the presented method and
applicable area.

II. RELATED WORK
There are many advantages to use temporal coherence

features. Consecutive rendering results have similar shape,
color or depth information. Similarity between the previous and
the current frame has been used to predict visibility among
objects in the 3D scene ([1]-[3]). It also has been researched
that to reduce rendering cost using temporal coherence.
Intermediate images are can be interpolated using already
rendered several images ([4]).

Matrix transformation is a basic concept of generating 3D
virtual scene and we can perform transformation in reverse for
several purposes. While we render a 3D scene through the
graphics pipeline, we can store matrix information in order to
unproject and reproject any object. These transformation
techniques help us to render 3D scene fast which includes many
polygons.

Render cache concept is introduced for the first time in [5].

A Real-Time Rendering based on Efficient Updating
of Static Objects Buffer

Youngjae Chun, and Kyoungsu Oh

N

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:1, 2013

49

Render cache is a point-based data structure, which stores 3D
position or shading result of the previous frame. Authors used
render cache to generate the current frame image. This method
shows faster performance than a traditional method. Reference
[6] implemented render cache on GPU to accelerate
computation. Similar to [5], a new concept so called
reprojection cache is proposed in [7] and [8]. Reprojection
cache doesn't contain point but visible pixel color and depth.
Authors of [7], [8] reprojected a pixel in the current frame into
the previous frame using reprojection information. After then,
obtained pixel by reprojection has shading color and was used
to decide a pixel color in the current frame.

Some kind of image-based rendering methods store the
previous frame as image and use it as input for the current
frame. Frame to frame temporal coherence is introduced in [9]
and [10]. They reused image generated from the previous
frame. Reference [11] separated object in a 3D scene with
several layers and focused on update of layers which have fast
moving object.

Temporal coherence can be used to shadow generation.
Pixel-corrected shadow map presents high-quality hard
shadow. It accumulated shadow map result for a several frames
([12]). Reference [12] expended their work to make soft
shadow in [13]. An efficient shadow map generation method
using temporal coherence is introduced in [14]. This work drew
static objects into an image and reused it. Sometimes the image
is needed to be modified. Based on [14], we introduce an
advanced method which updates the static object image
efficiently by avoiding unnecessary renew work.

III. RENDERING SYSTEM OVERVIEW
All scene objects rendered by our method are divided into

dynamic objects and static objects according to transformation
state. After rendering the static objects into a static objects
buffer, we use the buffer many times without update. Yet, it
needs to be modified if there is any static object is transformed
by translation, rotation and scaling. Instead of updating the
static object buffer if there is any change ([14]), we skip
unnecessary renewing of the static objects buffer. According to
the visibility of the new dynamic objects against the static
objects buffer, we will decide that we have to update parts of
the buffer or skip. In the meanwhile, dynamic objects are
rendered into the dynamic buffer and it is refreshed every frame.
After all, buffers will be merged to generate final rendering
result. Each buffer stores depth value, the nearest pixel from a
camera, for the visibility test. Fig. 1 shows our rendering
progress depending on frame frequency axis.

Fig. 1 Rendering overview

IV. DATA STRUCTURE
We use 2 image buffers (dynamic objects buffer, static

objects buffer) for our rendering method. We named the
dynamic objects buffer and the static objects buffer as D-buffer
and S-buffer respectively. Each buffer is a 4 channel texture
and it allocates 8 bits for each channel. RGB channels store
color of primitives and Alpha channel stores depth value. We
render dynamic objects into D-buffer which is very similar to
the common frame buffer, because we update D-buffer every
frame. The rendering result of static objects is stored in S-buffer
which will be reused later for the next frame information. For
this work, the object’s state is separated by 4 types. Table 1
shows the notion for each object according to the matrices of
previous and current frame. We update S-buffer using SD and
DS objects.

TABLE I
NOTION RULES FOR THE TRANSFORMATION STATE OF OBJECTS

Previous frame Current frame Notion

Static Static SS

Static Dynamic SD

Dynamic Static DS

Dynamic Dynamic DD

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:1, 2013

50

V. RENDERING PROCESS

Fig. 2 Rendering flow chart

At the beginning, all objects are set as DD objects, then the

rendering process will be performed as Fig. 2.

A. Update State of All Objects
At first, we select objects to make them move. Chosen

objects keep the state DD and others become DS objects.
Theses DS objects are used to initial the static objects buffer.

Each object stores own local-to-world transformation matrix
for the next updating. In the next update stage, we compare the
matrices at the current frame with the matrices at the previous
frame. The objects which have difference between two matrices
are set to SD or DD according to the previous state.

B. Render or Renew the S-Buffer (Optional)
Since we have no previous static objects buffer at the first

time, we have to render DS objects in S-buffer to merge it with
D-buffer for final rendering and reuse later. S-buffer stores an
enormous amount of static objects so pixels in the S-buffer are
almost filled by the static ones. Therefore lost of static objects
are overlapped by other ones and invisible. Renewing process
consists of the following sub stages:

1) Delete the new dynamic object from S-buffer
2) Recover partially deleted static objects due to the new

dynamic one.

Fig. 3 Update process of the static objects buffer

Reference [14] always renewed the S-buffer when they had a

SD object even if it was overlapped entirely. As mentioned
above, the renew process takes a long time and subsequent
processes have to wait until finish update the S-buffer. The
more static objects are stored in the S-buffer, the more
expensive the cost will be. It doesn’t correspond with the
temporal coherence concept. For this reason, passing over
unnecessary renew work can be proposed. For example, the
new dynamic object in the first sub-stage might be invisible
then we can skip the first sub-stage and thus there is no deleted
pixel. It is more efficient when we store more and more static
objects in the S-buffer.

We perform the visibility test for the new dynamic objects
against the S-buffer. Occlusion query is used to implement the
visibility test and it returns the number of visible pixels for an
object queried. If the return value equals to 0, we skip the renew
process. Otherwise, we just follow the sub-stages.

C. Render the D-Buffer
The process C. is very similar to the traditional rendering. In

this stage, we render DD and SD objects into the D-buffer. We
assume that there are few dynamic objects in the scene, so this
stage takes a bit cost.

D. Merge Two Buffers and Display
Finally, we merge two buffers for the final presentation.

Each buffer stores depth value in the alpha channel. We used
the pixel shader to get the nearest pixel from the current
viewpoint, then display it as the current rendering result.

VI. EXPERIMENTS
We render 40,000 objects and each one consists of about

4,500 polygons for experiments. As you know, the initial state
of an object is DD. Randomly chosen object moves along a
random direction in an arbitrary time interval. The object that
begins to stop becomes DS objects and it is drawn in the
S-buffer. In the next frame, it becomes SS object unless it starts
to move again. Namely, all chosen objects change its state as a
sequence of “SS-SD-DD-DS-SS”. We increase the number of
dynamic objects from 10 to 120 and once an object stops, we
select another one to move it.

DirectX 9 is used as graphics library and nVidia GeForce
GTX 460 is used for our experiments. We render the 3D scene
using three types of algorithm. The first algorithm draws all
objects in every frame, second algorithm is from [14] and the
last one is ours. The conventional rendering algorithm cannot

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:1, 2013

51

handle 40,000 objects in real-time even if we set just 10
dynamic objects. Reference [14] shows about 68fps (frames per
second) and draws objects 460 times per frame while keeping
120 dynamic objects. In the same situation, our method shows
about 140fps and draws objects about 130 times per frame (Fig.
4.). Since the proposed algorithm performs an occlusion query
for the SD objects, additional cost is required but gains more
benefit from skipping to update S-buffer. Additionally, we use
extra 6 S-buffers to distribute static objects and this work
facilitates much faster and more stable rendering performance
(Fig. 4 and Fig. 5).

Fig. 4 Rendering performances(fps) of three methods

Fig. 5 Standard deviations of three methods

VII. CONCLUSION
In this paper, we introduced a real-time rendering method

which draws the 3D scene with huge amount of polygons using
a static objects buffer updated efficiently. Most of 3D
applications always render all objects every frame regardless of
whether objects are dynamic or not. Various graphics methods
using temporal coherence have been researched to enhance
rendering or representation of special effects such as motion
blur or image sequence compression. Since temporal coherence
feature can help the applications reduce rendering workload,
we focused on acceleration and efficiently renewed the static
objects information.

The previous rendering result of static object will be stored in
a buffer and decrease refresh frequency of the buffer to draw
many static objects in the current frame quickly and stably.
When a certain static object becomes a dynamic one, we check

whether the object is visible or invisible in the static object
buffer. If the object is invisible due to other static ones, we just
skip updating the static objects buffer. As a result, we reduced
the number of the updating process and got faster, more stable
rendering performance. Many 3D applications such as video
games used static object image as background scene but it’s
cannot be changed easily. Our method facilitated that we can
change static objects to dynamic objects without considerable
rendering workload.

ACKNOWLEDGMENT
This paper was supported by BK 21 Program in Soongsil

University.

REFERENCES
[1] Ivan E, Sutherland, Robert F. Sproull, and Robert A. Schumacker, "A

Characterization of Ten Hidden-Surface Algorithms," ACM Comput.
Surv, 6(1):1-55. 1974.

[2] H. Hubschman and S. W. Zucker, "Frame-to-frame coherence and the
hidden surface computation: constraints for a convex world," ACM
Trans. Graph. 1, 2, pp.129-162. Apr. 1982.

[3] Satyan Coorg and Seth Teller, "Temporally coherent conservative
visibility (extended abstract)," In Proceedings of the twelfth annual
symposium on Computational geometry (SCG '96), ACM, New York,
NY, USA, pp.78-87. 1996.

[4] Shenchang Eric Chen and Lance Williams, "View interpolation for image
synthesis," Proceedings of the 20th annual conference on Computer
graphics and interactive techniques, pp.279-288, Sept. 1993.

[5] Walter B, Drettakis G, Parker S, "Interactive rendering using the render
cache," In Eurographics Workshop on Rendering, Rendering Techniques,
Springer-Verlag, pp.19-30. 1999.

[6] Zhu. T, Wang. R, Luebke D, "A GPU accelerated render cache," In
Pacific Graphics (short paper), 2005.

[7] Diego Nehab, Pedro V. Sander, and John R. Isidoro, "The real-time
reprojection cache," In ACM SIGGRAPH 2006 Sketches (SIGGRAPH
'06), ACM, New York, NY, USA, Article 185. 2006.

[8] Diego Nehab, Pedro V. Sander , Jason Lawrence , Natalya Tatarchuk,
John R. Isidoro, "Accelerating real-time shading with reverse reprojection
caching," Proceedings of the 22nd ACM SIGGRAPH/EUROGRAPHICS
symposium on Graphics hardware, Aug 04-05, 2007.

[9] Meister Eduard Gröller, “Coherence in computer graphics,” PhD thesis,
Institute of Computer Graphics and Algorithms, Vienna University of
Technology, Favoritenstrasse 9-11/186, A-1040 Vienna, Austria, 1992.

[10] Gernot Schaufler, "Exploiting Frame to Frame Coherence in a Virtual
Reality System," In Proceedings of the 1996 Virtual Reality Annual
International Symposium, IEEE Computer Society, 1996.

[11] Jed Lengyel and John Snyder, "Rendering with coherent layers," In
Proceedings of the 24th annual conference on Computer graphics and
interactive techniques (SIGGRAPH '97), ACM Press/Addison-Wesley
Publishing Co., New York, NY, USA, pp.233-242. 1997.

[12] D. Scherzer, S. Jeschke, and M. Wimmer, "Pixel-correct shadow maps
with temporal reprojection and shadow test confidence," In: Kautz, J.,
Pattanaik, S. (eds.) Rendering Techniques 2007 Proceedings
Eurographics Symposium on Rendering, Eurographics, pp.45-50.
Eurographics Association, 2007.

[13] D. Scherzer, M. Schwärzler, O. Mattausch, and M. Wimmer, "Real-time
soft shadows using temporal coherence," Lecture Notes in Computer
Science (LNCS), 2009.

[14] Kyoungsu. Oh, and Byeongseok. Shin, "An Efficient Method for
Dynamic Shadow Texture Generation," IEICE Transactions on
Information and Systems 2005, vol. E88-D., pp.671-674, Mar. 2005.

