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Abstract—In this paper, we propose a nove
control strategy for boost converter via Inverse LQ S
presented strategy is based on an analytical formula
Quadratic (ILQ) design method, which is not n
Riccati’s equation directly. The optimal and adaptiv
voltage control system is designed. The stability and
are analyzed. Whereas, we can get the analytica
optimal and robust voltage control is achieved th
angular velocity within a single parameter and w
responses easily via the ILQ control theory. Our
effective results as the stable responses and the resp
drifted even if the condition is changed widely.

Keywords—Boost converter, optimal voltage c
design method, type-1 servo-system, adaptive contr

I. INTRODUCTION

OOST converter should be designed an
high voltage ratio, high efficiency and h

keeping low cost herewith, the aim issue for 
this domain[1]. The control system issues re
converters, are interested, especially in the con
discontinuous topologies, nonlinear systems
phase systems of the dc to dc converters due
circuit topology[2]. Furthermore, the academ
the fashionable issues such as the efficiency, t
economically and the reduced-size controlle
continuous effort to design many control strate
the performance of the power converters and
number of the control schemes based on div
been proposed [3].

Since the classical control methods are 
nominal operating point, they could not proper
operating point variations and the load distu
them fail to perform satisfactorily under the la
the load variations [4].

The proposed control system strategy is des
linearized small-signal model and employed
power converters in which the ILQ design met
servo-system control without solving Riccat
Using this method, the transfer function can b
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designed into specification. Hence
guaranteed and the optimal gains can
[6]-[8]. The ILQ servo-control have
very easy to designed, stable, rob
practical servo controller for the 
[9]-[12].

In this paper, the novel adaptive v
ILQ method is proposed. The paper 
this chapter, describes the advantag
Chapter II, the modeling, solving and
Servo-System for the boost convert
III, we present the numerical simu
resulting important properties of 
conclusion and the references are giv

II. MODEL AND PROPOSE CO

I In this step, we adopt the typical
shown in Fig. 1 via the C-filter wit
output voltage is equivalent to voltag

A. Modeling for the Boost Convert

The boost converter is constituted
components as shown in Fig. 1, and
boost converter is shown in Fig. 2, wh
v2 is the output voltage, i1 is the inp
current and ic is the capacitor curren
filter, respectively.

Fig. 1 The boost conve

Fig. 2 Equivalent circuit of th
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In this moment, the analytical boost converter is more
difficult than the buck converter and the inverter, because the
topology of boost converter is changed by switching based on
the operation of inductor, MOSFET and diode D.

We can derive a linear state equation of the boost converter
into two steps from Fig. 2 to find as follows; 1) deriving state
equation, including time-variable duty-factor df into system
matrix by state space average method, and 2) deriving
time-invariant state equation by small signal analysis method.

B. Solving the Time-variant Linear State Equation

The time-variant state average space model is consisted of
average of a state space equation when the switch S1 is “ON”
period and a state space equation when the switch S1 is “OFF”
period.

Our synthesis of this boost converter based on the time
intervals of length Ts, which is separated into “ON” period and
“OFF” period by duty-factor df with the condition of 0 ≤ df ≤1.

When the switch S1 is the close circuit or called “ON” period,
the current in the inductor L increases linearly and the switch S2

is the open circuit in this period.
During the switch S1 is the open circuit or called “OFF”

period, the stored energy in the inductor L will be released
through closed switch S2 and the inductor creates the higher
output voltage.

i. The operation of switch can be represented by df to
control the output voltage of v2.

In the condition of 0≤ t ≤ dfTs when the switch S1 is “ON”
period from Fig. 2, the circuit equations are given as follows:

1
1 1

di
v ri L

dt
, 2

1
c

F

v i dt
C

, 1 2 ci i i . (1)

In order to derive the state space equation, we reorganize the
equation as follows:

1
1 1

1di r
i v

dt L L
(2)

2
2

1

F

dv
i

dt C
(3)

then we dispose the state space equation as follows:

1 1 1x A x B u D d (4)

where

1 2
T

x i v ,
T

is transpose matrix, 1u v , 2d i ,

1

0

0 0

r
A L , 1

1

0
B L and 1

0

1

F

D

C

.

ii. In the condition of   when the switch S1 is “OFF” period
from Fig. 2, the circuit equations are given as follows:

1 1 1 2
d

v ri L i v
dt

, 2
1

c
F

v i dt
C

, 1 2 ci i i . (5)

In order to derive the state space equation, we reorganize the
equation as follows:

1 1 2 1
1 1d r

i i v v
dt L L L

(6)

2 1 2
1 1 1

c
F F F

d
v i i i

dt C C C
(7)

then we dispose the state space equation as follows:

2 2 2x A x B u D d (8)

where

2

1

1
0

F

r

L L
A

C

, 2

1

0
B L and 2

0

1

F

D

C

.

Finding the average state space equation indicated by
duty-factor fd and defining the new state variables as follows:

1 2

1 2

1 2

1

1

1

f f

f f

f f

A d A d A

B d B d B

D d D d D

(9)

then considering the time-variant system, the average state
equation can be rewritten from (9) as follows:

x Ax Bu Dd (10)

where

1

1
0

f

f

F

dr

L L
A

d

C

,
1

0
B L and

0

1

F

D

C

.

C. Finding the Time-invariant State Equation by Small
Signal Analysis Method

According to the time-invariant system, a variable part of the
duty-factor is important to separate by applying the
superposition of the steady and the variable components for the
state equation analysis as follows:

f f fd D d (11)
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where fD and fd are the steady and the variable

components of duty factor, respectively.
Substituting (11) to (10) yields:

1

1
0

f f

f

f f

F

D dr

L L
A d

D d

C

(12)

where

1

1
0

f

f

F

Dr

L L
D

C

,

1
0

1
0

F

L

C

.

Thence, applying the steady state analysis with 0fd , the

steady state equation can be obtained as follows:

0 0 0 0 0x x Bu Dd (13)

where

0 1 2

T
x I V , 0 1u V , 0 2d I . 1I , 2I , 1V and 2V are

average values of 1i , 2i , 1v and 2v , respectively.

Then

1 2 1

1 1
0fDr

I V V
L L L

(14a)

1 2
1

1 f

I I
D

. (14b)

Substituting (14b) to (14a) and considering 0 1fD

yield:
2

1 1 2

2 2 2 1

2

4

1 1
2f

V V I
r

V V V V
D

V
. (15)

Because generally resistance r is very small, so we can neglect
it.

Taking account of 0 1 constantu u V in (10), we

consider about state variables as follows:

0x x x (16a)

0u u (16b)

0d d d (16c)

where x , d are variable components as:

1 1 1
0

2 2 2

i i I
x x x

v v V
, 0 2 2 2d d d i i I

Substituting (12) , (13) and (16a) - (16c) to (10) yields:

0 0 0

0

f

f f

x d x x Bu D d d

x x d D d d x
(17)

We can assume that 0fd x on the small signal analysis,

thus the time-invariant state equation is given as follows:

s s s s s s sx A x B u D d , s s sy C x (18)

where,

1 2

T

sx x i v , s fu d , 2sd d i and

1

1
0

f

s
f

F

Dr

L L
A

D

C

,

2

0
1

s

F

V

L
B x

I

C

,

0 1sC C and
1

0
T

s
F

D D
C

Henceforth, the plant must satisfy the controllable and
observable system, the minimal-phase system, and the no zeros
system at the origin, which already has all of conditions. We
can verify and proof the system with the robust control theory
approached [5], [6], [13].

D.Solving the Type-1 ILQ Optimal Servo-System

In order to design the ILQ optimal servo-system, the
following conditions is proposed [4], [8], [14], [15]:

1) Proposed strategy extended the state feedback system.
2) We can find the analytical optimal solution based on the

ILQ design method.
3) We can get the asymptotic feature of the ILQ optimal

servo-system.
4) We can follow the procedure for the optimal solutions of

the Type-1 ILQ servo-system.
In this section, we first derive the basic construction for the

Type-1 ILQ servo-system, and then we explain about the
procedure for getting the optimal gains of the Type-1 ILQ
servo-system.

E. Finding the Basic Optimal Gains of the Type-1 ILQ
Servo-System

Fig. 3 shows a typical servo system, where y* is a reference
input, KF is feedback gain, KI represent the integral gains of the
servo controller.

Based on the conventional ILQ design method, the set of
parameters of the basic ILQ servo-system represented in Fig. 4
are:

1 0 0
F I F IK K V V K K (19)

where 0
FK and 0

IK are the basic optimal gains, is diagonal

gain matrix as adjusting parameter, and V is suitable
nonsingular matrix [7], [9], [16].
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Fig. 3 Block diagram of typical servo-s

Fig. 4 Block diagram of construction of the ILQ

At this point we have achieved the optimal 

servo-system with gain 0
FK and 0

IK .

F. Finding the Optimal Condition of t
Servo-System and Proposed Adaptive Control

The ILQ servo-systems have the special prop
the closed-loop transfer functions into objec
transfer functions. This idea leads to very simp
gains which is easier to control the servo-sy

basic gains 0
FK and 0

IK are derived by follow

1-1
1:= d

cD c A B

where Dc, which must be nonsingular, i.e
sufficient condition, enables to decouple the 
1strow-vector of matrix C, and d1=min{k|c1A

k

is the order difference between the denom
numerator of the plant.

The order difference, d1 = 2 in the system w
so that the stable polynomial for 1(s) determi
of the servo-system in the condition , can

2
1 1,1 1,2:s s s

where 1,1 and 1,2 are the coefficients of the 
the objective transfer function is given by

1,11
1 2

1 1,1 1,2

(0)

( )
G s

s s s

A polynomial matrix can be defined as:

2
1 1 1 1,1 1,2s s s sN A c A c A A

1
0 0

0
s s

F I
s

A B
K K K I

C

o-system

LQ servo-system

al solutions of ILQ

 the Type-1 ILQ
rol Strategy

roperty to converge
jective decoupled-
mple adjustment of
-system. Then, the

lowing procedures:

(20)

i.e. necessary-and-
he system, c1 is the
Ak-1B≠0, k=1,2,…}

nominator and the

 was given by (20),
rmines the response
can be defined as:

(21)

he polynomial, thus

2s
(22)

1,2 (1 ) (1 )f f

F F

D D r

C C L

then we can derive the decoupling ga

11,21

2

( )c s

r L
K D N A

V

Consequently we can obtain the
follows:

0 0
F IK K K I

1,2

2 21 1

F

f

LCL

V D V

In order to achieve a simple desi
objective transfer function of (22) as

2
1,1 n and 1,2

where n is natural angular velo

coefficient.
The sigma can be calculated by fo

1,22( L r

L

From (25), basic gains 0
FK and

analytical forms,  are function of the 
factor fD and voltage V2, so that

adaptive control for varying  comm
Consequently we can derive a 
servo-system as shown in Fig. 5.

Fig. 5 Block diagram of construction
ILQ servo-system (on the

III. NUMERICAL SIMULATIO

The parameter of our simulation, 
the condition of DC input voltage
frequency of 20 kHz. The result of 
Fig. 6 to Fig. 10. The amplitude of 

2

1,1

(1 )f

F

r D

C L
(23)

 gain as follows:

2
1,1

2

(1 )

1

F f

f

C L D

D V
(24)

the optimal basic gains as

1

0
s s

s

A B
I

C

1,1

21

F

f

LC

D V
(25)

esign of responses, we give
 as:

2 n (26)

elocity and is damping

 following equation:

)r
(27)

d 0
IK , which are solved by

he steady component of duty
hat it enables to realize an

mmand output voltage ys*.
a proposed adaptive ILQ

ion of the proposed adaptive
the basis of (25))

TIONS AND RESULTS

n, which were carried out at
ge of 12V and the carried
of simulation is as shown in
of reference voltage through
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the low-pass filter, were varied from 24V
whereas, each reference voltage is increased 
0.15s thenceforward, we changed back at 0.2s.
supplying the same disturbance load current,
load of 10Ω, 24Ω, 48Ω and 60Ω is connect
terminals at 0.25s, respectively. All of simula
the same condition those were n = 500,

1000. The blue line represents the reference 
actual voltage is represented by the red line, th
and duty-factor of system is also presented.

For the evaluating response by the reference
a "rising time", which is an interval from
reference voltage output to 95% of reference vo
for the evaluating response by the disturbanc
define a "recovery time", which is an interval
of its disturbance to the recovering level.

Fig. 6 Type-1 ILQ control with 2nd-o
(Command voltage v2

*=24V to 25V and lo

TABLE I
RISING TIME AND RECOVERY TIME

Conditions
R
T

Recovery
Time

Fig. 6 Type-1 ILQ control with High-order
(Command voltage v2

*=24V to 25V
and load = 24Ω)

8.6 1.349ms

Fig. 7 Type-1 ILQ control with High-order
(Command voltage v2

*=24V to 25V
and load = 10Ω)

8.6 1.356ms

Fig. 8 Type-1 ILQ control with High-order
(Command voltage v2

*=24V to 29V
and load = 24Ω)

8.6 1.349ms

V, 48V and 60V
ed by 1V or 5V at
2s. Furthermore, for
t, the step-function

ted to the output
ulation results used

= 0.707 and σ =

ce voltage and the
, the output current

ce input, we define
om the increasing
e voltage. Moreover
ance of system, we
val from the impact

-order
load = 24Ω)

E

Conditions
Rising
Time

Recovery
Time

Fig. 6 Type-1 ILQ control with High-order
(Command voltage v2

*=24V to 25V
and load = 24Ω)

8.676ms 1.349ms

Fig. 7 Type-1 ILQ control with High-order
(Command voltage v2

*=24V to 25V
and load = 10Ω)

8.676ms 1.356ms

Fig. 8 Type-1 ILQ control with High-order
(Command voltage v2

*=24V to 29V
and load = 24Ω)

8.676ms 1.349ms

Fig. 7 Type-1 ILQ control
(Command voltage v2

*=24V to 2

Fig. 8 Type-1 ILQ control
(Command voltage v2

*=24V to 2

Considering Fig. 6 and Fig. 7,
proposed Type-1 ILQ control with
which mean we can control the risin
of robust and insensitive of the di
comparing Fig. 6 and Fig. 8, we 
amplitude of the reference voltage fr
29V, we can get the rising times are 
due to adaptive control of Df and
which determines the voltage transfo
that the optimal gains of our propos
automatically and adaptively.

Conditions
Rising
Time

Recovery
Time

Fig. 6 Type-1 ILQ control with High-order
(Command voltage v2

*=24V to 25V
and load = 24Ω)

8.676ms 1.349ms

Fig. 7 Type-1 ILQ control with High-order
(Command voltage v2

*=24V to 25V
and load = 10Ω)

8.676ms 1.356ms

Fig. 8 Type-1 ILQ control with High-order
(Command voltage v2

*=24V to 29V
and load = 24Ω)

8.676ms 1.349ms

rol with 2nd-order
to 25V and load = 10Ω)

rol with 2nd-order
to 29V and load = 24Ω)

7, the rising times of the
ith 2nd-order are 8.676ms,

sing time with the properties
 disturbance of system. By
e found that changing the
 from 24V to 25V or 24V to
re corresponded to 8.676ms,
d the reference voltage v2*,
sformation ratio. This means
osed controller are changed
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TABLE II
RISING TIME AND RECOVERY TIME

Conditions
R
T

Recovery
Time

Fig. 6 Type-1 ILQ control with High-order
(Command voltage v2

*=24V to
25V and load = 24Ω)

8. 1.349ms

Fig. 9 Type-1 ILQ control with High-order
(Command voltage v2

*=48V to
49V and  load =48Ω)

7. 2.338ms

Fig. 10 Type-1 ILQ control with High-order
(Command voltage v2

*=60V to
61V and load = 60Ω)

6. 2.703ms

Fig. 9 Type-1 ILQ control with 2nd-o
(Command voltage v2

*=48V to 49V and lo

Fig. 10 Type-1 ILQ control with 2nd-o
(Command voltage v2

*=60V to 61V and lo

E

Conditions
Rising
Time

Recovery
Time

Fig. 6 Type-1 ILQ control with High-order
(Command voltage v2

*=24V to
25V and load = 24Ω)

8.676ms 1.349ms

Fig. 9 Type-1 ILQ control with High-order
(Command voltage v2

*=48V to
49V and  load =48Ω)

7.129ms 2.338ms

Fig. 10 Type-1 ILQ control with High-order
(Command voltage v2

*=60V to
61V and load = 60Ω)

6.230ms 2.703ms

-order
load = 48Ω)

d-order
load = 60Ω)

Comparing Fig. 6, Fig. 9 and Fig. 1
and the command voltage is higher 
smaller and smaller slightly, on the o
larger and larger too. This result
excellent adaptive and robust control

In order to observe the distur
simulation condition of the output 
defining both the reference voltage 
shown in Fig. 6, Fig. 9 and Fig. 10
evaluate the effect of i2 to the disturba
show that the disturbance is decrease

Considering all results, the duty-f
controlling region in range of (0,1) a

The rising and recovery times in Fi
summarized in Table II.

IV. CONCLUS

We have proposed the novel 
strategy for the boost converter by u
control with the optimal gains of 
response and the disturbance respons
parameter, n . In case of suppressin

control the output current of i2 autom
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