
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:6, 2013

739

Abstract—We try to give a solution of version control for

documents in web service, that’s why we propose a new approach

used specially for the XML documents. The new approach is applied

in a centralized repository, this repository coexist with other

repositories in a decentralized system. To achieve the activities of

this approach in a standard model we use the ECA active rules. We

also show how the Event-Condition-Action rules (ECA rules) have

been incorporated as a mechanism for the version control of

documents. The need to integrate ECA rules is that it provides a clear

declarative semantics and induces an immediate operational

realization in the system without the need for human intervention.

Keywords—ECA Rule, Web service, version control system,

propagation.

I. INTRODUCTION

HE version control is essential in the environments where

several users handle the same base of resource where the

data is shared and in continuous evolution. As the Web

services do not take into account the history of the

modifications of the documents exchanged between the

services and their customers [1], [2], we propose to consider

this aspect in order to reach the history of the modifications of

XML documents [3], [4] and to have for each document the

traceability of all the modifications made along of its life

cycle. For this reason, we propose to incorporate a new model

of version control system in a centralized work group

containing a set of users and their work copies connected to

a central repository and it also connect with other central

repositories of works groups forming the global decentralized

system [5].

The approach suggested supports the «Lock-Modify-

Unlock» and «Copy-Modify-Merge» strategies [6]. Our effort

is also focused on integrating the ECA active rules, for the

management of ECA number of versions, the control of shared

data management and propagation of changes as well as

changes in the content of XML documents.

The remainder of this paper is organized as follows. Section

II presents, the definition of active system and ECA rules, and

Section III discusses the models of version control system. We

specify, in Section IV, our model. In Section V, we present the

S. Benhamed is with LITIO Laboratory in computer Sciences department,

University of Oran, Algeria, (e-mail: benhamed2007@yahoo.fr).

S. Hocine is with LITIO Laboratory in computer Sciences department,
University of Oran, Algeria, (e-mail: S_hocine@yahoo.fr).

D. Benhamamouch is with LITIO Laboratory in computer Sciences

department, University of Oran, Algeria, (e-mail:
d_benhamamouch@yahoo.fr).

architecture of the proposed model with a definition of its

components in Section VI. Finally, we conclude in the Section

VII.

II. ACTIVE SYSTEMS AND ECA RULES

The active systems are characterized by an ability to

automatically react to certain situations by the execution of

predefined operations [7]-[9].This capacity of reaction consists

in enriching a "traditional" system of data bases by active

rules. The active rules describe the operations which must be

performed in response to a significant and not at the explicit

request of an application or a user. The active rules generalize

the notion of Triggers in the context of databases relational

data [10]. These triggers was used to guarantee the integrity

and the coherence of the data bases [11], [12] where the action

generally consisted in rejecting the operation of update in the

event of violation of constraints.

The ECA active rules express the active functionalities

through a formalism of rule "Event-Condition-Action". An

event indicates a point in time when the system has be

reacting, and a condition relates to a system state; it has to be

evaluated when the occurrence of corresponding event is

signaled. If the condition is satisfied, the associated action has

to be executed. The events are subdivided into two categories:

Primitives which correspond to elementary occurrences, and

composite events which are composed out of other composite

or primitive events and built by means of event constructors

(conjunction, disjunction, sequence, negation…) [12], [13],

and [9].

III. VERSION CONTROL SYSTEM (VCS)

The Version Control System (VCS) is software which

contains a set of tools to store and manipulate a file as well as

any revisions it has undergone since its creation [14]. The

utility of VCS is seen in the competing access by several

developers, the follow-up of the history, and the visualization

of the differences between the various versions and the return

to old versions [15] and [16]. Some versions of VCS are

centralized, and other decentralized. We cannot use these

systems on web service because they are limited by their

platform.

In a centralized version control system, there’s a single

repository that track the changes to all files of the project and

any version control operations (check out, commit, merges…)

must go through the central repository [17]. The decentralized

version control systems, as the name implies, can have any

S. Benhamed, S. Hocine, and D. Benhamamouch

Proposition for a New Approach of Version

Control System Based On ECA Active Rules

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:6, 2013

740

number of repository. Each user has own repository and

changes can be swapped back and forth between repositories

arbitrarily [18].

The centralized system used «Lock-Modify-Unlock» and

«Copy-Modify-Merge » model, on the way to avoid users the

sharing of information and remove of changes passed. In

«Lock-Modify-Unlock» model, only one user is authorized to

modify a document at a given moment. This technique is

managed by the Lock. If a user locks a document, no change

could be established by another user. The access to the locked

document by another user will be possible once the document

is unlocked.

In «Copy-Modify-Merge» model, the users contact the

repository of the project, and create a personal working

copy, which is a local replication of the structure and files

of the repository. The users can work in parallel, by

modifying directly and only their private copy. Then, the

private copies are merging together into a new final version.

Although, «Lock-Modify-Unlock» strategy guarantees the

user to work on the latest version of a document; the problem

with this strategy is that it’s restrictive and can become read

block for users locking may cause administrative problems

unnecessary serialization and create a false sense of security

[19]. However, the «Copy-Modify-Merge» model allows

avoiding the need for waiting, to have an absence of conflict

in the case where there are modifications on the same

document, and to solve a conflict is often faster than to await

the unlocking of the first model [20].

The locking imposed in «Lock-Modify-Unlock» model

cause a delay and a waste of time when the user ignores the

Unlock of the document or when he manipulates a document

part independent of other concurrent users. But the merger, in

the «Copy-Modify-Merge» model, it can cause a loss of time

when the users try to resolve conflicts manually.

The centralized control systems support CVS [21] and

Subversion [22] as well decentralized control systems [18],

[23], and [24] support Git, Bazaar, Darcs, Mercurial and

Monotone [25].

A. Centralized Control Version System

A centralized control version system uses a single central

repository distant access made to share information moreover

modification impose an access in writing on this repository

[17]. The centralized control version Systems are secure but in

the other hand, the exchanges between the repository and the

local copies are impossible, the work without connection is

impossible, the time of update is long for the big projects and

if the server breaks down the management is stopped.

B. Decentralized Control Version System

In decentralized control version system several repository

coexist requiring synchronization. The objective of the

decentralized control version Systems is to solve the problems

of the systems centralized, like to be able to use the manager

of version without connection and to give a possibility to

exchange files with part of the developers, since each

developer has its own repository.

It is also possible to create its own repository from another,

to establish out its modifications locally, after that to recover

the later changes since the source, to propagate its own

modifications if one has an access in writing.

IV. THE PROPOSED MODEL

To avoid the maximum of problems of «Lock-Modify-

Unlock» and «Copy-Modify-Merge» with keeping the

advantage provided by these models, we propose a new

approach of version control intended for the information

exchanged in the Web services between providers and their

customers. This approach is not intended to manage the

various versions of the services of the Web services, thing

which under development but currently not introduced yet into

the operation of the Web service, it aims at managing different

versions of the documents, which are used in the Web

services. Because the nature of the exchanged data, we are

interested to manage and control of the documents which are

in XML form.

The mechanism for version control of document in our

model is inspired by «Lock-Modify-Unlock» and «Copy-

Modify-Merge» models, in a centralized system. Because we

benefit, of advantages of the «Copy-Modify-Merge» model

and it must to recognize that, sometimes, the locking is

essential in the version control systems. The model proposes

to keep a history of the various versions of the documents

which the system has, the return to an unspecified former

version and to keep a history of document’s changes, their

date, and their user. To make this management active, we

incorporate ECA active rules in our model to execute

necessary functionalities for the reason that it provides a

flexible architecture that can be adapted for different

application scenarios, as well as providing an active service as

composition of other elementary services.

The global figure below (Fig. 1) shows the interlacing of

the central repository in the global distributed system.

Fig. 1 The Global Diagram system

V. THE ARCHITECTURE OF PROPOSED MODEL

To answer the objectives of proposed model of versions

Repository Repository

Work

copy

Work

copy
Work

copy

Work

copy

User1

User2
User1

User2

Work group 1 Work group 2

Connection

User3 Work

copy

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:6, 2013

741

Version

tree +

Report

control for documents, we present in the figure below (Fig. 2)

the architecture of reference of our model.

Fig. 2 The architecture of versions control based on ECA active

systems

In the web services environment, the central server is the

service provider and the users are the customers.

VI. COMPONENTS OF THE MODEL

A. Central XML Base / User XML Base

The central XML base (repository) contains all the

documents with their various versions in repertories form.

Concerning the user XML base, it represents an environment

of work for each user (creation of a personal working copy as

in the «Copy-Modify-Merge» model). It contains only the last

version of each document which the user needs in his work.

The connection between central XML base and that of the

user, is established when the user wants to consult the contents

of a former version of a document, or if the user wishes to

establish out modifications.

B. Management of XML Document

The module of management XML document is able to

manage the selected document; it composes two principal

components which intervene at the same time: The

Notification component emits a warning with the user

informing it, of change document specifying his name.

 Five situations are possible and are expressed by the

following ECA rules:

ECA rule 1: Event: Accept the modification

by user 2

Condition: If opinion=accept

Action: do the modification

ECA rule 2: Event: Stopping by user 2;

acceptance for the stop of user 1

Condition: true

 Action: Cancel the modification

and stop the execution

of the system

ECA rule 3: Event: Blocking by user 2;

acceptance for the

blocking of user 1

Condition: true

Action: Trigger the

modification of user 2,

after trigger the

modification of user1

ECA rule 4: Event: Blocking by user 2;

refuse blocking of user 2 by user 1

 Condition: true

 Action: Trigger the

modification of user 1,

after triggering the

modification of user 2

ECA rule 5: Event: Stopping by user 2;

refuse stopping of user 2 by user 1

 Condition: true

 Action: Trigger the

modification of user 1

NOTE: The ";" denote the event constructor of sequence.

The diagram of sequence (Fig. 3) illustrates the different

exchanges between both users.

NOTE: Before beginning the locking and the notification

we check if the second user is connected, if it is not, we pass

directly at the following step (modification of the document)

without the locking and the notification modules.

The aim of locking control is to lock the access to the

document which made modifications by the two users and

when the second user ignores the message of Notification

component. When the latter wants to reach the document and

triggers modifications though it is not the last version, the

locking of the document is necessary; the technique of adopted

locking consists in adding information to the action like an

attribute noted «density». The density informs us about the

impact of the changes established in the documents: if the

change is regarded as being partial; locking is not necessary

on the other hand, the lock is essential if the change is total.

The density can have the true value or false according to the

type of the action.

If density = true then:

• The actions of ECA rule apply total changes to the

document.

• It is necessary to activate the locking of document

Event trigged

by user 1

User XML Base

Connection

Central XML Base

XML

Doc

XML

Document

New version

Management of the new

version of XML document
Management of XML document

Unlocking
Locking control

Propagation
Notification

Modification Document

New version
Event

Behind Return

Manager of XML document versions

Modified
XML

document

Intervention
user 2

XML

Doc

XML

Doc

XML
Doc

XML
Doc

XML
Doc

 User

Rule
Base

Merge document

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:6, 2013

742

for the other users.

•

If density = false then:

• The actions of ECA rule apply partial changes to

the document XML (insertion or suppression of a

part of the document).

• It is not necessary to activate the locking of the

document for the other users (authorize the users to

make their modifications). The type of the actions

established by both rules trigged by the users must

be in the same type.

These situations are expressed by the fooling ECA rules:

ECA Rule 6: Event: selected document;

modification rule started

Condition: If density=true

Action: Activate the locking

ECA Rule 7: Event: selected document;

modification rule started

Condition: If density=false

Action: Don’t activate the

locking

NOTE: The actions in the same type mean that if the first

user has established an insertion (respectively the

suppression), the second will establish also an insertion

(respectively the suppression) in the same document.

When user 1 informs the user 2 that he wishes to establish a

modification on a document, then user 2 must select one of

three choices. User 2 can accepts the modification and the

modification is then establishes, or stops the modification and

in this case the modification trigged by user 1 is stopped; else

he can block the modification of user 1 and at this moment he

must triggers a modification on the document while user 1 is

blocked, and when he finishes, user 1 can establish a

modification on the document.

When the both users want to modify the same document in

the same time and the locking is not activate, the system call

the module Merge document of the server to merge the results

of the users modifications.

A. Modification Document

The module of Modification Document is conceived like a

component making it possible to evaluate and trigger the ECA

rule which was started by event from Rule Base. As it also

makes it possible to recover a former version without activate

ECA rule with the component of behind Return. The product

of this module is a modified XML document.

B. Manager of XML Document Versions

The module of Manager of XML document versions treats

and manages the various versions of the document in addition

to the new version. Thus this module is responsible for

document revision, and the creation of the tree of versions

(realized automatically by the mechanism of ECA rules).

To visualize the maximum of information starting from the

version numbering, the Manager of XML document versions

adopt «1.X.Y» numbering where 1 represents root version, X

is user number who caused the creation of this new version,

and Y is number version, which is incremented after each

creation of a new version by each users (1.0.0 represents the

number of the first version of a document).

Fig. 3 Diagram of sequence of Notification component

Once the numbering of the document finished this module

is responsible to create and manage the tree of versions.

However the ECA Rules introduced into this module are

defined below:

ECA Rule 8: Event: Original document;

presence of a modified document.

Condition: If the version tree

exists

Action: 1. Traverse version tree

2. Affect a number for the

new version

User 1: User 2:

Selection a

XML doc ()

Notify ()

If choice= Accept

Authorize the rule which was
trigged by user 1 ()

Else if choice=

stop

Notify (stop)

Cancel the

modification ()

Else
Notify (refuse)

Else
choice=blocked

Notify (blocked)

If choice= Accept
Notify (accept)

Trigger an
event on same

XML doc () Finish the modification ()

Activate the

modification
which was

blocked ()

Else
Notify (refuse)

Activate the

ECA rule ()

Activate the

modification ()

Activate the

modification ()

If choice= Accept

End if

End if
End if

End if

Trigger an

event ()

Finish the modification ()

Finish the modification ()

Finish the modification ()

Trigger an

event on same

XML doc ()
Finish the modification ()

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:6, 2013

743

3. Add a node to version

tree

ECA Rule 9: Event: No original document;

presence of a modified

document

Condition: If the version tree

does not exist

Action: 1. Create version tree

2. Affect a number for

the new version

3. Add a node to the

version tree

The version tree is a graphic representation of central XML

base. It illustrates which is the document that has the

modifications to obtain the last version. It makes possible to

keep the history of all established changes in the system. The

version tree is stored in central XML Base.

The creation of a new version implies the creation of a

report whose name and number are those of the document

version, it is necessary to store the operations of these

modifications. The report is inserted automatically in central

XML base.

C. Management of the New Version of XML Document

Once the new version created, the management of the new

version module calls two components Propagation and

unlocking which each one integrates a system containing ECA

rule. In order to give to the users’ access to the document, the

Unlocking component releases the lock (case where the

document was locked). The propagation module ensures that

users have the new version; for that it propagates the new

version of the document modified to central XML base and

removes the old version of user XML base.

VII. CONCLUSION

In this paper, we covered the versions control of XML

documents, which is important for the management of

documents. We presented a model of versions control for

XML documents. This model combines the techniques of

«Lock-Modify-Unlock» and «Copy-Modify-Merge» models.

One aspects of our approach is the use of ECA rules especially

in the document’s modification, the management of version

numbering and the propagation of versions of documents.

REFERENCES

[1] W3C. Web Services Description Language (WSDL) 1.1, note 15, 2001.
http://www.w3.org/TR/2001/NOTE-wsdl-20010315.

[2] C.Devaux, L. Bourceret, B. Gory and L. Bernard “Urbanisation &

Architecture Oriontée Service (SOA), Quelques bonnes pratiques pour
leur mise en œuvre,” 2008.

[3] D. Hunter, C. Cagle, N. Ozu, J. Pinnock and P. Spencer. “Initiation à

XML,” Eyrolles Edition,” 2001.
[4] A. Brillant, “XML cours et exercices,” Eyrolles Edition. 2007.

[5] Sparx systems. Version Control Best Practices for Enterprise Architect,

2010. www.sparxsystems.com.
[6] B. Collins-Sussman, W. Brian, C. Fitzpatrick and M. Pilato “Version

Control with Subversion For Subversion 1.6,” 2009.Compiled from
Revision3734.

[7] U. Dayal, “Active Database Management Systems”, ACM Sigmod

Record, 18(3) :150–169. 1989

[8] T. Coupaye, C. Collet, “Modèles de comportement des SGBD actifs:

caractérisation et comparaison,” 1998. Technique et Science
Informatiques (TSI), 17(3) :299-328.

[9] T. Coupaye, C. Collet, “Primitive and composite event in NAOS,”

Cassis France. 1996.
[10] J. Bailey, G. Dong, RAMAMOHANARAO, K., “On the Decidability of

the Termination Problem of Active Database Systems,” 2004.

Theoretical Computer Science, p. 389-43.
[11] U. Dayal, E. HANSON, J. WIDOM, “Active Database Systems. W.Kim

editor, Modern Database Systems,” 1995. pp. 434-456. ACM Press.

[12] C. Collet, “Bases de données Actives: des systèmes relationnels aux
systèmes à objets,” Laboratoire IMAG. 1996. Report RR965-ILSR4.

[13] S. Gatzia and K. R.Dittrich, “Detecting Composite Events in Active

Database Systems Using Petri Nets,” in Proc. of the 4th Intl. workshop
on Research Issues in Data Engineering (RIDE’94), Houston, Texas.

1994.

[14] A. F. Bresson, Gestion de contenu Web.
http://www.axidea.org/form_info.htm e 17 january 2006.

[15] A. Cadiou, “Introduction à CVS : un système de gestion de version,”

LMFA UMR CNRS 5509, FLCHP, Central School of Lyon. 2004.
[16] A. Alvarez Escobedo, “ SAGED-XML : Serveur actif pour la gestion de

la cohérence de documents,” Appliqued Scientific national Institut of

Lyon. 2003.
[17] M. Guesdon and G. Rousse, “Gestion de configuration avec CVS et

Subversion,” 2011.

[18] S. Chacon, “ Pro Git (Expert's Voice in Software Development) ,”
Apress. 2010.

[19] B. Collins-Sussman, W. Brian, C. Fitzpatrick, and M. Pilato, “Version
Control with Subversion for Subversion,” O’Reilly Media edition. 2004.

[20] F. Melot, “ SVN un gestionnaire de versions,” SARI Seminar, LPSC,

IN2P3, CNRS Grenoble. 2008.
[21] P. Cederqvist et al. “Version Management with CVS,” Free Software

Foundation, Inc. 2008.

[22] D. Donsez, “SubVersion (SVN),” University of Joseph Fourier Grenoble
I. 2010.

[23] B. Lynn, “Git Magique Historique des versions,” BL. 2007.

[24] T. Swicegood, “Pragmatic Guide to Git,” The Pragmatic Bookshelf,
Texas. 2010.

[25] H. Graydon, S. Nathaniel, D. Scherger, D. Carosone, J. Pellegrini, A.

Queiroz, W. Uther, T. Keller, and S. Leake, “Monotone A distributed
version control system,” version 1.0. 2011.

