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Analysis for MHD flow of a Maxwell fluid past a
vertical stretching sheet in the presence of

thermophoresis and chemical reaction
Noor Fadiya Mohd Noor

Abstract—The hydromagnetic flow of a Maxwell fluid past a ver-
tical stretching sheet with thermophoresis is considered. The impact
of chemical reaction species to the flow is analyzed for the first time
by using the homotopy analysis method (HAM). The h̄-curves for
the flow boundary layer equations are presented graphically. Several
values of wall skin friction, heat and mass transfer are obtained and
discussed.

Keywords—homotopy, MHD, thermophoresis, chemical reaction,
Maxwell.

I. INTRODUCTION

THE non-Newtonian fluids have not been successfully
described due to non-existence of a single constitutive

relationships between stress and rate of strain. Since there are
many industrial applications based on non-Newtonian fluids
with convective heat and mass transfer such as in material
processing, crystal growing, cooling of nuclear reactors, move-
ment of biological fluids and other practical situations, the
research on non-Newtonian fluids have become a great interest.
Among the several models of non-Newtonian fluids that have
been examined include the simplest subclass fluids known as
Maxwell model.

Fatecau and Fatecau solved the Rayleigh-Stokes problem
[1] and the Maxwell fluid flow past an infinite plate [2].
Sadeghy et al. [3] did a comparative study for Sakiadis flow
of an upper-convected Maxwell (UCM) fluid on a rigid plate
and concluded that the wall skin friction decreases with an
increase in Deborah number. Hayat and Sajid [4] provided
the series solution for MHD boundary layer flow of a UCM
fluid by using the homotopy method while Wang and Hayat
[5] investigated two-dimensional flow of an incompressible
viscoelastic Maxwell fluid past an infinite porous plate. Other
research on Maxwell fluid flow include the unsteady flow
of a generalized Maxwell fluid with fractional derivative by
Fatecau et al. [6], the effects of chemical reaction species [7],
the mass transfer of a UCM fluid flow [8] and the radiation
effects on MHD flow in a channel with porous medium [9].

In this paper, the study of MHD flow of a Maxwell
fluid with thermophoresis previously considered by Hayat and
Qasim [10] will be extended to include the effect of chemical
reaction species for the first time by using the homotopy
analysis method (HAM). This method first developed by Liao
[11] has been successfully applied to many fluid flow and
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heat transfer problems, cf. [12]–[16]. Noor et al. [17] have
presented the homotopy solutions for thin film flow on an
unsteady stretching sheet where a general surface temperature
has been introduced. This work has been extended by Noor and
Hashim [18] to determine the magnetic and thermocapillary
effects in the thin film flow.

II. PROBLEM FORMULATION

A. Governing equations and boundary conditions

Consider a steady MHD flow of a Maxwell fluid past
a vertical stetching sheet in a Darcian porous medium. A
uniform magnetic field B0 is applied normal to the flow.
The magnetic Reynolds number is sufficiently small such that
the induced magnetic field can be neglected. The surface
has variable temperature Tw(x) and variable concentration
Cw(x) while the fluid has uniform ambient temperature T∞
and uniform ambient concentration C∞ where Tw > T∞
and Cw > C∞ respectively. Under these assumptions and
Boussineq’s approximation, the governing equations for the
boundary layer flow are written as
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subject to the boundary conditions

u = Uw(x) = ax, v = 0, T = Tw(x) = T∞ + bx,

C = Cw(x) = C∞ + cx at y = 0, (5)

u → 0,
∂u

∂y
→ 0, T → T∞, C → C∞,

as y → ∞, (6)

where u and v are the velocity components in the x, y
directions, ν is the kinematic viscosity, ρ is the fluid density,
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K is the permeability of porous medium, σ is the electrical
conductivity, g is the acceleration due to gravity, T is the
fluid temperature, C is the concentration field, βT , βC are
the thermal expansion coefficients of temperature and con-
centration respectively, λg is the fluid thermal conductivity,
cp is the specific heat at constant pressure, qr is the radiative
heat flux in the y-direction, μ is the dynamic viscosity, D is
the molecular diffusivity of the species concentration, VT is
the thermophoretic velocity and k2 is the chemical reaction
parameter.

The radiative heat flux qr under Rosseland approximation
has the form

qr = −4σ1

3k∗
∂T 4

∂y
, (7)

where σ1 is the Stefan-Boltzmann constant and k∗ is the mean
absorption coefficient.

The temperature differences within the flow are assumed to
be sufficiently small such that T 4 may be expressed as a linear
function of temperature. Expanding T 4 using Taylor series and
neglecting higher order terms yields

T 4 ∼= 4T∞3T − 3T∞4. (8)

Using equations (7) and (8), we have

u
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The second, third, fourth and fifth terms on the RHS of
the equation (9) denote the thermal radiation, viscous and
magnetic heating terms respectively.

Now the thermophoretic velocity VT which appears in the
equation (4) can be written as:

VT = −kν
∇T

Tr
= −kν

Tr

∂T

∂y
, (10)

where Tr is a reference temperature and k is the ther-
mophoretic coefficient with range of value from 0.2 to 1.2.
A thermophoretic parameter τ can now be defined as:

τ = −k(Tw − T∞)
Tr

. (11)

B. Similarity transformation

The governing equations (2)–(4) can be transformed to a
set of nonlinear ordinary differential equations by introducing
the following non-dimensional variables:

η =
√

a

ν
y, ψ =

√
aνxf(η),

θ(η) =
T − T∞
Tw − T∞

, φ(η) =
C − C∞
Cw − C∞

,

(12)

where ψ is the stream function that satisfies the continuity
equation (1) with

u =
∂ψ

∂y
= axf ′(η), v = −∂ψ

∂x
= −√

aνf(η).(13)

Using (12) and (13), the following similarity equations with
the corresponding boundary conditions are obtained:

f ′′′ + (1 + Mβ)ff ′′ − (f ′)2 + β[2ff ′f ′′ − f2f ′′′]
−(λ + M)f ′ + γ[θ + Nφ] = 0, (14)(

1 +
4
3
Rd

)
θ′′ + Pr(fθ′ − f ′θ)

+ PrEc(Mf ′2 + f ′′2) = 0, (15)
φ′′ + Sc[fφ′ − f ′φ − τ(θ′φ′ + θ′′φ)] − K2φ = 0,(16)

subject to

f(0) = 0, f ′(0) = 1, θ(0) = 1, φ(0) = 1,

at η = 0, (17)
f ′ → 0, f ′′ → 0, θ → 0, φ → 0,

as η → ∞, (18)

where β = λ1a is the Deborah number, M = σB2
0/ρa is

the Hartmann number, λ = ν/aK is the porosity parameter,
γ = Grx/Re2

x is the local buoyancy parameter, Grx =
gβT (Tw−T∞)x3/ν2 is the Grashof number, Rex = uwx/ν is
the Reynolds number, N = βC(Cw − C∞)/(βT (Tw − T∞)),
Rd = 4σ1T

3
∞/k ∗ λg , Pr is the Prandtl number, Ec =

u2
w/(cp(Tw − T∞)) is the Eckert number, Sc = ν/D is the

Schmidt number and K2 = k2Sc/a is the chemical reaction
parameter.

III. HAM SOLUTION

The velocity f(η), temperature θ(η) and the concentration
φ(η) fields can be expressed by the set of base functions
{ηiexp(−nη)|i, n ≥ 0} as follows [10]

f(η) = a0,0 +
∞∑

n=0

∞∑
i=0

an,iη
ie−nη, (19)

θ(η) =
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n=0

∞∑
i=0

bn,iη
ie−nη, (20)

φ(η) =
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n=0

∞∑
i=0

cn,iη
ie−nη, (21)

where an,i, bn,i and cn,i are the coefficients. The initial
guesses f0, θ0 and φ0 of f(η), θ(η) and φ(η) based on the
rule of solution expressions and the boundary conditions are

f0(η) = 1 − e−η, (22)
θ0(η) = e−η, (23)
φ0(η) = e−η. (24)

The following auxiliary linear operators

Lf =
∂3f

∂η3
− ∂f

∂η
, (25)

Lθ =
∂2θ

∂η2
− θ, (26)

Lφ =
∂2f

∂η2
− φ. (27)
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are chosen with the properties

Lf [C1 + C2e
η + C3e

−η] = 0, (28)
Lθ[C4e

η + C5e
−η] = 0, (29)

Lφ[C6e
η + C7e

−η] = 0, (30)

where Ci, (i = 1, .., 7) are the arbitrary constants.
If q ∈ [0, 1] is the embedding parameter, h̄f , h̄θ and h̄φ are

the nonzero auxiliary parameters whereas Hf ,Hθ and Hφ are
nonzero auxiliary functions respectively, then the zeroth order
deformation equations can be constructed as

(1 − q)Lf [F (η; q) − f0(η)]
= qh̄fHfNf [F (η; q), Θ(η; q),Φ(η; q)], (31)
(1 − q)Lθ[Θ(η; q) − θ0(η)]
= qh̄θHθNθ[F (η; q), Θ(η; q), Φ(η; q)], (32)
(1 − q)Lφ[Φ(η; q) − φ0(η)]
= qh̄φHφNφ[F (η; q), Θ(η; q),Φ(η; q)], (33)

subject to

F (0; q) = 0, F ′(0; q) = 1, F ′(∞; q) = 0,

Θ(0; q) = 1, Θ(∞; q) = 0,

Φ(0; q) = 1, Φ(∞; q) = 0, (34)

where the nonlinear operators Nf ,Nθ and Nφ are

Nf [F (η; q),Θ(η; q),Φ(η; q)]
= F ′′′(η; q) + (1 + Mβ)F (η; q)F ′′(η; q)
−[F ′(η; q)]2 − (λ + M)F ′(η; q)
+2βF (η; q)F ′(η; q)F ′′(η; q) − β[F (η; q)]2F ′′′(η; q)
+γ[Θ(η; q) + NΦ(η; q)], (35)
Nθ[F (η; q), Θ(η; q), Φ(η; q)]

=
(

1 +
4
3
Rd

)
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−Scτ [Θ′(η; q)Φ′(η; q) + Θ′′(η; q)Φ(η; q)]
−K2Φ(η; q). (37)

When q = 0 and q = 1, we have

F (η; 0) = f0(η), F (η; 1) = f(η),
Θ(η; 0) = θ0(η), Θ(η; 1) = θ(η),
Φ(η; 0) = φ0(η), Φ(η; 1) = φ(η). (38)

By Taylor series and using (38), F (η; q), Θ(η; q) and Φ(η; q)
can be expanded as series of q,

F (η; q) = f0(η) +
+∞∑
m=1
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+∞∑
m=1
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. (40)

The auxiliary parameters and functions are properly chosen so
that the deformation equations (31)–(33) converge at q = 1.
Hence

f(η) = f0(η) +
+∞∑
m=1

fm(η), (41)

θ(η) = θ0(η) +
+∞∑
m=1

θm(η), (42)

φ(η) = φ0(η) +
+∞∑
m=1

φm(η). (43)

The mth-order deformation equations are obtained as fol-
lows

Lf [fm(η) − χmfm−1(η)] = h̄fHf (η)Rf
m(η), (44)

Lθ[θm(η) − χmθm−1(η)] = h̄θHθ(η)Rθ
m(η), (45)

Lθ[θm(η) − χmφm−1(η)] = h̄φHφ(η)Rφ
m(η), (46)

subject to the boundary conditions

fm(0) = 0, f ′
m(0) = 0, θm(0) = 0, φm(0) = 0,

f ′
m(∞) = 0, θm(∞) = 0, φm(∞) = 0, (47)

for m ≥ 1, where

Rf
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+
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Rφ
m(η) = φ′′

m−1 + Sc
m−1∑
i=0

[fiφ
′
m−1−i − f ′

m−1−iφi]

−Scτ

m−1∑
i=0

[θ′iφ
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m−1−i + θ′′m−1−iφi] − K2φm−1, (50)

and

χm =
{

1, m > 1,
0, m = 1.
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Fig. 1. h̄-curves of f ′′(0), θ′(0) and φ′(0) at 25th HAM order of
approximation when β = τ = 0.2, N = K2 = M = λ = γ = 1.0, Ec =
Sc = 0.5, Rd = 0.3 and Pr = 0.7.

TABLE I
CONVERGENCE OF HAM SOLUTIONS AT DIFFERENT ORDER OF

APPROXIMATIONS WHEN h̄f = h̄θ = h̄φ = −0.6, β = τ = 0.2, N =
K2 = M = λ = γ = 1.0, Ec = Sc = 0.5, Rd = 0.3 AND Pr = 0.7.

HAM order −f ′′(0) −θ′(0) −φ′(0)
1 1.05000 0.65000 1.19000
5 1.00541 0.46368 1.26632

10 0.99802 0.44908 1.26728
15 0.99688 0.44681 1.26728
20 0.99665 0.44634 1.26728
25 0.99660 0.44624 1.26728
30 0.99659 0.44622 1.26728
35 0.99659 0.44622 1.26728

IV. RESULTS AND DISCUSSION

The auxiliary functions Hf (η), Hθ(η) and Hφ(η) are set
to be equal to 1 in all calculations done in this paper. The
convergence of HAM solutions now rely on the selection of
values of the auxiliary parameters h̄f , h̄θ and h̄φ. The h̄ curves
at 25th order of HAM approximation when N = K2 = M =
λ = γ = 1.0, Ec = Sc = 0.5, Rd = 0.3 and Pr = 0.7
are presented in Fig. 1 for this purpose. Based on this figure,
the convergent solutions for f ′′(0), θ′(0) and φ′(0) can be
obtained in the range of −0.9 < h̄f < −0.4, −0.9 < h̄θ <
−0.5 and −0.9 < h̄φ < −0.2. For simplicity, the value of
h̄f = h̄θ = h̄φ = −0.6 is used throughout this paper. The
convergence of the homotopy analysis solutions up to the 35th
order of approximation can be observed as in Table I.

The effects of thermophoresis, Hartmann number, porosity,
chemical reaction and Schmidt number on wall skin friction,
heat flux and mass flux are revealed in Table II–VI respec-
tively. As defined previously in the initial/boundary condi-
tions (17)–(18), the velocity, temperature and concentration
distributions decay as η tends to infinity. Based on Table II, it
can be concluded that as the Hartmann number increases, the
Lorentz drag force due to electromagnetism increases leading
to increment in the skin friction. Thus the thickness of the
velocity boundary layer decreases as well as the velocity
rundown. With higher value of wall skin friction −f ′′(0),
more heat is absorbed which results in less heat flux −θ′(0)

TABLE II
EFFECTS OF HARTMANN NUMBER ON THE SKIN FRICTION, HEAT FLUX

AND MASS FLUX WHEN h̄f = h̄θ = h̄φ = −0.6, β = τ = 0.2, N = K2 =
λ = γ = 1.0, Ec = Sc = 0.5, Rd = 0.3 AND Pr = 0.7.

M −f ′′(0) −θ′(0) −φ′(0)
0.0 0.61105 0.63589 1.30284
0.5 0.81242 0.53469 1.28395
1.0 0.99660 0.44624 1.26728
2.0 1.38934 0.28290 1.24527

TABLE III
EFFECTS OF POROSITY ON THE SKIN FRICTION, HEAT FLUX AND MASS

FLUX WHEN h̄f = h̄θ = h̄φ = −0.6, β = τ = 0.2, N = K2 = M = γ =
1.0, Ec = Sc = 0.5, Rd = 0.3 AND Pr = 0.7.

λ −f ′′(0) −θ′(0) −φ′(0)
0.0 0.61270 0.50658 1.29285
0.5 0.81416 0.47655 1.27937
1.0 0.99660 0.44624 1.26728
2.0 1.34492 0.38715 1.24895

TABLE IV
EFFECTS OF THERMOPHORESIS ON THE SKIN FRICTION, HEAT FLUX AND

MASS FLUX WHEN h̄f = h̄θ = h̄φ = −0.6, β = 0.2, N = K2 = M =
λ = γ = 1.0, Ec = Sc = 0.5, Rd = 0.3 AND Pr = 0.7.

τ −f ′′(0) −θ′(0) −φ′(0)
0.0 0.99396 0.44709 1.24182
0.2 0.99660 0.44624 1.26728
0.5 1.00052 0.44499 1.30586
1.0 1.00695 0.44298 1.37122

TABLE V
EFFECTS OF CHEMICAL REACTION ON THE SKIN FRICTION, HEAT FLUX

AND MASS FLUX WHEN h̄f = h̄θ = h̄φ = −0.6, β = τ = 0.2, N = M =
λ = γ = 1.0, Ec = Sc = 0.5, Rd = 0.3 AND Pr = 0.7.

K2 −f ′′(0) −θ′(0) −φ′(0)
0.0 0.92029 0.47847 0.70970
0.5 0.96935 0.45647 1.03512
1.0 0.99660 0.44624 1.26728
2.0 1.03073 0.43520 1.62744

from the surface. Consequently, the amount of mass deposed
on the surface declines due to the nature of thermophoresis
where small or nano particles tend to be driven away from the
hot surface to cool surroundings. Imposing greater porosity
on the vertical surface caused greater force in the opposite
direction of the flow as listed in Table III. Thus the skin friction
increases and the velocity declines. The same occurrences for
−θ′(0) and −φ′(0) as the Hartmann number increases are
expected with a positive change in the surface porosity due to
addition to wall skin friction values.

The numerical results in Table IV–VI show consistent incre-
ments in the flow skin friction and mass flux but decrements
in the flow heat flux as thermophoresis, chemical reaction and
Schmidt number grow. Obviously, thermophoresis has direct
impact on the concentration profile rather than on the flow
velocity and temperature distributions as shown in Table IV.
As the chemical reaction species in the flow are multiplied,
higher fluid composition can be flushed away from the surface
as given in Table V. Similar occurrence is observed in Table VI
where the mass flux −φ′(0) increases (φ′(0) decreases) when
Schmidt number, the ratio of momentum diffusivity towards
mass diffusivity increases.
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TABLE VI
EFFECTS OF SCHMIDT NUMBER ON THE SKIN FRICTION, HEAT FLUX AND
MASS FLUX WHEN h̄f = h̄θ = h̄φ = −0.6, β = τ = 0.2, N = M = λ =

γ = 1.0, Ec = 0.5, Rd = 0.3 AND Pr = 0.7.

Sc −f ′′(0) −θ′(0) −φ′(0)
0.0 0.96416 0.45873 1.00000
0.5 0.99660 0.44624 1.26728
1.0 1.02217 0.43747 1.50958
2.0 1.05972 0.42646 1.93913

V. CONCLUSION

The steady boundary layer of a Maxwell fluid past a vertical
stretching sheet in a Darcian porous medium with chemical
reaction has been studied for the first time. In order to get the
convergent solutions of HAM, the values for h̄f , h̄θ and h̄φ

have to be chosen properly between -0.9 and -0.2. The changes
in the velocity, heat transfer as well as the mass transfer in
the flow have been observed as Harmann number, porosity,
thermophoresis, chemical reaction and Schmidt number vary.
Clearly, as the values of thermophoresis, chemical reaction
parameter and Schmidt number escalate, the thickness of the
mass boundary layer declines.
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