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A Direct Probabilistic Optimization Method for
Constrained Optimal Control Problem
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Abstract—A new stochastic algorithm called Probabilistic Global
Search Johor (PGSJ) has recently been established for global opti-
mization of nonconvex real valued problems on finite dimensional
Euclidean space. In this paper we present convergence guarantee
for this algorithm in probabilistic sense without imposing any more
condition. Then, we jointly utilize this algorithm along with control
parameterization technique for the solution of constrained optimal
control problem. The numerical simulations are also included to
illustrate the efficiency and effectiveness of the PGSJ algorithm in
the solution of control problems.
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I. INTRODUCTION

The optimal control problems frequently arise in many areas
including science, engineering, managements, etc. However,
these problems, in general, are very complicated to solve. In
this study, we are aiming at addressing a general form of these
problems which is described as,

min J = ϕ(x(tf )) (1)
.
x (t) = f(x(t), u(t), t)

g(x(t), u(t), t) ≥ 0

x(t0) = x0

x(t) ∈ Rn, u(t) ∈ D ∈ Rm

here,ϕ is a bounded real valued function, u and x are respec-
tively known as control and state functions on time interval
[t0, tf ], and lastly f and g are functions on Rn×Rm×R into
respectively Rn and Rr where the inequality constraint can be
defined componentwise.

The objective of the problem is then to identify the best
control u to minimize the performance index J , while the
interaction between the variables of the problem is governed
by an ordinary differential equation, and constrained by both
equality and inequality constraints possibly involving state and
control variables, initial state is given, and control variables are
box constrained of the form D = [a1, b1] × [a2, b2] × . . . ×
[am, bm].

A tremendous amount of research has gone into the inves-
tigation on the solution of aforementioned problem leading to
many theoretical as well as practical methods for this problem
while each method performs well in some certain circum-
stances. The theoretical studies offer necessary and sufficient
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conditions of optimality for this problem [2], [11], [14] which
have already resulted in many efficient optimization methods
see [3], [6], [18], [19] just to mention a few.

Nevertheless, the explicit use of theoretical results is often
prohibitive due to complexity of arising problems especially
when singularity happens [10] or problems behave in noncom-
pliance with assumption, hence the inevitability of the need for
numerical methods.

The available numerical methods for the solution of Problem
(1) are typically not without discretization and optimization
techniques. According to the order of precedence, numerical
methods are divided into two approaches, the one called indi-
rect approach which is also known by the paradigm optimize
first, and then discretize, and the alternative direct approach
which is known by the converse paradigm discretize first, and
then optimize [3]. As the name suggest, in the indirect methods
first the optimality principles are used to derive an interme-
diate problem, and then a suitable discretization techniques is
applied to solve the resultant problem which helps to acquire
a solution for the original problem. Conversely, in the direct
approach discretization happens first.

There are two common frameworks available for the dis-
cretization procedure in the direct optimization methods, com-
plete parameterization [5] and control parameterization [9].
Either of them is applicable to convert the optimal control
problem into a nonlinear programming problem which is
solvable by a suitable optimization theoretic. However, there
are also advantageous and disadvantageous in applying each
one.

The idea of complete parameterization is to discretize the
whole variables of a control problem. As a result, the original
problem is reduced to a problem of identifying the best
parameters of the approximated variables. One advantage of
this formulation is to eliminate the online need for the solution
of an initial value problem; however this is at the cost of a
very large scale optimization problem need to be solved.

The alternative framework results in relatively lower scale
problems as in this approach control variable is solely pa-
rameterized using linear combinations of basis functions. This
advantage helps the control parameterization to be a more pop-
ular framework amongst practitioners. A variety of basis func-
tions have been used in this framework, including piecewise
constant functions [9], [12], [18], piecewise linear functions
[13], Chebyshev polynomials [20], B-splines functions [17],
Lagrange polynomials [4], Legendre wavelets [16], and Bzier
curves [8].

In this work we use the Bernstein basis function [7]in
the control parameterization framework, and the resultant
parameter estimation problem is solved using a new stochastic
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TABLE I
THE ALGORITHM INPUTS FUNCTIONS AND PARAMETERS

n Dimension of the problem,
f The Objective function,
D The box of feasible region,
N The number of partitions on each interval,
S The number of samples in each iteration,
A The acceptable probability density,
b The number of bisecting procedure,
σ The Scale Factor,
ξ Increment in probability updating procedure,
ε The accuracy required,
M Maximum Number of iterations,
P Probability of sampling from complementary search space.

algorithm called Probabilistic Global Search Johor (PGSJ)
[1] where this is described in the next section. The conver-
gence of this algorithm is proved in the subsequent section
in probabilistic sense. Then, the proposed method is also
implemented numerically to illustrate its efficiency, and finally
the conclusion is included.

II. THE PGSJ ALGORITHM

As with many other stochastic optimization techniques
which are proposed to address the optimization of real valued
functions of the following form,

min f(ξ) (2)
ξ ∈ Ω

the PGSJ method utilizes only the function evaluation of trial
solutions to direct the search while in contrast with most
of evolutionary approaches, no recombination operation is
employed. Instead, the new potential solutions in the PGSJ
algorithm are selected through carefully sampling in accor-
dance with some Probability Density Functions (PDF) which
are iteratively biased toward a global optimizer. Prior to a
full description of this algorithm in Algorithm 1., the required
input function and parameters are introduced in Table (I).

Algorithm 1. The PGSJ algorithm
Step 0 Pre-allocations

Step 0.1 Read the input functions and set the
algorithm parameters appear in Table I.

Step 0.2 Let k1 = 1, and go to Step 1.
Step 1 Initializations

Step 1.1 Partition each interval [ai, bi] into
N subinterval where i = 1, . . . , n and
j = 1, . . . , N .

Step 1.2 Initialize a PDF ψi on each interval
[ai, bi], so that the value of ψi on Iij is γij .

Step 1.3 Initialize a complementary region
Ci = πi(D) − [ai, bi] where πi is the
projection on ith axis.

Step 1.4 Set k2 = 0 and go to Step 2.
Step 2 Sampling

Step 2.1 Let i = 1,
Step 2.2 Generate a uniform random number 0 <

r < 1 .
Step 2.3 If r ≤ P uniformly sample S point from

Ci and go to Step 2.5 otherwise go to Step
2.4.

Step 2.4 Sample S point from interval [ai, bi]
according to PDF ψi.

Step 2.5 If i < n let i = i + 1, go to Step 2.2
otherwise go to Step 3.

Step 3 PDF Updating

Step 3.1 Evaluate the new potential solutions, and
detect the best (most promising) and the
worst (poorest) sampled points according to
the objective of the problem.

Step 3.2 for i = 1 to n do
If the worst solution is located in subinterval
Iiw, and the best one in Iib
γiw = γiw − ξγiw
γib = γib + ξγiw
end if
end for

Step 3.3 If min1≤i≤n(max1≤j≤Nγij) ≥ A then
go to Step 4, otherwise go to Step 2.1.

Step 4 Bisecting

Step 4.1 for i = 1 to n do
Identify the best subinterval Iib on [ai, bi]
and bisect it into two new subintervals Iib1
and Iib2 .
Identify the worst subinterval Iiw, remove it
from [ai, bi], and add it to the complemen-
tary Ci.
Adjust the PDF ψi to the change by setting
γib1 = γib2 = (γib + γiw)/2 and γiw = 0.
end for

Step 4.2 Let k2 = k2 + 1
Step 4.3 If k2 > b then go to Step 5, otherwise go

to Step 2.1.

Step 5 Scaling

Step 5.1 Update the best solution x = [x1, . . . , xn]
found so far.

Step 5.2 If the best solution has not yet arrived at
ε neighborhood of optimizer or k1 < M go
to Step 5.2, otherwise stop.

Step 5.3 for i = 1 to n do
di = bi − ai
ai = xi − σdi/2
bi = xi + σdi/2
if [ai, bi] � πi(D), set [ai, bi] = [ai, bi] ∩
πi(D).

Step 5.4 Let k1 = k1 + 1 and go to Step 1.1.

In the earlier descriptions, the PGSJ algorithm is thoroughly
described. The convergence analysis of the algorithm is ad-
dressed in the next subsection.
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III. CONVERGENCE ANALYZES

We assume PGSJ algorithm can be run indefinitely. In
addition, because of the stochastic feature of this algorithm,
we think of the iterates as d−dimensional random vectors.
Then, a sequence of random vectors {Xn}n≥1 can be attained
successively. Considering a probability space (Υ,B,P) where
these random vectors are defined, we can also define the
sequence of random vectors {X∗

n}n≥1 where X∗
1 = X1, and

X∗
n = Xn, if f(Xn) < (Xn−1) almost surely, otherwise

X∗
n = Xn−1. Additionally, for convenience, we define the

following notations,
i. Xj

i indicates the random variable which is the jth
component of random vector Xi.
ii. En is the set of {X1, X2, . . . , Xn} and σ(En) is
the σ−algebra generated by all random vectors Xj

for j = 1, 2, . . . , n− 1.

Theorem 1. Take the Problem (2), and suppose that f∗ =
inf
z∈Ω

f(z) > −∞, f is continuous, and

inf
z∈Ω

μ(B(z, δ) ∩ Ω) > 0

for all δ > 0, where μ is the Lebesgue measure on Rd.
Consider a GARS algorithm and suppose that there is a
subsequence {nk}k≥1 such that the following properties holds:

A. For each k ≥ 1, the random variables
X

(1)
nk , . . . , X

(d)
nk are conditionally independent given

the random elements in E(nk)−1, and
B. For each k ≥ 1 and for each 1 ≤ j ≤ d,
the random variable X(j)

nk has a conditional density
g
(j)
nk (u|σ(E(nk)−1)) and

μ({u ∈ πj(Ω) : inf
k≥1

g(j)nk
(u|σ(E(nk)−1)) = 0}) = 0

where μ is the Lebesgue measure on R.
Then f(X∗

n) → f∗ almost surely. In addition, if x∗, the global
minimizer of f over Ω is unique, then X∗

n → x∗ almost surely.
Proof : Refer to [15] for the proof of this theorem. �

Theorem 2. In Problem (2), let Ω be a closed hypercube in
Rd and f be a continuous function on Ω such that

f∗ = essinf
x∈Ω

f(x) > −∞.

Consider the PGSJ algorithm, and the sequence {X∗
n}n≥1.

Then, f(X∗
n) → f∗ almost surely. In addition, if the global

optimizer x∗ is unique, then X∗
n → x∗ almost surely.

Proof. Let μ be the Lebesgue measure on Rd, and δ > 0 be
any given positive real number. Clearly, we can suppose that
there exists a finite subset {z1, . . . , zn} � Ω such that,

Ω � ∪ni=1B(zi, δ/2)

As a result, for all z ∈ Ω there exists an integer k to satisfy
B(z, δ) ⊃ B(zk, δ/2). Consequently, we have,

infz∈Ω{μ(B(z, δ)∩Ω)} ≥ mini=1,...,n{μ(B(zi, δ)∩Ω)} > 0

In addition, the conditional density related to Xi
n in PGSJ

algorithm is,

Ψin(x|σ(En−1)) =

{
P

μ(πi(Ω)−Iin) x ∈ πi(Ω)− Iin
ψi(x)
μ(Iin)

x ∈ Iin

where, P is a parameter of the algorithm, Ω indicates the
search space,πi is the projection on ith axis, Iin is the ith
interval of the scaled search space in the nth iteration, and
lastly ψ is described by,

ψi(x) = ΣNj=1γ
ijχIij (x)

for x ∈ Iin where, ∫
Iin

ψidμ = 1− P.

Then we can deduce,

inf
i=1,...,n

Ψin(x|σ(En−1)) ≥ min
i=1,...,n, j=1,...,N

{P, γij} > 0

Therefore, considering the above discussion, as the PGSJ algo-
rithm is clearly a GARS algorithm (refer to [15]) and for each
random vector Xn, the random elements X1

n, X
2
n, . . . , X

d
n are

conditionally independent given σ−algebra σ(En), we can
deduce that the assumption presumed in Theorem (1) is now
satisfied for PGSJ algorithm, hence the convergence results in
this theorem facilitate to complete the proof. �

Apart from the theoretical convergence of the Algorithm 1,
in the next section this algorithm is practically evaluated on
the solution of constrained optimal control problem.

IV. NUMERICAL SIMULATION

In order to employ the described PGSJ algorithm, on the
solution of Problem (1) this problem has first to be converted
to an approximate form of the following optimization Problem
(2). With this end in view, we use Bernstein basis function
[7] in the control parameterization frameworks [9] in that
the control function can efficiently be parameterized with
polynomials of the form,

u(t) =
n!

(tf − t0)n
Σni=1

ui
i!(n− i)!

(t− t0)
i(tf − t)n−i

with unknown coefficients that have to correctly be identified.
One advantage of this parameterization is the elimination
of discretizing time intervals, hence the trouble of dealing
with switching times. This method is then illustrated in the
following examples.

Example 1. The first problem is a state constrained optimal
control problem which is described by,

min x3(tf ))
.
x1 (t) = x2(t)
.
x2 (t) = −x2(t) + u(t)
.
x3 (t) = x21(t) + x22(t) + 0.005u2(t)
.
x4 (t) = 1

x1(t)− 8(x4 − 0.5)2 + 0.5 ≤ 0

0 ≤ t ≤ 1, −5 ≤ u(t) ≤ 15,

and x(0) = [0,−1, 0, 0]T .
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Fig. 1. The optimal control for Example 1

In order to handle the constraint in the problem we introduce
a new state variable,

.
x5 (t) = max {0, x1(t)− 8(x4 − 0.5)2 + 0.5}

for, 0 ≤ t ≤ 1, and x5(0) = 0, while the objective of the
problem is now changed to minimizing x3(tf )+θx5(tf ) where
θ is a penalty parameter and can be any suitable positive real
number.

The Bernstein-based control parameterization (BCP) de-
scribed above is now used to transform this problem into the
form of Problem (??). The resultant problem is then solved
using PGSJ method. In this study we set n = 5 in BCP, and
the parameters in Table 1.1, set as follow, N = 7, S = 50, A =
0.5, b = 5, andσ = 0.9 We implement this method using C++
programing language while the PGSJ algorithm only allowed
for up to 4000 function evaluations, after several running
the algorithm, this method averagely acquired the solution of
0.7712. This figure improved to 0.7409 when the allowable
number of function evaluations increased up to 8000 which is
also obtained using Chebyshev polynomial method reported in
[20]. The graph of optimal control as well as related graphs
of states variables and constraint is available in Figures, (1),
(2), (3).

Example 2. The next problem is from [12], known as
Rayleigh’s problem and described by,

min x3(tf ))
.
x1 (t) = x2(t)
.
x2 (t) = −x1(t) + x2(t)(1.4 + 0.14x22(t)) + 4u(t)
.
x3 (t) = u(t) + x21(t)

u(t) +
1

6
x1(t) ≤ 0

0 ≤ t ≤ 4.5, −1 ≤ u(t) ≤ 1,

and x(0) = [−5,−5, 0]T .

Using the same approach as in previous Example, we introduce
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Fig. 2. The optimal state x1 for Example 1
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Fig. 3. The graph of the constraint for Example 1

the following additional state variable,

.
x4 (t) = max {0, u(t) + 1

6
x1(t)}

along with augmenting the problem objective with θx4(tf )
for any large enough positive real number θ as a penalty
parameter. With the same parameter setting this problem is
solved using the PSGJ method and the solution of 47.6947 is
obtained while the tolerable number of the function evaluations
is set for up to 4000 The results of simulations are shown in
Figures, (4), (5), (6), (7), (8).

V. CONCLUSION

In this study, we analyzed the convergence of a newly
established stochastic method known as Probabilistic Global
Search Johor (PGSJ) in probabilistic sense. The method, then
practically evaluated for the solution of constrained optimal
control problem while a Bernstein-based control parameter-
ization used to convert the original problem into nonlinear
programing problem. The simulations of benchmark problems
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Fig. 4. The optimal control for Example 2
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Fig. 5. The optimal state x1 for Example 2
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Fig. 6. The optimal state x2 for Example 2
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Fig. 7. The optimal state x3 for Example 2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

Time

C
on

st
ra

in
t v

io
la

tio
ns

Fig. 8. The graph of the constraint for Example 2

collected from the literature illustrate the effectiveness of this
method.
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