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Abstract—Sparse representation has long been studied and several 

dictionary learning methods have been proposed. The dictionary 
learning methods are widely used because they are adaptive. In this 
paper, a new dictionary learning method for audio is proposed. Signals 
are at first decomposed into different degrees of Intrinsic Mode 
Functions (IMF) using Empirical Mode Decomposition (EMD) 
technique. Then these IMFs form a learned dictionary. To reduce the 
size of the dictionary, the K-means method is applied to the dictionary 
to generate a K-EMD dictionary. Compared to K-SVD algorithm, the 
K-EMD dictionary decomposes audio signals into structured 
components, thus the sparsity of the representation is increased by 
34.4% and the SNR of the recovered audio signals is increased by 
20.9%. 
 

Keywords—Dictionary Learning, EMD, K-means Method, Sparse 
Representation. 

I. INTRODUCTION 
PARSE representation has been studied since 1990s, which 
is aimed to represent signals with only a few elementary 

components. The components are called atoms. A dictionary is 
formed with a number of atoms. Whether a dictionary can 
successfully represent signals with sparse decompositions 
depends on the dictionary used and whether it matches the 
signal features. 

To obtain a dictionary within a sparse decomposition, there 
are two main methods: dictionary selection and dictionary 
learning. Dictionary selection is to choose an existing 
dictionary which can best match the signal features. Such 
existing dictionaries include Fourier basis, modified discrete 
cosine basis, wavelet basis and constructed redundant or 
overcomplete dictionaries (Gabor dictionary, union bases 
formed by Fourier basis and wavelet basis and so on). 
Dictionary learning, on the other hand, aims to deduce the 
dictionary from training signals so that the learned dictionary 
matches the features of the training set. The sparse 
representation results are obtained through an alternating 
optimization strategy and the sparse decomposition is fixed 
once the dictionary is learned. The uniqueness of the result 
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guarantees the stability of the method. 
Compared to dictionary selection, dictionary learning 

method is more flexible and can meet different specific 
demands; therefore dictionary learning method has been widely 
studied ever since early dictionary learning methods are 
proposed. Research in dictionary learning can be categorized 
into three main directions: the probabilistic learning methods, 
the clustering or vector quantization based methods, and the 
particular construction based learning methods. 

Early dictionary methods which are based on a probabilistic 
learning method are proposed by Olshausen and Field [1] and 
Lewicki and Sejnowski [2]. In [1], Olshausen and Field 
proposed a maximum likelihood dictionary learning method for 
natural images, which is called sparse coding. In [2], Lewicki 
and Sejnowski clarify the relation between sparse coding 
methods and independent component analysis (ICA). The 
method of vector quantization (VQ) achieved by K-means 
clustering is a typical example of clustering based sparse 
represent method. Schmid-Saugeon and Zakhor [3] proposed 
the VQ approach for dictionary learning in MP based video 
coding. In 2006, Aharon et al [4] proposed the K-means 
Singular Value Decomposition algorithm (the K-SVD 
algorithm), which shows excellent performance in practice and 
is widely used in image denoising. Many applications use 
dictionaries generated by a set of functions and such functions 
have similar forms but different parameters. M. Yaghoobi [5] 
proposed the parametric method and applied it to a Gammatone 
generating function. In [5], an optimized Gammatone 
parametric dictionary close to an equiangular tight frame (ETF) 
is given and it has better coherence properties than the original 
Gammatone filter bank. 

Dictionary learning methods have been widely studied, 
especially those applied to images. However, dictionary 
learning methods appropriate for audio signals are not as well 
developed as those for images. Meanwhile, dictionaries 
mentioned above are not provided with audio structures. Gabor 
redundant dictionary, Gammatone parameter dictionary [5], 
K-SVD algorithm [4] and the latest proposed Greed Adaptive 
Dictionary (GAD) [6] are suitable for audio signals, but cannot 
achieve a satisfying recovery result.  

Thus, in this paper we propose a dictionary learning 
algorithm employing Empirical Mode Decomposition (EMD) 
to decompose audio signals into trend signals and Intrinsic 
Mode Functions (IMFs) which possess structural property. To 
reduce the size of the IMF dictionary, a K-means method is 
applied. 

The advantage of proposed approach is that it can obtain 
better sparse decomposition of audio signals compared to 
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K-SVD because EMD can effectively decompose audio signal 
into a small number of IMFs. For example, if we are training 
the dictionary using audio signal set consist of frames with 
length of 256 points, only 7 IMFs and 1 residual are required to 
recover the original signal, which results a compression ratio of 
about 4%. Though the compression ratio may be larger than 4% 
in practice, it is still considerable enough compared to existing 
coding methods. 

II. DICTIONARY LEARNING METHOD BASED ON EMD 
The goal of sparse representation is to decompose a given 

signal Nx R∈ into a linear combination of a small number of 
signals, which is called the dictionary. Signals in a dictionary 
are a set of unit norm functions, called atoms. Denote the 
dictionary as M NR ×Φ ∈ and the atoms as N

k Rφ ∈ where 
1,2,...,k M= .  Each row of Φ is an atom.  A given signal x can 

be represented as a linear combination of atoms in the 
dictionary, i.e. 

 

1

M
T

k k
k

x α φ
=

= Φ Α = ∑                              (1) 

 
where kα is the kth row of the matrix MRΑ ∈ . 

The dictionary is overcomplete ( M N> ) when it spans the 
signal space and its atoms are linearly dependent. When it is 
overcomplete, the decomposition is not unique. To achieve 
efficient and sparse representations, we generally look for a 
sparse representation with an approximation error η of 
bounded energy ε  instead of finding the exact representation. 
The purpose of sparse representation is to find decomposition 
with a small number of significant atoms while the rest of the 
coefficients are close or equal to zero. The optimization 
problem can be described as follows: 

 
 

0
min

α
α s.t. 2

2
.Tx whereα η η ε= Φ + <           (2) 

 
However, the problem is NP-hard. In this paper, the Iterative 

Hard Thresholding (IHT) algorithm is adopted to achieve the 
decomposition, thus the optimization problem is changed into 
follow description: 

 
2

2
min Tx

α
α− Φ s.t.

0
.sα ≤                       (3) 

 
where s is the number of non-zero coefficients ofα . 

A. Empirical Mode Decomposition Technique 
Empirical Mode Decomposition (EMD) [7] was proposed by 

N. E. Huang in 1998. It’s a method to separate data into 
different components according to their scales and is used to 
extract variations form the data by separating the mean from the 
fluctuations by using spline fits. The EMD method is illustrated 
as follows, 

 

Algorithm 1: Empirical Mode Decomposition 
1: Initialization: 

Initialize 1k =  
Obtain the length of 0x and denote it by L  
Obtain the total number of components of one frame, i.e. 

( )2log ( )K floor L=  
2: while k K≤ do 
3: Identify all the local extrema of 1kx −  
4: Connect local maxima by a cubic spline line to form an upper 

envelope _upper ken and the local minima to form a lower 
envelope _lower ken  

5: _ _( ) 2k upper k lower km en en= +  
6: 1 1k k kx x m+ += −  
7: 1k k= +  
8: end while 
 

 
Fig. 1 The original signal 

 
The different components extracted by EMD are Intrinsic 

Mode Functions (IMFs) and residual components. An IMF is a 
function satisfies two conditions: 
1) The number of extreme points and that of zero crossings 

must be equal or differ by one; 
2) The mean value of the envelope defined by the local 

maximum value and the envelope defined by the local 
minimum value is zero. 

While the residual components indicate the trend of the 
signal, which is in most cases smooth and simple. 

An example audio signal is shown in Fig. 1, while the 
components of the audio signal drawn using EMD are given in 
Fig. 2. 

Fig. 2 indicates that the components become smooth with the 
increase of scale. The first obtained IMF captures the plentiful 
structure information under the finest scale of signal while the 
rest IMFs capture structure information under finer scale of 
signal. The residual component is non-structure information. 

B. K-means Method 
As we use IMFs and the residual signals as atoms of the 

learned dictionary, the size of the dictionary can be extremely 
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larger than the training set, sometimes of triple size or more. 
The optimization of the dictionary is in desperate need to limit 
its size thus the recovery time is acceptable. For its universal 
application and easy usability, we adopt the K-means clustering 
method to reduce the size of the learned dictionary. 

 

 
Fig. 2 Decomposition of the original audio signal in Fig. 1 

 
K-means algorithm (also known as the generalized Lloyd 

algorithm - GLA [8]), is one of the most well-known methods 
for data clustering. The goal of K-means is to find k points of a 
dataset that can best represent the dataset in a certain 
mathematical sense. These k points are also known as cluster 
centers, prototypes, centroids, or codewords, and so on. The 
K-means method is aimed to find the best possible dictionary

M NR ×Φ∈ to represent the data samples NY R∈ by nearest 
neighbor and achieve the representation MX R∈ , by solving 

 

{ }2

,
min T

FC X
Y X− Φ s.t. , , 1,...,i ki x e i M for some k∀ = =  (4) 

The algorithm is described below, 
 

Algorithm 2: K-means Clustering Method 
1: Initialization: Dictionary 0

M NR ×Φ ∈ , 1j = , 0 0kφ =  
2: While j J< do 
3: Sparse Coding Stage:  

Partition the indices of Y into k subsets 

( )1 1 1
1 2, ,...,j j j

kR R R− − − , each holding the sample indices most 

similar to the column 1j
kφ − , 

{ }1 1 1

2 2
,j j j

k i k i lR i l k y yφ φ− − −= ∀ ≠ − < −  

4: Dictionary Update Stage:  

For each k , update 
1

1
j

k

j
k i

i Rk

y
R

φ
−∈

= ∑  

5: 1j j= +  
6: End while 

C. EMD Based Dictionary Learning Method 
In this section, the proposed EMD based dictionary learning 

method, which is called K-EMD method, will be introduced in 
details.  

As described above, the K-EMD method is to decompose 
training set into IMFs and residual components to form a 
dictionary and to reduce the size of the dictionary using the 
K-means method. However, directly reducing the dictionary is 
unadvisable because IMFs of different scales contain different 
information entropies. Take the first scale of IMF and the 
residual component for example, as shown in Fig. 1 and Fig. 2, 
the first-scale-IMF represents an oscillatory mode of the audio 
signal while the residual component represents the increasing 
or decreasing trend. It is wise to use the K-means method 
separately for each scale. 

The algorithm of the K-EMD method is illustrated as 
follows: 
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Algorithm 3: K-EMD Method 
1: Initialization:  

Obtain frame length N  
Obtain the number of components, i.e. ( )( )2logl floor N=

Obtain 1{ ,..., }lK k k= , a frame of raw audio data

0
Nx R∈ ,Initialize frame No. 1i = ,empty optimized 

components KD  
2: While (not EOF of training set) do 
3: Obtain N-points training data and denote it by 0

ix  
4: Apply EMD to 0

ix and get l components 1 ,...,i i
lc c  

5: 1i i= +  
6: End while 
7: Obtain the number of frames, i.e. 1i i= −  
8: Form component sets, i.e. { 1,..., 1,..., }q

p pD d p l q i= = =  

9: While j l≤  
10:  Apply K-means Method to jD with K= jk and get 

compressed sets jKD  
11: End while 
12: Form the dictionary, i.e. 1[ ,..., ]lKD KDΦ =  

III. EXPERIMENT 
As we can see from Fig. 2, the higher scales of the IMFs are 

similar with each other (the higher scales means the 4th to 7th 
IMFs of the decomposition), thus the higher-scale components 
can be merged into a single component, as shown in Fig. 3. 
From Fig. 3, we can also find that the lower scale of 
decomposed component has higher frequencies than higher 
scale ones. To our knowledge, lower frequencies contain 
important information and higher frequencies merely describe 
the details of the signal. (That’s partially the reason why some 
of the lossy compression methods even abandon the higher 
frequencies.) For this reason, we choose larger k to clustering 
the higher scale of the IMFs and smaller k to lower-scale ones.  

To find the ration of the k, we use SNR to evaluate the 
significance of the components. SNR is calculated by, 

 

 2
10

2

20log
s

SNR
n

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
                           (5) 

 
where s indicates the signal and n denotes the difference 
between the component and the original signal. 
 

 
Fig. 3 Decomposition of the signal in Fig. 1 when higher-scale IMFs 

are merged into one IMF 
 

The SNR curves of the components are shown in Fig. 4, 
where every value of the SNR curve is the SNR of a frame of 
one component. We can see from it that the higher-scale IMFs 
have higher SNRs and hence are more important than lower 
ones.  So we choose the following ratio of k: 

 
1 2 3 4 5: : : : 1: 2 : 3 : 3 : 4k k k k k =                     (6) 

 
where 1k to 5k  is used in K-means method for the 4 IMFs (from 
scale 1 to scale 4) and the trend, respectively. 

Once the values of 1 5~k k are found, the dictionary can be 
trained by K-means method from the decomposition of the 
training signal. To get the sparse representation, the Iterative 
Hard Threshold (IHT) algorithm [9] is applied. In this paper, 
the training set consists of an audio file with the length of time 
is 1 minutes and 6 seconds including string music, wind music, 
and percussion music. The sampling rate is 48000Hz. The 
training file contains 3146615 sample points and we add 137 
points of zero so that we can get 12292 frames each contains 
256 sample points. After K-means clustering, 832 atoms are 
retained to form the dictionary, which means the dictionary is in 
the size of 832×256 and each atom has the size of 1×256. In this 
paper, we retain all the coefficients of the sparse representation 
result and resort them into descending order, as given in Fig. 5. 
The original signal and the recovered signal are shown in Fig. 6. 

It is apparent that the sparse representation coefficients 
decrease exponentially, which means that the audio signal can 
be represented by a few coefficients. 

To indicate that the proposed algorithm is efficient, the 
coefficients of the sparse representation of K-SVD and K-EMD 
are given in Fig. 7, where the coefficients are sorted in 
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descending order. 
 

 
Fig. 4 SNR of the components 

 

 
Fig. 5 Sparse representation coefficients and the coefficients sorted in 

descending order 
 
The sparse coefficients of K-EMD decrease faster than that 

of K-SVD, and the coefficients are sparser. One of the sparsity 
measurements is the 0lε method, which is defined as follows: 

 
 { }0,

# , ii
ε

α α ε= ≥                         (7) 

 
TABLE I 

SPARSITY OF THE SPARSE REPRESENTATION USING K-SVD AND K-EMD 

Method 
0lε Sparsity 

20% 30% 40% 50% 
K-SVD 66 27 15 8 
K-EMD 64 17 6 5 

 
 

In this paper, ε is defined to be 20%, 30%, 40% and 50% of 
the largest coefficient, thus the corresponding sparsities of 
K-EMD and K-SVD are listed in Table I. K-EMD has an 
average decrease of34.4% in sparsity of the coefficients, which 
means K-EMD has better sparsity than K-SVD. 

 

 
Fig. 6 Original audio and the recovered audio 

 

 
Fig. 7 Sorted sparse representation coefficients of K-SVD and K-EMD 

 
The recovered audio signals of the two dictionary learning 

methods are shown in Fig. 8, which are recovered using 64 of 
the coefficients. 

It is apparent that the K-EMD has a better recover accurate 
rate than the K-SVD because the recovered signal using 
K-EMD is more similar to the original signal. To find whether 
the K-EMD has better recovery, we use (5) to measure the SNR 
of the recovered signal, where n indicates the difference 
between the original signal and the recovered signal. Thus it is 
clearer to see the superiority. Table II lists the information of 
the testing set, including the type of the audio, length of time, 
total points and number of frames. The sampling rate is 48 kHz 
and frame length is 256 points. The average SNRs of the 
recovered signal using K-EMD, K-SVD are given in Table III. 
The SNR of K-EMD is increased about 20.9% than K-EMD.  

 

0 0.5 1 1.5 2 2.5 3 3.5

x 104

-50
0

50

S
N

R
 o

f I
M

F1

0 0.5 1 1.5 2 2.5 3 3.5

x 104

-50
0

50

S
N

R
 o

f I
M

F2

0 0.5 1 1.5 2 2.5 3 3.5

x 104

-50
0

50

S
N

R
 o

f I
M

F3

0 0.5 1 1.5 2 2.5 3 3.5

x 104

-50
0

50

S
N

R
 o

f I
M

F4

0 0.5 1 1.5 2 2.5 3 3.5

x 104

-50
0

50

S
N

R
 o

f T
re

nd

0 100 200 300 400 500 600 700 800

5

10

15
x 10-4

R
ep

re
se

nt
at

io
n 

C
oe

ffi
ci

en
ts

0 100 200 300 400 500 600 700 800

5

10

15
x 10-4

S
or

te
d 

C
oe

ffi
ci

en
ts

0 50 100 150 200 250

-0.02

-0.01

0

0.01

0.02

0.03

O
rig

in
al

 s
ig

na
l

0 50 100 150 200 250

-0.02

-0.01

0

0.01

0.02

0.03

R
ec

ov
er

ed
 s

ig
na

l

0 100 200 300 400 500 600 700 800

0.005

0.01

0.015

0.02

K
-S

V
D

 C
oe

ffi
ci

en
ts

0 100 200 300 400 500 600 700 800

5

10

15
x 10-4

K
-E

M
D

 C
oe

ffi
ci

en
ts



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:7, No:8, 2013

1000

 

 

TABLE II 
INFORMATION OF THE 4 TEST FILES 

Type Time (s) Points No. of 
Frames 

String Music 3.96 190000 743 
String Music 7.02 336962 1317 
Wind Music 11.63 558244 2181 

Percussion Music 4.76 228493 893 

 
TABLE III 

SNR OF THE RECOVERED SIGNAL USING K-SVD, K-EMD  

Method SNR 

K-SVD 34.09dB 
K-EMD 41.22dB 

 

 
Fig. 8 The original audio and recovered signal using K-EMD and 

K-SVD 

IV. CONCLUSION 
In this paper we present a dictionary learning method based 

on EMD which is called K-EMD method. The dictionary is 
optimized by K-means clustering method to reduce the size 
thus can lead to less space and time complexities of the sparse 
representation algorithm. Experimental results are given to 
indicate the efficiency of the proposed method. The sparse 
representation coefficients are 34.4% sparser than that of 
K-SVD and the SNR of recovered signal of K-EMD is 
increased by 20.9% compared to K-SVD.  
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