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Abstract—This paper focuses on a technique for identifying the
geological boundary of the ground strata in front of a tunnel exca-
vation site using the first order adjoint method based on the optimal
control theory. The geological boundary is defined as the boundary
which is different layers of elastic modulus. At tunnel excavations,
it is important to presume the ground situation ahead of the cutting
face beforehand. Excavating into weak strata or fault fracture zones
may cause extension of the construction work and human suffering.
A theory for determining the geological boundary of the ground
in a numerical manner is investigated, employing excavating blasts
and its vibration waves as the observation references. According to
the optimal control theory, the performance function described by
the square sum of the residuals between computed and observed
velocities is minimized. The boundary layer is determined by min-
imizing the performance function. The elastic analysis governed by
the Navier equation is carried out, assuming the ground as an elastic
body with linear viscous damping. To identify the boundary, the
gradient of the performance function with respect to the geological
boundary can be calculated using the adjoint equation. The weighed
gradient method is effectively applied to the minimization algorithm.
To solve the governing and adjoint equations, the Galerkin finite
element method and the average acceleration method are employed
for the spatial and temporal discretizations, respectively. Based on
the method presented in this paper, the different boundary of three
strata can be identified. For the numerical studies, the Suemune tunnel
excavation site is employed. At first, the blasting force is identified in
order to perform the accuracy improvement of analysis. We identify
the geological boundary after the estimation of blasting force. With
this identification procedure, the numerical analysis results which
almost correspond with the observation data were provided.

Keywords—Parameter identification, finite element method, av-
erage acceleration method, first order adjoint equation method,
weighted gradient method, geological boundary, navier equation,
optimal control theory.

I. INTRODUCTION

IT is highly important to understand in advance behavior
and characteristics of the ground in the civil engineering

works such as tunnels, traffic roads, dams, etc. To know what
kind of behavior the externally forced ground shows is directly
related to safety managements, cost reduction measures and
environmental assessments, etc., in the constructions. Until
now, the property investigations of the ground such as geo-
logical reconnaissance of a drilling survey, geophysical explo-
ration, paling of investigation and rock test have been used
as the generalized method in designing the civil engineering
works. However, the conventional investigative approaches
require a lot of time and cost for investigation, and sometimes
it leads that the construction must be prolonged for the investi-
gation. Thus, a number of improvements should be developed
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for these reasons. Consequently, the forecast technique with
a numerical simulation, by which the constructions can be
carried out more safer and less expensive, is considerably
developed by the progress of a computer and the related analyt-
ical technology recently. In this research, the identification that
forecasts the boundary strata of the geological condition by the
three-dimensional numerical analysis technique is developed.
At the tunnel constructions, the problem that excavating into
weak strata or fault fracture zones without careful preparation
sometimes may cause prolongation of the construction works
and human damages. Thus, in this research, an identification
technique is presented to examine in a numerical manner the
boundary layer of geological property. On the assumption that
a tunnel is excavated, the value of the ground coefficients
are identified using ground vibration caused by blasts with
dynamite and the first order adjoint equation method. It is
possible that useful information can be obtained beforehand
for going into the weak ground strata and fault fracture
zones in the excavating works by identifying the geological
boundary. Because data on position of boundary layer in
the geological strata can be explored beforehand, safer and
less expensive excavation works are possible. Moreover, this
technique can be performed without stopping the excavation
works at the cutting face consuming less expensive search
costs. In order to perform the minimization procedure, we
introduce the index of the magnitude of discrepancy. It is
referred as the performance function. According to inverse
analytical technique which is introduced in this research,
the state quantity is actually observed and the performance
function is defined as the square sum of the residuals between
calculated velocity and this observed velocity. An unknown
coefficient is established by identifying the purpose coefficient
that minimize this function. The assumption for initial values
of parameters to be identified is one of the key concept of
the present computational procedure, because the first order
adjoint equation yields neither a necessary nor a sufficient
condition of the global minimum. The fact that the variation
of the extended performance function is zero implies that
the necessary and sufficient condition of the stationary state.
Therefore, the assumption of initial values of parameters is im-
portant and depends on the practical problem to be identified.
For the minimization procedure, we utilize a weighted gradient
method. Although this is simplest and most primitive method,
it is possible to obtain a convergence of the computations
starting from wide initial assumptions.
Identification of the geological boundary of the ground in
three dimension becomes possible by applying the present
technique. The results of this research leads to a plenty of
contribution to the engineering works because the position of
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geological boundary can be determined by numerical analysis
with this technique. It is possible to know in advance not only
rock properties but also natural geological boundary between
rock strata. A number of methods for parameter identification
have been presented in the fields of meteorology e.g. [2] and
hydraulic mechanics e.g. [8] or [17]. Methods for identification
of parameters such as seepage and temperature of the ground
have been discussed by Asai and Kawahara [13], Kojima et al.
[6], Kawahara et al. [7]. To estimate the geological structure
in the ground, an identification method of rock parameters
have been presented by Chaparro et al. [1], Swoboda et al.
[4], Koizumi and Kawahara [10], Ohkami and Swoboda [14],
Huang and Liu [16], Xiang et al. [18]. This research set a
precedent for the future various identification problems.
In order to show effectiveness of the present method, the
verification is performed using computational model in three
dimension. We can confirm the answer corresponding to the
theory from results of the numerical analysis. The effectiveness
of this technique was shown.

II. IDENTIFICATION METHOD OF GEOLOGICAL

BOUNDARIES

Using the indicial notation and summation convention, an
identification method of position of geological boundaries can
be determined. The procedure is to find out the coordinate
of the position xβj at β-th node in the j-direction so as to
minimize the following extended performance function J∗;

J∗ = J + Λ + Ξ, (1)

In equation (1), J is referred to the performance function and
expressed in the following form;

J =
1
2

∫ tf

t0

(u̇αi − ηαi)Qαiβj(u̇βj − ηβj)dt, (2)

where u̇αi and ηαi mean the computed and the observed
velocities at observed point α in the i-direction, respectively.
Qαiβj represents the weights adjusting the measurements
dimension, t0 and tf are the initial and the final times.

Tunnel

D ijkl
(1)

D ijkl
(2) . . . . . D ijkl D ijkl

(M-1) (M)

Fig. 1. Sectional view of tunnel excavation

The natural ground is composed of some strata as shown in
Figure 1. The Navier equation which shown by the displace-
ments is applied to a dynamic analysis of the ground as a
governing equation. In this research, the ground is assumed as

a linear elastic body. The governing equation can be expressed
as follows;

Dijkluk,lj + ρbi − ρüi = 0, (3)

where ui, bi and ρ denote displacement, body force and
density of the ground, respectively. Here, over dot denotes time
differentiation. Based on the elastic modulus and the Poisson
ratio of each stratum, Dijkl can be derived as follows;

Dijkl =
M∑

m=1

D
(m)
ijkl, (4)

where M is the maximum number of strata and D
(m)
ijkl is elastic

coefficient matrix at stratum (m). The constraint equations are
the dynamic elastic equation discretized by the finite element
method;

Λ =
1
2

∫ tf

t0

λαi(Ω̂αi − Mαiβj üβj

−Cαiβj u̇βj − Kαiβjuβj)dt, (5)

In equation (5), λαi is the Lagrange multiplier. Mαiβj , Cαiβj ,
Kαiβj denote mass, damping, stiffness coefficients, and Ω̂αi

is the surface force term, respectively, For the damping matrix
Cαiβk, Rayleigh damping defined by the sum of the damping
proportional to the mass and proportional to the stiffness is
introduced. Where boundary conditions are as follows. The
boundaries Γ1 and Γ2 are known boundary of displacement
uβj and surface force Ωβj , respectively;

uβj = ûβj on Γ1, (6)

Ωβj = Ω̂βj on Γ2, (7)

where ûβj and Ω̂βj mean the known displacement and surface
force. The precise formulation is found in equation (13).
The stabilization term Ξ is represented as follows;

Ξ =
1
2

∫ tf

t0

(x(l+1)
αi − x

(l)
αi )Wαiβj(x

(l+1)
βj − x

(l)
βj)dt, (8)

where x
(l)
αi means reference value of the position of the geo-

logical boundaries at l-iteration and Wαiβj is the stabilization
weights to secure the stability of the computation. The last
term Ξ will be zero at the final iteration stage.

III. DISCRETIZATION

A. Finite Element Method

As for the spatial discretization, the finite element method
is applied. A computational domain is divided into tetrahe-
dron elements, and approximated by the linear polynomial of
coordinates x, y and z. The finite element equation can be
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expressed as follows;

Mαiβj üβj + Cαiβj u̇βj + Kαiβjuβj = Ω̂αi, (9)

where damping and the other coefficient matrices are written
as follows;

Mαiβj =
∫

V

ρδijNαNβdV, (10)

Kαiβj =
∫

V

Nα,jDijklNβ,ldV, (11)

Cαiβj = α0Mαiβj + α1Kαiβj , (12)

Ω̂αi =
∫

Γ2

Nαt̂idΓ +
∫

V

ρNαb̂idV, (13)

in which Nα is called as the shape function, which expresses
the approximate geometry of displacement distribution. For
the damping matrix Cαiβj , Rayleigh damping defined by the
sum of the damping proportional to the mass and proportional
to the stiffness is introduced. Two coefficients α0 and α1 in
eq.(12) are parameters obtained by the characteristic frequency
of elastic body and the damping constant.

B. Average Acceleration Method

As for the temporal discretization, the average acceleration
method is applied to the finite element equation. The average
acceleration method is a numerical technique to solve the
second order differential equation. It is assumed that the
acceleration at t(n) ≤ t ≤ t(n+1) is equal to the mean value
of the acceleration of t(n) and t(n+1), and constant. In the
average acceleration method, the displacement and the velocity
at (n + 1) time are assumed as follows;

u
(n+1)
βj = u

(n)
βj + Δtu̇

(n)
βj +

Δt2

4
(ü(n+1)

βj + ü
(n)
βj ), (14)

u̇
(n+1)
βj = u̇

(n)
βj +

Δt

2
(ü(n+1)

βj + ü
(n)
βj ), (15)

where Δt is time increment, u
(n+1)
βj and u̇

(n+1)
βj denote the

displacement and the velocity at (n + 1) time, respectively.
These equations are identical to the Newmark β method with
γ=1/2 and β=1/4. The equation (16) can be obtain by
discretizing the finite element equation and denoting quantities
in the present time as (n);

Gαiβj ü
(n+1)
βj = Ω̂αi − Hαiβj ü

(n)
βj

−Iαiβj u̇
(n)
βj − Kαiβju

(n)
βj , (16)

where each matrices are written as follows;

Gαiβj = Mαiβj +
Δt

2
Cαiβj +

Δt2

4
Kαiβj , (17)

Hαiβj =
Δt

2
Cαiβj +

Δt2

4
Kαiβj , (18)

Iαiβj = Cαiβj + ΔtKαiβj , (19)

Calculating acceleration ü
(n+1)
βj using eq.(16) and substituting

these into eqs.(14) and (15), displacement u
(n+1)
βj and velocity

u̇
(n+1)
βj can be obtained.

IV. DERIVATION OF GRADIENT AND ADJOINT EQUATION

The extended performance functional J∗ should be station-
ary, thus,

δJ∗ = 0, (20)

From the necessary condition of eq. (20), the adjoint equation
(21) and the terminal conditions (22) and (23) can be derived
as follows;

−λ̈αiMαiβj + λ̇αiCαiβj

−λαiKαiβj − (üαi − η̇αi)Wαiβj = 0, (21)

λαi(tf ) = 0, (22)

λ̇αi(tf )Mαiβj +
(
u̇αi(tf ) − ηαi(tf )

)
Wαiβj = 0, (23)

The precise derivation is written in the reference [10]. Using
eqs.(21) and (22), (23), eq.(20) can be transformed as follows;

δJ∗ =
∫ tf

t0

λαiBαiβjδxβjdt, (24)

where;

Bαiβj =
∫

Γ(s)
(NαD

(m)
ijklNβ,l)njdΓ. (25)

Thus, the update equation can be written as follows taking
x

(0)
βj = x

(l)
βj at l the iteration cycle;

W
(l)
αiβjx

(l+1)
βj = W

(l)
αiβjx

(l)
βj − grad(J (l))αi, (26)

where;

grad(J (l))βj = λαiBαiβj , (27)

V. IDENTIFICATION METHOD TO DETERMINE THE

GEOLOGICAL BOUNDARIES

Γ

Γ

Γ
(s)

(s)

(s)

(1)

(2)

(3)E E
(m) (m+1)

Fig. 2. Target and initial geological boundaries

Geological boundary between the strata of which elastic
modulus are E(m) and E(m+1) is denoted by Γ(s). The
boundary line Γ(s) is not always straight line. Thus, the line
Γ(s) is divided to be the sum of the pieces of the sub-boundary
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lines Γ(s)
(n), which are expressed in Figure 2. The integral over

the line Γ(s) can be transformed into the sum of the integral
over Γ(s)

(n), i.e.,

∫
Γ(s)

(NαD
(m)
ijklNβ,l)njdΓ

=
N∑

n=1

∫
Γ

(s)
n

(NαD
(m)
ijklNβ,l)njdΓ; (28)

If the exact boundary line Γ(s) is known in advance, the term
Bαiβj is;

Bαiβj = 0, (29)

Unfortunately, the exact boundary line is not known when we
start the computation. Thus, the boundary line is assumed as
the initial condition, which is expressed as Γ(s)

(n). The initial
boundary and the boundary at the intermediate iterations are
referred to the false boundary and denoted by Γ(s)

(n). On the

boundary Γ(s)
(n), Bαiβj is not zero. Thus, the grad(J (l))βj in

eq.(27) can be obtained. Using the update equation (26) the
new position of the boundary can be computed.

VI. NUMERICAL EXAMPLE

By numerical study, the identification technique is verified
by using the adjoint equation method which is derived in the
preceding sections. To prove the availability of the method
which is the identification of the geological boundary, the
simplified model is applied. The analytical model is set to
not complex shape but shape which can be easily calculated
as the reasons of verification of the identification technique.
The finite element mesh which had been shown in Figure 3
developed from geological data near the Suemune tunnel.
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Fig. 3. Finite element mesh
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Fig. 4. Computational condition

TABLE I
GEOLOGICAL PROPERTIES OF THE MODEL

Properties of each Stratum
Elastic modulus Density Poisson ratio

[kN/m2] [kg/m3]
Stratum 1 1.0 × 106 2.40 × 103 0.32
Stratum 2 1.0 × 105 2.32 × 103 0.32
Stratum 3 1.0 × 106 2.40 × 103 0.32

The finite element mesh in 3D is shown in Figure 3.
The total number of nodes and elements are 25, 135 and
139, 578, respectively. There are three geological strata in this
computational domain. These are called as stratum 1, 2 and 3.
The geological condition of layer 1 and 3 are consist of hard
rocks, on the other hand, strata 2 is formed of soft rock. The
elastic modulus, density of the ground and Poisson ratio are
presupposed as the table I . The time increment used for the
computation was Δt = 1.0×10−2[sec]. The total time of com-
putation was 1.0[sec]. The damping coefficients were given
α0 = 2.5 × 10−1 and α1 = 1.6 × 10−3. The two observation
points are set so as to cross the geological boundary. The mea-
sured velocities at No.1 : (X1, Y1, Z1) = (70.0, 62.6, 220.0)
and No.2 : (X2, Y2, Z2) = (57.5, 41.3, 221.5) are used for
computation. We assumed the following boundary conditions;
the three components of the displacement were assumed to
be zero for the bottom surface. The horizontal direction
displacement of the side surface of the computational domain
were assumed to be zero and all the other surface were
considered to be stress free. Because computational domain
is extracted the limited range around the tunnel from the
semi-infinite and continuous natural ground, we must define
boundary condition so that a continuity with the domain of it
beyond is almost satisfied in the edge face of the computational
domain. Because the tunnel face and observation points are
included in the central part of the computational domain, the
boundary effects may be small if we consider the first part of
the first wave group formed by the blast.

We now consider the assumption of blasting force. The
Borehole pressure which was introduced by U. S. Army Corps
of Engineers [15] is given from the left-hand side at the side
surface. The external force to occur by a actual blast has
the following characteristics: (1) It shows a sharp increase at
short times. (2) It shows a gradual decline after the rise. (3)
It diffuses to the ground slowly. Therefore Borehole pressure
which is proposed by U.S. Army Corps of Engineers is applies
to be able to describe a history of the pressure in this research.

F0 = 6.06 × 10−3(
ρeV

2
d

1 + 0.8ρe

), (30)

Eq.(30) shows the highest point of pressure of the explosion.
where F0, V 2

d and ρe are highest value of pressure, detonat-
ing velocity and specific gravitational acceleration. We can
describe a blasting phenomenon by introducing this Borehole
pressure. It is given two exponential functions in order to
consider the time variable influence. So that we can easily
calculate development of formula, eq.(30) is transformed into
following form.

f(t) = A(e−ξt
− e−ηt), (31)

where A means maximum amplitude of pressure which occurs
by a blast. ξ and η are coefficients that are defined to be able
to express time history of blasting force f(t) arbitrarily. In
this research, ξ and η are set 1000 and 5000, respectively.
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Fig. 5. Time history of external force

The time when pressure by the blasting force reaches the
highest value is shown by using two coefficients as follows;

tpeak =
ln(η/ξ)
η − ξ

, (32)

Eqs.(30), (31), (32) are shown by G. Wu [13]. The external
force which is defined as explained above is plotted in Figure
5. In this research, initial value of external force is set as
2.0 × 105[kN ]. In this paper, the actual geological boundary,
that is the boundary of two strata with different elastic moduli,
is identified assuming initial boundary, of which positions are
different from the actual boundary. Boundary positions can
be expressed by the coordinates, X , Y and Z. The actual
boundary, which is the target boundary of the computation, is
placed in advance. This is not known at the starting position.
Thus, the initial boundary is assumed one. It is important
what value is assumed at the initial boundary. To verify
the general versatility, three cases which are different initial
conditions are analyzed. In numerical study, it is assumed
that the geological boundary is located in a inclined direction
on the computational model. The initial and target geological
boundaries are shown in Figures 6.
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Fig. 6. Initial assumed and target boundaries

This inclined boundary surface is described by plane equation.
When a calculation is performed, there is a matter that we
have to consider. It is a definition method of the performance
function. As previously mentioned, the performance function
consists of square sum of the residuals between computed
and observed velocities. Under ordinary circumstances, ob-
served data at the construction site are employed as observed
velocity. However the observation velocity of this study is
the calculation arbitrarily beforehand. The verification of the
algorithm for the identification technique is performed easily
and simply, because we used this method. If this identification
method is effective, because observed velocity is not actual
data, observed velocity corresponds with computed velocity.

VII. NUMERICAL RESULT

Red points plotted in Figure 7 show the variation of
the performance function. It is shown in Figure 7 that the
performance function to be converged to zero. This result
means that the calculated velocities are coincident with the
observation velocities. Like figure (Fig.9−14), the discrepancy
between computed and observed velocity become zero. Blue
points represented in Figure 8 show that the movements of the
geological boundaries from an initial to a target values. The
value of the coordinates in the Z direction at the X = 126.0
and Y = 0.0 are described in Figure 8. Figure 15 shows
the identified boundary. The identified boundary (Fig. 15)
is coincident with the target boundary (Fig. 6). Thus, the
identification method when it is supposed that natural ground
is consists of several stratum was verified. The identification
to be based on optimal control theory was performed. The
effective of present algorithm is verified from all these results.
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Fig. 7. Variation of performance function
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Fig. 11. Velocity (Z-axis at No.1)
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Fig. 12. Velocity (X-axis at No.2)
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Fig. 13. Velocity (Y-axis at No.2)
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VIII. CONCLUSION

In this paper, an identification technique to determine the
position of geological boundary has been presented. The
first order adjoint equation method of the optimal control
theory was usefully used to identify the boundary stratum.
Minimizing the performance function, which is the square sum
of the discrepancies between the computed and observed ve-
locities, the geological stratum were identified. The weighted
gradient method which uses the gradient derived by the adjoint
equation method was applied as a minimization technique.
Effectiveness of this technique has been shown as results of
verification. Safety and less expensive excavating works will
become possible by the establishment of the technique for the
identification of geological boundary.

As future research, this technique will be improved to do
more accurate analysis. For example, the numerical assump-
tion of actual blasting force at the excavation site and the exact
expression for the actual phenomenon will be discussed. The
other identification problem can be mentioned as almost same
analytical technique because a part in search of the gradient
with respect to control variable of performance function is
expressed as unified derivation. Then based on this study,
the three-dimensional issue of the identification of geological
boundary strata using actual blasting waves will be preformed.
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