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Abstract—Model-checking tools such as Symbolic Model Verifier
(SMV) and NuSMV are available for checking hardware designs.
These tools can automatically check the formal legitimacy of a
design. However, NuSMV is too low level for describing a complete
hardware design. It is therefore necessary to translate the system
definition, as designed in a language such as Verilog or VHDL, into
a language such as NuSMV for validation. In this paper, we present
a meta hardware description language, Melasy, that contains a code
generator for existing hardware description languages (HDLs) and
languages for model checking that solve this problem.
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I. INTRODUCTION

E
LECTRONIC devices operate in a variety of environ-

ments, especially in information technology, where their

penetration and numbers are increasing yearly. Much social

system infrastructure is dependent on this technology. The

reliability of this technology, especially pertaining to its digital

systems, is essential to maintaining the function and safety

of the entire system. For this reason, a desirable design

environment is one that enables users to design highly reliable

systems, which operate accurately according to the specifica-

tions, at low cost and high efficiency [1], [2].

Compilers have been developed that generate objects and

executable modules for a target system via code generation,

by implementing the target system using a high-level language

following its functional design [3], [4]. In particular, hardware

compilers have been developed that generate the configuration

information for a circuit. This information comes directly

from the code written in a relatively high-level language to

describe the design of the hardware. Such compilers are used

in industry [5], [6], [7], [8].

There are model-checking tools [9] for hardware design,

such as Symbolic Model Verifier (SMV) [10] and NuSMV

[11]. These tools automatically check the formal legitimacy

of a design. However, with NuSMV, it is necessary to use

a very low-level language to describe the design of the

actual hardware completely. Therefore, an additional process is

required, which translates the system design from a language

such as VHSIC Hardware Description Language (VHDL)

[6] or Verilog [7] into a language suitable for validation,

such as NuSMV. In addition, when considering the practical
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circumstances at a development site, it is difficult to implement

the same design several times in different languages because

of limitations such as cost and delivery time.

Codesign of software and hardware is possible during

development, by using the SystemC description language [8].

There are formal design and verification methods in which the

software and hardware areas of one system development can

be separated in a coordinated manner, while they are being

designed. This enables designers to design a system with a

high-speed processing capability, so that the processes that

are difficult to implement in hardware because of their algo-

rithmic complexity can be handled in software. Alternatively,

a processing area that requires a long calculation time when

implemented using software (on a microprocessor), can be

handled by hardware twists such as parallelization and the

use of a pipeline. However, it is necessary to produce designs

for both the software-processing areas and the hardware-

processing areas. Then, if a change in the specification occurs

in either the software area or the hardware area, the design of

the other area must be modified, and the cost increases because

changes in specification are now problematic.

In this study, we present the design of a Meta hardware

description language system, Melasy, which has a code gener-

ator for existing hardware description languages, languages for

model checking, and C language modules for simulations and

codesign. Melasy uses a functional programming language,

Haskell [12], and its higher-level parser library, Parsec [13],

to implement its compiler-processing subsystem. A system

described in the metalanguage can generate various target

object codes by selecting a destination language for the

code generation based on its description. Inter alia, we have

succeeded in generating the code for a direct model-checking

tool (SMV) by describing a system design, in conjunction

with the specification to be met, using the metalanguage. To

evaluate the syntactic merits and description capabilities via

case studies, we have compared and evaluated a solvable range

of problems, which are difficult to solve using conventional

methods, by describing systems and using our compiler to

create object code in various languages.

II. RELATED STUDIES

A. HDCaml

HD Categorical Abstract Machine Language (HDCaml) [14]

is a language for hardware description and checking. This

language is implemented as a library, using Objective Caml
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Fig. 1. The relationship of the Melasy compiler to various HDLs and the
model checker.

(OCaml) rather than using a new language. When programs

described in OCaml are compiled, executable files to generate

code for various hardware description languages (HDLs) and

checking systems are generated. One of HDCaml’s features

is that OCaml’s library can be included without modification,

because HDCaml describes systems exactly as does OCaml.

B. Confluence

Confluence [15] is also a language for hardware description

and checking. Although the compiler of this language is

described using OCaml, it operates as a fully independent

compiler. Confluence performs its code generation via an

intermediate code, and the Confluence code is first compiled

into intermediate code (Netlist) by its preprocessor. Then, the

target codes for VHDL and Verilog are generated from the

Netlist by its postprocessor.

III. VERSATILE CAPABILITIES OF THE MELASY COMPILER

Melasy has been designed as a metalanguage for a variety

of existing languages. Hardware design descriptions in Melasy

generate various HDL descriptions via the Melasy compiler.

Figure 1 shows the relationships between the Melasy compiler,

SMV, and HDL. By generating Verilog or VHDL hardware

descriptions via the Melasy compiler, it is possible to pro-

duce hardware designs from highly abstract specifications. By

changing the compiler options, it is also possible to obtain both

verification code and executable code by generating a descrip-

tion for model-checking tools such as NuSMV. Furthermore,

in the codesign of software and hardware, it is possible to

use one Melasy description to generate various codes with

different proportions of hardware and software processing,

by specifying the ratio of hardware description to software

description in the compiler options. The details of the syntax

and description capability are discussed in Section V.

IV. DESIGN POLICY AND FEATURES OF THE MELASY

METALANGUAGE

A. Language Design Policy

Since digital hardware often operates in parallel with other

hardware, the repetitive processing that is often used in

procedural-language software design is inefficient in many

cases. In digital arithmetic circuits, design twists to enable par-

allel processing are frequently adopted. As a result, similar de-

scriptions (modules) appear in the design, and this significantly

impairs the readability and description capability of the code.

Our proposed Melasy language generates multiple formulas

from a single formula using a syntax-expressed repetition,

with the aim of eliminating this problem. Furthermore, by

allowing for recursive definition of objects as well as recursive

definition of formulas, it enables a user to describe highly

complex designs easily.

The advantages to be derived in future from enabling

Melasy to describe the design of a software area using, for

example, SystemC, as well as the advantages of its hardware

description, have already been discussed. However, SystemC’s

language description capabilities were not adopted here, be-

cause the implementation of the handling of synchronization

in the parallel processing area during output of the hardware

codes would be complicated if Melasy were designed as

a normal procedural language. Therefore, an object-oriented

functional language has been adopted for Melasy. In Melasy,

objects are circuits with inputs and outputs. The definition

of an object input is handled as an argument when declaring

an instance, and the output is handled similarly to a member

variable. Each object corresponds to a hardware circuit and

connects an input and an output when generating an object

instance. Simple repetition of the same code, which is often

seen in designs using existing HDLs, is described using a

syntax that represents repetition rather than an actual repetition

of code. This clearly expresses the meaning of a repetition

structure while reducing the quantity of code required.

B. Type Inference

Type inference is a mechanism for obtaining a proper

function definition, in which a compiler infers the type, even

if the designer (user) does not specify the type of target

object (variable) explicitly. The compiler infers the type via

connections and/or substitution, starting from a point where its

type is defined. Using type inference, a user can save on mental

labor, and can check the type in any given situation. The user

can generate a component with a determined type from an

ambiguous definition during the type inference process, after

defining a component using an ambiguous definition. Further-

more, a component of indeterminate type can be defined as

a component independent of type by the output of various

specific objects. This enables the user to define an object, such

as a computing unit or a selector, that can be used for any type.

C. Comparison of Description Capability

The description capabilities of Melasy and SMV are com-

pared in this subsection.

1) Ambiguous components.: Melasy can define various

components from a single definition via ambiguous component

definition using a template. For example, buffers with size =

2 and size = 4 are defined in Figure 2.

Using NuSMV, a buffer with size = 2 and a buffer with

size = 4 must be defined separately (Figure 2(a)). However,
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Module buffer2()

VAR

buf : array 0..1 of boolean;

Module buffer4()

VAR

buf : array 0..3 of boolean;

Module main

VAR

buf2 : buffer2;

buf4 : buffer4;

(a) Example of a description using NuSMV.

component Buffer<N>()

var

buf[N] :: Bool;

component Main

var

buf2 :: Buffer<2>;

buf4 :: Buffer<4>;

(b) Example of a description using Melasy.

Fig. 2. Example of a description for a buffer with sizes = 2 and 4.

MODULE Hoe

VAR

hoe : array 0..7 of boolean;

ASSIGN

init(hoe[0]):=1;

init(hoe[1]):=0;

init(hoe[2]):=0;

init(hoe[3]):=0;

init(hoe[4]):=0;

init(hoe[5]):=0;

init(hoe[6]):=0;

init(hoe[7]):=1;

(a) Example of a description using NuSMV.

component Hoe()

var

hoe[N=8] :: Bool | N==0 | N==7 =1,

| otherwise =0;

(b) Example of a description using Melasy.

Fig. 3. Example of a description for the initialization of an assignment array,
hoe[].

using Melasy, buffers of various sizes can be generated from

a single definition by initially defining the buffer to have an

ambiguous size and then specifying the size when declaring

an instance (Figure 2(b)).

2) Initialization of an array.: The methods for the initializa-

tion of an assignment array and for substitution are compared

in this subsection. As an example, let us compare the methods

for performing a special initialization of the first and last

elements of an array. Instead of using a special initialization

routine, let us initialize the first and last elements with a value

of “1” and the other elements with a value of “0”. Figure 3

shows examples of each definition.

Because NuSMV offers a choice of syntax for handling

arrays, it is necessary to initialize all the elements (Figure

3(a)). Using Melasy, this can be written concisely by using

a guard area and an implicit foreach. In addition, the

conciseness contributes to a clearer description when reading

the code, and a reduction in the user’s workload (Figure 3(b)).

V. SYNTAX OF THE MELASY LANGUAGE

A. Syntax Rule Definition

Figure 4 shows the Melasy syntax described in Extended

Backus–Naur Form (EBNF). Melasy code comprises “columns

of component definitions” that compose a circuit. Each compo-

nent definition contains a var block that defines the variables

in the component, and an assign block that defines the

update of the status. In both blocks, the description of a

formula uses an implicit foreach with a guard area, as will

be discussed in detail in Section V-B.

<idunit> = <lower> | <upper> | <digit>

<idunits> = <idunit>|<idunit> <idunits>

<id> = <lower> | <lower> <idunits>

<Id> = <upper> | <upper> <idunits>

<number> = <digit> | <digit> <number>

<varId> = <id> *<arraySize> ["." <varId>]

<suffixReferer> = "@" <number>

<substitution> = <substitution_>

| <connection> | 1#<guard>

<substitution_> = "=" <expr>

<connection> = "(" #<expr> ")"

<if> = "if"<expr_b> "then" <expr>

"else" <expr>

<guard> = "|" <expr_b> <substitution>

<assign> = <varId> <substitution>

<program> = <components>

<components> = <component>

| <component> <components>

<component> = "component" <Id> [<templateVar>]

"(" [<arguments>] ")" *<block>

<templateVar> = "<" #<Id> ">"

<templateArg> = "<" #<Expr> ">"

<arguments> = #<argument>

<argument> = <varId> [<varType>]

<arraySize> = "[" [[<id> "="] <expr>]"]"

<block> = <varBlock> | <assignBlock>

| <defineBlock>

<varBlock> = "var" *(<var> ";")

<var> = <varId> [<varType> [<templateArg>]

[<substitution>]

<varType> = "::" ("Bool" | <Id>)

<assignBlock> = "assign" *(<assign> ";")

Fig. 4. Melasy syntax rules (EBNF).

B. Implicit foreach with Guard Area

An implicit foreach is a mechanism that helps to define

the values of an array. It allows a user to define all the elements

of an array using a single formula, by making the formula

act on all the elements. For example, since the information

regarding the index of an element in the array is given to the

formula via a special invariant, the value of the formula can

be changed using the partial information for the array. It is

also possible to change the shape of a formula according to

the conditions by setting a guard area.

Since many existing HDLs do not have a function that

expresses statement repetition, they cannot describe simple

repetition clearly. Therefore, users have to write similar ex-

pressions using copy-and-paste, or they have to create a simple

preprocessor themselves. This makes the process troublesome,

even in cases where a description is repeated by slightly chang-

ing part of an identifier string, such as a constant identifier or

a variable identifier. Using Melasy, such operations can be
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reduced by using the implicit foreach and guard area. The

description of an array can be completed in a single row, and

processing, such as the input of special values to a part of

an array, can also be performed easily via the guard area. An

example of this, using a Melasy description, is shown in Figure

5.

In this way, Melasy allows users to explicitly express

information that has structural meaning such as, in this case,

that the even value is “1” and the odd value is “0”. This is

in addition to enabling a user to describe codes easily (Figure

5).

even[N] | (N%2)==0 = 1,

| otherwise = 0;

Fig. 5. Example of a Melasy description that uses implicit foreach for
the initialization of a register.

C. Component with a Template

A template is a mechanism by which a user freely defines

invariants that are processed during compiling when declaring

instances. For example, by defining an N-bit buffer using a

template, rather than by defining a buffer with a width of four

bits and a buffer with a width of eight bits separately, and

then specifying a value for N when generating an instance,

it is possible to create designs with buffers of various widths

from a single design (Figure 6).

component Buffer<N>()

var

buf[N] :: Bool;

component Main

var

buf2 :: Buffer<2>;

buf4 :: Buffer<4>;

Fig. 6. Example of a Melasy description with ambiguous components for
buffers of size = 2 and 4.

VI. CODE GENERATION FOR A MODEL-CHECKING TOOL

There is a significant difference in the description capability

between the codes that contain Melasy’s implicit foreach

and/or templates and the codes that can be described by

the SMV model-checking tool. For this reason, we decided

to expand the implicit foreach and template first, and

then generate intermediate code that does not contain these

functions, when generating SMV code from Melasy code.

A. Generation Procedure via Intermediate Code

1) Expansion of Implicit foreach: In the expansion of

an implicit foreach, the suffixes in an array are substituted

by special invariants, and the invariants and suffixes are

substituted by numeric values that represent these values in

an invariant list.

2) Expansion of a Template: In the expansion of a template,

the template name is expanded (mangled) using the values

passed to the template arguments, and all the template argu-

ments in the expanded component are substituted by invariants.

In the compiler we have developed so far, a name mangle

is the value input into a template argument and is added

after the name using an underscore delimiter “ ”. Because

a template argument may be used in the declaration of an

instance defined for a component that includes a template,

it is necessary to repeat the same processing steps until the

end of the template expansion. At this stage, an ambiguous

component will be concretized, and an implicit foreach will

have been substituted by an assignment for a common array.

However, other syntactic elements will require some simple

modifications.

3) Expansion of “If-then-else” Syntax: SMV has no “if-

then-else” syntax. Instead, it has the function of case sep-

aration for values via case-esac, and substitutes for the

condition by multiple case statements (Figure 7).

if expr then a else b;

(a) Conditional statement in Melasy.

case

expr : a;

1 : b;

esac;

(b) Expansion in SMV to a case statement.

Fig. 7. Example of expansion of an “if-then-else” description.

4) Expansion of an Array: The current version of the

Melasy compiler cannot handle multidimensional arrays. We

are developing the next version, which will have this ability.

Because SMV cannot handle multidimensional arrays, they

must be expanded into one-dimensional arrays. For example,

SMV cannot handle this description:

next(value[0]) = value[n].

In SMV, access using a variable for the suffix of an array

is not allowed, but there is no problem if “value[0]” is treated

as an identifier such as “value 0”. Therefore, the compiler

handles multidimensional arrays by treating all the elements

of an array as a set of identifiers whose suffixes are given.

B. An Example of SMV Code Generation and Verification

An example of SMV code being generated from Melasy

code is shown in Figure 8. In this example, an N-bit counter is

defined. The Melasy code has three components. The “Coun-

terCell” component oscillates between 0 and 1 as a simple

flipflop. The “Counter” component generates N CounterCell

instances, namely “values[N]”, with guard areas. The first cell

connects with a clock, and the following cells connect with the

previous cell’s carry output. Then, in the “Main” component,

the instance of a “Counter” component is generated for “N =

4”, and oscillates as a clock (Figure 8(a)).

The SMV code generated by Melasy is also shown, in

Figure 8(b). This SMV code is executable by NuSMV-2.4.
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Figure 8(c) shows the result of 10 simulated steps. At this

stage, the counter state has become “0101” in binary. As the

clock cycle takes two steps, this result is correct.

component CounterCell(carryIn, reset)

var

value :: Bool = 0;

assign

value = if reset then 0 else valueˆcarryIn;

define

carryOut = value & carryIn;

component Counter<N>(clk)

var

values[N] :: CounterCell

| N==0 (clk,0),

| otherwise (values[N-1].carryOut,0);

component Main()

var

clk :: Bool = 0;

cnt10 :: Counter<4>(clk);

assign

clk = if clk then 0 else 1;

(a) Melasy source code.

MODULE CounterCell(carryIn, reset)

VAR

value : boolean;

ASSIGN

init(value) := 0;

next(value) :=

case

reset : 0;

1 : value xor carryIn;

esac;

DEFINE

carryOut := value&carryIn;

MODULE main()

VAR

clk : boolean;

cnt10 : Counter_4(clk);

ASSIGN

init(clk) := 0;

next(clk) :=

case

clk : 0;

1 : 1;

esac;

MODULE Counter_4(clk)

VAR

values_0 : CounterCell(clk, 0);

values_1 : CounterCell(values_0.carryOut, 0);

values_2 : CounterCell(values_1.carryOut, 0);

values_3 : CounterCell(values_2.carryOut, 0);

(b) Automatically generated SMV code.

NuSMV > simulate 10

******* Simulation Starting From State 1.1 *******

NuSMV > print_current_state -v

Current state is 1.11

clk = 0

cnt10.values_0.value = 1

cnt10.values_1.value = 0

cnt10.values_2.value = 1

cnt10.values_3.value = 0

(c) Verification result using NuSMV-2.4.

Fig. 8. Example of SMV code generation and verification.

VII. CONCLUSIONS

It is possible to define components that can be used flexibly

via the use of templates. With an implicit foreach and

guard area, it is possible to substitute for a complicated

initialization a description that uses case separation rather than

an enumeration of assignment statements. We believe that in

the future, libraries that will improve the descriptive power

of Melasy could be developed easily, by devising methods

to facilitate the design of user-defined libraries and types. The

Melasy compiler can output SMV code at present, and we plan

to enable it to generate additional HDL codes in the future.

We believe that a metalanguage that contains only functions

similar to those of existing languages can be created. This will

be achieved by limiting the codes directly generated from the

Melasy code to just the Melasy intermediate code, and then

expanding an implicit foreach and/or template during the

code generation step. In this way, we plan to enable the Melasy

compiler to generate a variety of codes.
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