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On Positive Definite Solutions of Quaternionic
Matrix Equations

Minghui Wang

Abstract—The real representation of the quaternionic matrix is
definited and studied. The relations between the positive (semi)define
quaternionic matrix and its real representation matrix are presented.
By means of the real representation, the relation between the positive
(semi)definite solutions of quaternionic matrix equations and those of
corresponding real matrix equations is established.
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I. INTRODUCTION

IN the study of quaternionic quantum mechanics and some
other applications of quaternions [1], [2], [3], one often

encounters the problem of solutions of quaternionic linear
equations. Because of noncommutativity of quaternions, solv-
ing quaternionic linear equations is more difficult. In papers[4],
[5], [6], by means of a complex representation and a com-
panion vector, the authors have studied quatemionic linear
equations and presented a Cramer rule for quaternionic linear
equations and an algebraic algorithm for the least squares
problem, respectively, in quaternionic quantum theory. In the
paper[8], by means of a real representation of the quaternionic
matrix, we gave an iterative algorithms for the least squares
problem in quaternionic quantum theory.

How to find positive (semi)definite solution of quaternionic
matrix equations is also an important problem in quaternionic
quantum theory. However, to our best knowledge, the problem
has not been studied for its difficulty.

In this paper, we will pay attention to positive (semi)definite
solutions of quaternionic matrix equations by means of a real
representation of the quaternionic matrix and establish the
relation between this problem and the corresponding problem
in the real number field. Because the latter has been studied
wildly, we may apply the existing results to the former.

Let R denote the real number field, Q = R⊕Ri⊕Rj⊕Rk
the quaternion field, where i2 = j2 = k2 = −1, ij = −ji =
k. For any quaternion a = a1+a2i+a3j+a4k where aj ∈ R,
the conjugate of a is ā = a1 − a2i − a3j − a4k. For any
quaternion matrix A, AT , Ā and AH denote the transpose,
conjugate and conjugate transpose of A over quaternion field,
respectively. Fm×n denotes the set of m × n matrices on a
field F. For A ∈ Qn×n, A is unitary if AHA = AAH = I and
Hermitian if AH = A. For any Hermitian matrix A ∈ Qn×n,
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A is positive (semi)definite if xHAx > 0(≥ 0) for any nonzero
vector x ∈ Qn.

II. REAL REPRESENTATION

In this section, we will give the definition of the real
representation and study the relation between the positive
(semi)define quaternionic matrix and its real representation
matrix.

Let Al ∈ Rm×n(l = 1, 2, , 3, 4). The real representation
matrix is defined[7] in the form

AR ≡

⎛
⎜⎜⎝

A1 −A2 −A3 −A4

A2 A1 −A4 A3

A3 A4 A1 −A2

A4 −A3 A2 A1

⎞
⎟⎟⎠ ∈ R4m×4n. (1)

The real matrix AR is uniquely determined by quaternion
matrix A = A1 + A2i + A3j + A4k ∈ Qm×n, and it is said
to be a real representation matrix of quaternion matrix A.

Let It be t× t identity matrix and define

Pt =

⎛
⎜⎜⎝

It 0 0 0
0 −It 0 0
0 0 It 0
0 0 0 −It

⎞
⎟⎟⎠ , (2)

Qt =

⎛
⎜⎜⎝

0 −It 0 0
It 0 0 0
0 0 0 It
0 0 −It 0

⎞
⎟⎟⎠ , (3)

St =

⎛
⎜⎜⎝

0 0 0 −It
0 0 It 0
0 −It 0 0
It 0 0 0

⎞
⎟⎟⎠ , (4)

Rt =

⎛
⎜⎜⎝

0 0 −It 0
0 0 0 −It
It 0 0 0
0 It 0 0

⎞
⎟⎟⎠ . (5)

Then it is easy verify the following properties.

Proposition 2.1. Let A,B ∈ Qm×n, C ∈ Qn×s, α ∈ R. Then
(a). (A+B)R = AR +BR, (αA)R = αAR,

(AC)R = ARCR,
(b). Q2

m = R2
m = S2

m = −I4m, QT
m = −Qm,

RT
m = −Rm, S

T
m = −Sm,

(c). RmQm = Sm, QmSm = Rm, SmRm = Qm,
(d). QmRm = ST

m, SmQm = RT
m, RmSm = QT

m,
(e). QT

mA
RQn = QmA

RQT
n = AR,

RT
mA

RRn = RmA
RRT

n = AR,
ST
mA

RSn = SmA
RST

n = AR
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(f). (A∗)R = (AR)T , (AT )R �= (AR)T , (A†)R = (AR)†,

(g).
(

A M
N D

)R

= Π1

(
AR MR

NR DR

)
Π2,

where Π1 and Π2 are permutation matrices.
(h). xTQnx = xTRnx = xTSnx = 0

for any vector x ∈ R4n

Theorem 2.2. For any matrix Y ∈ R4m×4n, Y is a real
representation matrix if and only if

QT
mY Qn = RT

mY Rn = ST
mY Sn = Y.

Proof. Necessity. It is obvious in terms of (e) in proposition
2.1.

Sufficiency. Let

Ŷ ≡ (Y +QT
mY Qn +RT

mY Rn + ST
mY Sn)/4.

Then Ŷ = Y . Partition Y as Y = (Yij)4×4, where Yijs are
m× n matrices. By direct computation, we have

Ŷ = Y =

⎛
⎜⎜⎝

Ŷ1 −Ŷ2 −Ŷ3 −Ŷ4
Ŷ2 Ŷ1 −Ŷ4 Ŷ3
Ŷ3 Ŷ4 Ŷ1 −Ŷ2
Ŷ4 −Ŷ3 Ŷ2 Ŷ1

⎞
⎟⎟⎠ ,

where

Ŷ1 = (Y11 + Y22 + Y33 + Y44)/4,

Ŷ2 = (Y21 − Y12 + Y43 − Y34)/4,

Ŷ3 = (Y24 + Y31 − Y13 − Y42)/4,

Ŷ4 = (Y32 + Y41 − Y23 − Y14)/4.

So Y is the real representation matrix of quaternionic matrix
Ŷ1 + Ŷ2i+ Ŷ3j + Ŷ4k.

The following result may be verified directly.

Corollary 2.3. For any Y ∈ R4m×4n,

Y +QT
mY Qn +RT

mY Rn + ST
mY Sn

is a real representation matrix.
By direct verification, we easily obtain the following result.

Theorem 2.4. For any V ∈ R4m×n,

(V,QmV,RmV, SmV )

is a real representation matrix.
The following result follows from (a) and (f) in proposition

2.1.

Theorem 2.5. U ∈ Qm×m is an unitary matrix if and only if
its real representation matrix UR is an orthogonal matrix.

Theorem 2.6. Let A ∈ Qn×n be a Hermitian matrix. Then
λr(A) ∈ R and

λr(A) = λ(AR),

where λr(A) denotes the set of right eigenvalues of A.

Proof. First, λr(A) ∈ R. Indeed, for Ax = xλ with the unit
vector x, we have λ = xHAx, λ̄ = (xHAx)H = xHAx = λ,
and therefore λ ∈ R.

Next, for any λ ∈ λr(A), there exists a quaternionic vector
x such that Ax = xλ, and hence

ARxR = xRdiag(λ, λ, λ, λ),

which implies ARxR(:, 1) = λxR(:, 1), i.e., λ ∈ λ(AR).
For any λ ∈ λ(AR), there exists a real vector u such that

ARu = λu. Because of ARRnu = λRnu,A
RQnu = λQnu

and ARSnu = λSnu, we have

AR(u,Qnu,Rnu, Snu) = λ(u,Qnu,Rnu, Snu)

= (u,Qnu,Rnu, Snu)diag(λ, λ, λ, λ)

It follows from theorem 2.4 that (u,Qnu,Rnu, Snu) is the
real representation of some quaternionic vector. Denote this
quaternionic vector by u1, then we have ARuR1 = uR1 λ

R, and
Au1 = u1λ, i.e., λ ∈ λr(A).

As we know, a Hermitian quaternionic matrix A is positive
(semi)definite if and only if λr(A) > 0(≥ 0). Therefore, we
can easily obtain the following results.

Corollary 2.7. Let A ∈ Qn×n be Hermitian. Then A is
positive (semi)definite if and only if AR is positive defi-
nite(semidefinite).

Corollary 2.8. Let A,B ∈ Qn×n be Hermitian. Then A−B
is positive (semi)definite if and only if AR − BR is positive
(semi)definite.

Theorem 2.9. Let A ∈ R4n×4n be symmetric. Then A is
positive (semi)definite if and only if A+QT

nAQn+S
T
nASn+

RT
nARn is positive (semi)definite.

Proof. The necessity is obvious. Next, we prove the suffi-
ciency. For any x ∈ R4n, (I,QT

n , R
T
n , S

T
n )

T is full column
rank, and therefore there exists y ∈ R4n such that⎛

⎜⎜⎝
I
Qn

Rn

Sn

⎞
⎟⎟⎠ y =

⎛
⎜⎜⎝

x
x
x
x

⎞
⎟⎟⎠ .

Due to (0 ≤)0 < yT (A+QT
nAQn + ST

nASn +RT
nARn)y

= yT (I,QT
n , R

T
n , S

T
n )

⎛
⎜⎜⎝

A
A

A
A

⎞
⎟⎟⎠
⎛
⎜⎜⎝

I
Qn

Rn

Sn

⎞
⎟⎟⎠ y

= 4xTAx, we have xTAx > 0(≥ 0), i.e.,A > 0(≥ 0).

III. POSITIVE SEMIDEFINITE SOLUTIONS OF
QUATERNIONIC MATRIX EQUATION

In this section, we discuss the relation between the positive
(semi)definite solutions of quaternionic matrix equation

AXAH = B (6)

and those of real matrix equation

ARU(AR)T = BR, (7)

where A ∈ Qm×n, B ∈ HQm×m.
First, we give the relation between the general solutions of

quaternionic matrix equation

AXC = E (8)
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and those of real matrix equation

ARU(CR)T = ER, (9)

where A ∈ Qm×n, C ∈ Qp×q, E ∈ Qm×q . The following
result is a special case of the corresponding result of [7].

Lemma 3.1.Quaternionic matrix equation (8) has a solution
X ∈ Qn×p if and only if real matrix equation (9) has a
solution U ∈ Q4n×4p, in which case,

X =
1

16
(In, iIn, jIn, kIn)(U +QT

nUQp

+RT
nURp + ST

nQSp)

⎛
⎜⎜⎝

Ip
−iIp
−jIp
−kIp

⎞
⎟⎟⎠

is a quaternionic matrix solution of (8). Furthermore, if (9)
has an unique solution, then (8) has also an unique solution.

Theorem 3.2. Given A ∈ Qm×n, B ∈ HQm×m. Then
1. (6) has a positive (semi)definite solution if and only if

real matrix equation (7) has a positive (semi)definite solution.
2. When (6) has a positive (semi)definite solution, the

general expression of this solution is

X =
1

16
(In, iIn, jIn, kIn)(U +QT

nUQp

+RT
nURp + ST

nQSp)

⎛
⎜⎜⎝

Ip
−iIp
−jIp
−kIp

⎞
⎟⎟⎠ ,

where U is a positive (semi)definite solution of (7). Fur-
thermore, if U is the maximal(minimal) solution of (7), then
the corresponding solution X is also the maximal(minimal)
solution of (6).

Proof. If (7) has a positive (semi)definite solution U , then
from Theorem 2.9 and Theorem 3.1, we know that

Û ≡ 1

4
(U +QTUQ+ STUS +RTUR)

is also a positive (semi)definite solution of (7). Let Û be the
real representation matrix of quaternionic matrix X . It follows
from Corollary 2.7 that X is a positive (semi)definite solution
of (6).

If U1 and U2 are positive (semi)definite solutions of (7)
satisfying U1 ≥ U2, then

1

4
(U1 +QTU1Q+ STU1S +RTU1R)

≥ 1

4
(U2 +QTU2Q+ STU2S +RTU2R),

and both are positive (semi)definite solutions of (7). Let them
be the real representation matrices of quaternionic matrces X1

and X2, respectively. Then from Corollary 2.8, we have X1

and X2 are positive (semi)definite solutions of (6) satisfying
X1 ≥ X2.

Theorem 3.2 establishs the relation between positive
(semi)definite solutions of quaternionic matrix equations (6)
and those of corresponding real matrix equations (7). For
the latter, there have been many good theoretical results and
numerical methods, which may be applied to the former.

IV. CONCLUSION

In the paper, we only take a simple but common equation
(6) as an example. Our idea is applied to more complicated
linear quaternionic matrix equations.

REFERENCES

[1] D. Finkelstein , J. Jauch , S. Schiminovich and D. Speiser, Foundations of
quaternion quantum mechanics, J. Math. Phys., vol. 3, 1962, pp.207-231.

[2] S. Adler, Quaternionic quantum field theory Commun. Math. Phys., vol.
104, 1986, pp. 611-623.

[3] S. Adler, Quaternionic Quantum Mechanics and Quantum Fields, New
York: Oxford University Press, 1995.

[4] J. Jiang, An algorithm for quaternionic linear equations in quaternionic
quantum theory, J. Math. Phys., vol. 45, 2004, pp.4218-4228.

[5] J. Jiang, Cramer ruler for quaternionic linear equations in quaternionic
quantum theory, Rep. Math. Phys., vol. 57, 2006, pp. 463-467.

[6] J. Jiang, Algebraic algorithms for least squares problem in quaternionic
quantum theory, Comput. Phys. Commun., vol. 176, 2007, pp. 481-485.

[7] J. Jiang, Real representiations of quaternion matrices and quaternion
matrix equations, Acta Mathematica Scientia, vol. 26A, 2006, pp. 578-
584.

[8] M. Wang, M. Wei and Y. Feng, An iterative algorithm for least squares
problem in quaternionic quantum theory, Comput. Phys. Commun., vol.
179, 2008, pp. 203-207.


