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A Fuzzy Classifier with Evolutionary Design of 
Ellipsoidal Decision Regions
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Abstract—A fuzzy classifier using multiple ellipsoids 
approximating decision regions for classification is to be designed in 
this paper.  An algorithm called Gustafson-Kessel algorithm (GKA) 
with an adaptive distance norm based on covariance matrices of 
prototype data points is adopted to learn the ellipsoids. GKA is able to
adapt the distance norm to the underlying distribution of the prototype
data points except that the sizes of ellipsoids need to be determined a 
priori.  To overcome GKA’s inability to determine appropriate size of
ellipsoid, the genetic algorithm (GA) is applied to learn the size of
ellipsoid. With GA combined with GKA, it will be shown in this 
paper that the proposed method outperforms the benchmark
algorithms as well as algorithms in the field. 

Keywords—ellipsoids, genetic algorithm, classification, fuzzy
c-means (FCM).

I. INTRODUCTION

he primary task of classification is to determine the
decision regions based on the prototype data points for
training.  As the class-labeled decision regions in the

feature space are determined, the recognition of any unknown 
pattern depends on which decision region the feature point of 
this pattern falls into.  Accurate and efficient learning of
decision regions is thus essential to pattern recognition.
There have been numerous approaches proposed to learn the
decision regions based on prototype data points. For instance,
hyperboxes are employed in [1-2], polyhedrons are employed
in [3-4] while ellipsoids are employed in [5-11].  In [12-16],
genetic programming was employed to evolve and optimize the
classifiers.  Ellipsoids are found to be one of the commonly
used approaches since it is easy to parameterize ellipsoids
adapting with distribution and orientation of prototype data
point.
The fuzzy c-means (FCM) algorithm proposed by Bezdek [17]
is also a widely used and efficient clustering method for 
classification.  Since FCM employs a Euclidean norm to
measure dissimilarity, it inherently imposes a spheroid on the
clusters, regardless of the actual data distribution.  In [18] and 
[19], Gustafson and Kessel proposed a G-K algorithm (GKA)
with an adaptive distance norm based on covariance matrices of 
cluster centers and data points.  The advantage of GKA over
FCM is that GKA is able to adapt the distance norm to the 
underlying distribution of the prototype data points.  Since the
distance norm employed in GKA is in the form of Mahalanobis
norm, GKA essentially can be considered as utilizing ellipsoids 
to cluster prototype data points.  The ellipsoids are able to adapt

with the distribution and orientation of data point cloud in the
feature space. However, GKA assumes fixed volumes of 
ellipsoids before iteratively calculating cluster centers.  GKA is 
thus an effective method for the clustering of data points, but
not suitable for estimating the underlying distribution of 
prototype data points belonging to the same cluster.  In other
words, the conventional GKA is effective to determine the
center of each ellipsoid, yet ineffective to determine the size of 
ellipsoid.
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In this paper, multiple ellipsoids are utilized to learn the
decision region.  To overcome GKA’s inability to determine
appropriate size of ellipsoid, the genetic algorithm (GA)[20] is 
applied to learn the size of ellipsoid.  Since the size of ellipsoid
is proportional to the determinant of norm inducing matrix of
Mahalanobis norm, GA is applied to learn the determinant of 
each norm inducing matrix.  As the determinant of norm
inducing matrix is specified, GKA is able to recursively learn
the ellipsoid with the specified size, or rather the specified
determinant of norm inducing matrix.  Multiple ellipsoids will 
be learned in parallel, and hence, the chromosome is encoded as
the estimated determinants of all ellipsoids.  Corresponding to 
every chromosome of GA, GKA is applied to learn the multiple
ellipsoids in parallel. In order to evaluate the learning results of
GKA corresponding to every estimated determinant of norm
inducing matrix, the fitness function of GA is designed as the
sum of misclassification errors, total volume of all ellipsoids
and the overlapping volume of ellipsoids belonging to different 
classes. GA is applied to minimize the proposed fitness
function.  The misclassification error is defined as the total
number of data points belonging to one class, which are
included by the union of ellipsoids of the other class. 
Misclassification error is thus the primary index to minimize
for the learning of decision regions.  The reason of minimizing
the total volume of ellipsoids along with misclassification
errors is to prevent GKA from learning ellipsoids as large as 
possible to include all prototype data points in order to
minimize misclassification errors.  If appropriate sizes of
ellipsoids are determined, the distribution of prototype data
points can be approximated by ellipsoids with more accuracy. 
This leads to more accurate learning of decision regions. Since
the volume of ellipsoid is proportional to the determinant of 
norm inducing matrix, the volume of ellipsoid can be directly 
measured by the estimated determinant of norm inducing
matrix.  Finally, since decision regions for different classes
need to be disjoint, overlapping volume of ellipsoids belonging 
to different classes need to be minimized as well.  An efficient 
method measuring overlapping volume between two ellipsoids 
will be proposed in this paper. 

T
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II. FUZZY CLASSIFIER AND GUSTAFSON-KESSEL
ALGORITHM

The problem of classifier design is to find an optimal
mapping f from the feature space E  Rn into the decision space 

 {1,…,c} for c classes, i.e., f: E .  Given a set of 
n-dimensional prototypes zk = [xk, yk]

T  [xk1, xk2,…,xkn; yk]
T, xk

 E, yk ,  k = 1…N, the design of fuzzy classifier is to learn 
the decision regions based on these N prototypes.  In this paper, 
the decision region for each class is composed of ellipsoids 
with different sizes and orientations. Let p  E be the decision
region for the p-th class.  Whether p is connected or 
disconnected, linearly separable or inseparable, p ellipsoids
are to be utilized to approximate p, p = 1…c.  Denote the j-th
ellipsoid approximating p by pj, then

. (1)
p

pjp

j 1

( E )

In order to learn the ellipsoids, GKA is employed in this paper. 
In GKA, the learning of p ellipsoids corresponding to the 
decision region of the p-th class is conducted through clustering
of the p-th class prototypes.  The prototype data points
belonging to different classes are clustered in parallel.  As 
previously defined, if p ellipsoids are respectively assigned to
cluster the prototype data points belonging to p-th class, totally

 ellipsoids are required to learn, where

1

c

p

p

. (2)

In other words, the prototype data points are put into  clusters, 
out of which m classes are to be classified.  For the convenience
of notation, the index of pj is redefined as:

(3)1
1

( )
p

l

l

i j

]

where 0 = 0.  Let be the fuzzy partition matrix for 
the  clusters, the element

NRU

ik in the matrix U be the 
membership of the i-th clusters and the k-th prototype data 
points, i = 1… , k = 1…N.  Denote the weighting index by m,
m>1, the error tolerance by ,  >0.  The constraints for ik are: 

ik  [0, 1], i = 1… , k = 1…N. (4)

= 1, k = 1…N. (5)
1i

ik

0 < < N, i = 1… . (6)
N

1k

ik

Suppose the coordinate of the i-th cluster center is defined 
as vi Rn 1, i=1… ; denote the matrix containing coordinates of 

all clusters by V, i.e., .  The distance 

between the k-th prototype data point and the i-th cluster center 
is given by the inner-product norm:

[ T
1 2V v ,v ,...,v

(7))v(xA)v(x iki
T

ik
2
ikD

where Ai R(n+1) (n+1) is the norm inducing matrix defining 
weightings of distance with respect to different axes.  From the 
ellipsoidal distance norm in (7), it can be considered that the 
each of the clusters is approximated by an ellipsoid. The

decision regions are further approximated by the aggregations 
of suitable number of ellipsoids.  The i-th ellipsoid i(·) is thus 
defined as

. (8)1)()()( T
i iii vxAvxz

The volume of the ellipsoid in (8) is proportional to the 
determinant of Ai.  In GKA, the determinant of Ai is defined a 
priori.  Prior to running GKA, if the determinant of Ai is given 
as i, Ai is constrained by
 det(Ai) = i. (9)

Since Ai is assumed to be a positive definite matrix, i > 0.
Based on the prototype data points xk, k =1…N, GKA is to learn 
the fuzzy partition matrix U, the coordinates of cluster centers 
V and the norm inducing matrix Ai by minimizing the distance 
norm in (7), i = 1… subject to the constraints in (5) and (9).
For the constrained minimization, define the Lagrange 
multipliers i, i = 1… , and k, k = 1…N, associated with the 
constraints in (5) and (9), respectively. The matrices U, V and A

[A1,A2,…,A ] are determined by the following equation:

)).1(

)()(min(arg

c
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N
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k

i

c
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c
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m
ik ADAV,U, i

2
ik

 (10) 

It is shown in [17-18] that the solutions of the optimization in 
(10) are as following: 

1/1
det i

n
iii FFA , i = 1… , (11)

where

N

1k

m

N
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T
ikik

m

i

vxvx
F

ik

ik

µ

µ
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The coordinate of each cluster center as well as the element in 
the partition matrix can be updated by the following equations: 

,
N

1k

m

ik

N

1k

m

ik k

i

x
v (13)

1j

1m2
jkik

ik
DD

1
. (14)

The matrix Fi in (12) is the fuzzy covariance matrix for the i-th
cluster. Referring to (8), (11) and (12), the size of the ellipsoid 
for the i-th cluster is determined by the value of i while the 
geometric shape of this ellipsoid is determined by the norm
inducing matrix Ai.

The GKA can be summarized as following [17-18]: 
Step 1: Determine the total number of clusters  (2  N), 

the exponential weight m, and the termination tolerance 
.  Select the volume of each ellipsoid to be learned, i, i

= 1…c.  Choose an initial partition matrix U
(0) satisfying 

(1)-(3).  Set the iteration index q = 0. 

Step 2: Calculate fuzzy cluster center centers , i = 1… , by

(13) based on 

(q)
iv

(q)
U .

Step 3: Calculate the fuzzy covariance matrices (q)
iF , i = 1… ,

by (12) based on and(q)
iv

(q)
U .
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Step 4: Determine the ellipsoids i(·) i = 1… , by calculating

the norm inducing matrices (q)
iA in (11) based on i and 

(q)
iF .

Step 5: Calculate the distance between every prototype 

data and every cluster center, i = 1… , k = 1…N, by (7). 

)q(2
ikD

Step 6: Update the partition matrix U
(q+1) by calculating 

in (14) based on . Note that (14) can only

be applied provided that >0.  If it happens that 

= 0 as i = s, then = 1 and = 0, 

i [1, ] but i s.

)1q(
ik

)q(2
ikD

)q(2
ikD

)q(2
ikD

)1q(
sk

)1q(
ik

Step 7: Calculate .max
)q(

ik
)1q(

ik
k,i

(q)1)(q
UU  If 

> , set q = q+1 and go to step 2; otherwise stop the 
algorithm.

With predetermined volume of each ellipsoid, GKA is able 
to learn ellipsoids in parallel so that each ellipsoid tends to 
locate every cluster center and include prototype data points as 
many as possible.  However, if the volume is not determined
correctly, the ellipsoid will not include every prototype data 
point belonging to the same cluster no matter how well the 
cluster center has learned.  To overcome this difficulty, a GA
based learning algorithm combined with GKA is proposed to
automatically learn the sizes of ellipsoids so that the decision 
regions are effectively approximated by suitable number of 
aggregated ellipsoids. 

III. EVOLUTIONARY LEARNING OF DECISION
REGIONS

As stated in the previous section, GA is applied to learn the 
volume of every ellipsoid i, i = 1… .  Since the volume of i is
proportional to det(Ai)= i, GA is applied to search for an
optimal value of i.  The searching for optimal volume is 
conducted in parallel for  ellipsoids. The chromosome of GA
is thus implemented as a cascaded binary representations of i, i

= 1… .  Within every generation, as 1 2

)kx

kx )

 are decoded 
from every chromosome, GKA is then respectively applied to 
learn the ellipsoid corresponding to every i, i = 1… . The
learning by the combination of GA and GKA aims to 
recursively search for ellipsoids so that the classification is 
optimized.

Denote ( , x) as the function calculating the
“membership value” of the prototype data x points to the 
geometric region .  If p( ) is the “class membership value” for 
the p-th class, referring to (1), it can be defined as

(15)
1

p

p p pj
j

( ) ( , ) ( ,k kx x

where  denotes the operation max( ).  The membership value
determined by function ( pj,xk) is given by

(16)pj ik( , )kx

where ik is defined as in (14) and the index i is defined as (3) 
which renumbers the index i based on the given class index p.
Let xk) be the class that xk is classified into, then xk) is

given by the class corresponding to largest class membership
value, i.e., 

1
kx p

p ...c

( ) Arg max( ( ) . (17)

Define a logistic threshold function (·) as following: 

(18)
1, if the statement  is true;

0, if the statement  is false.

r
( r )

r

The total misclassification errors ec is defined as 

. (19)
1

 butkx
N

c

k

e ( ( ) p yk p )

To optimize the classification results, GA combined with GKA
are thus applied to search for suitable volumes of ellipsoids so 
that the misclassification errors ec in (19) is minimized.
However, if ec is directly used as the fitness function for GA, 
GA tends to find the ellipsoids as large as possible so that all the
prototype data points are included by the arbitrarily large
ellipsoids.  To overcome this difficulty, the fitness function of 
GA is designed to simultaneously evaluate the sizes of 
generated ellipsoids as well as the total misclassification errors. 
Let be the fitness function for GA, it can be defined as
following:

, (20)
1i

ice

where  is a weighting factor and ec is defined in (19). Within
each generation of GA, as 1 2  are decoded from every 
chromosome of GA, GKA will be applied based on the decoded

1 2  to learn U, V and A by (10)-(14).   The matrices U,

V and A associated with every chromosome of GA are
recursively calculated until GKA converges in every GA’s
generation.

The proposed classifier is to utilize  ellipsoids 
approximating decision regions for p (< ) classes. The number
of ellipsoids needs to be determined prior to running GA and 
GKA to search for optimal parameterizations of these 
ellipsoids.  Gath and Geva suggested an efficient way of
determining the reasonable number of ellipsoids to use in order 
to approximate the decision region of the p-th class, p = 1…c.

With the volume of each ellipsoid being fixed, i.e. assuming
that i equal to a constant, define the fuzzy hypervolume as 
following:

1 2

1

p

/
p i

i

V (det( F )) , (21)

where p is the number of ellipsoids for evaluation varying 

from 1 to the largest possible number . The reasonable

number of ellipsoids, 

max
pv

p, is the one corresponding to relatively
small Vp.  In other words, if Vp varies with p, p is where the 
knee point of Vp locates.  Referring to (2), after 1, 2,…, c are 
determined, ellipsoids are to be learned by GA and GKA. 

The proposed fuzzy classifier with evolutionary design of 
ellipsoidal decision regions can be summarized as following 
steps.
Step 0: Set the following GKA parameters: the exponential

weight m, and the termination tolerance .  Set the 
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following GA parameters: the termination fitness 
value tolerance g and generation tolerance Gt.

Step 1: With the volume of each ellipsoid being fixed to be 1,
iteratively applies GKA to classify the prototype data 
points for different number ellipsoids, 1, 2,…, p.
Based on the variations of fuzzy hypervolume in (21), 
determine 1, 2,…, c and consequently .

Step 3: Initialize the gene pool encoding the estimated volumes
of  ellipsoids into the chromosome of GA. 

Step 4: Decode each chromosome in order to find the estimated
volumes of ellipsoids, 1 2 . Apply GKA in the 
previous section to find (U,V,A) in (10) associated 
with each chromosome.

Step 5: Based on the matrix U associated with each
chromosome, calculate fitness value of each 
chromosome by (15)-(20). 

Step 6: Determine if the best fitness value less than or equal to

g or the best fitness values haven’t changed for more
than Gt generations. If yes, go to step 8, otherwise go
to step 7. 

Step 7: Pass the best chromosome into next generation and 
perform reproduction, crossover and mutation to 
generate all chromosomes in next generation.  Go to
step 4. 

Step 8: Stop the algorithm.

IV. COMPUTER SIMULATIONS

In this section, two computer simulations will be made to 
verify the performance and effectiveness of the proposed 
method.  The gene pool of GA consists of 100 chromosomes.
Each of the estimated ellipsoid volumes is represented by 16 
bits.  Elitist model is used for GA’s reproduction operation.
The mutation rate for the following two examples is set to be 
0.01.

Example A: Given that the prototype data points are shown in 
Fig. 1 where 460 data points are classified as class 1 
(represented by ) while 97 data points are classified as class 2 
(represented by )[21], GA was employed in [21] to search for
piecewise linear segments approximating the decision regions. 
In this example, 10% of the prototype data points (represented 
by ) are used to train the decision regions while the rest of 
90% data points are for testing.  The variations of fuzzy
hypervolumes with different number of ellipsoids are shown in 
Fig. 2.  It is obvious in Fig. 2 that the knee point of the 
variations is where p = 6.  Therefore, 6 ellipsoids are utilized to 
approximate the decision regions for both class 1 and 2.  The 
performance of the proposed method is compared with the 
performance by Pal’s method in [21], multilayer perceptron 
(MLP), Bayes method and k-NN method as shown in Table I. 
It is shown in Table I that the proposed method outperforms the 
other methods list in the Table since it gives the highest
recognition rate. 

Table I. Comparison of recognition rate (%) by different 
methods

method MLP k-NN Bayes Pal’s Our

method method

Class 1 94.06 93.57 100.0 96.44 99.28

Class 2 76.01 62.09 22.73 82.10 94.31

overall 92.40 89.28 86.45 93.93 98.40

Example B: To further test the proposed approach for 
classification, it will be tested in 3 benchmark data sets form the
UCI repository of machine learning databases [22].  The first 
data set is the Fisher iris data set, which consists of 150 four
dimensional prototype data points classified into three classes. 
The second data set is Pima Indian diabetes data set, which 
consists of 768 eight dimensional prototype data points 
classified into two classes. The third data set is Wisconsin
breast cancer data set, which consists of 683 nine dimensional
prototype data points classified into two classes.  To evaluate 
the recognition rate, fivefold cross-validation scheme is 
adopted.  In other words, the data set is randomly and evenly
divided into five subgroups. Each subgroup’s data are utilized 
to test the recognition rate based on the decision regions 
determined by the data set in the remaining four subgroups. To
avoid experiment bias, the fivefold cross-validation is 
independently run 5 times before the results are recorded in 
Table II.  The recognition rates obtained by the proposed 
method are compared with the results from the benchmark
machine learning algorithms C4.5 and C4.5Rules [23] and from
the method similar to genetic programming called gene 
expression programming (GEP) [16].  In Table II, the average 
recognition rate as well as its 95% confidence interval, which is
proportional to the standard deviations of the recorded data, are 
both compared. It is shown in Table II that the proposed 
method outperforms the benchmark algorithms and GEP. 

Table II.  Comparison of recognition rate (%) 
data set C4.5 C4.5Rules GEP Our method

Iris 93.9 8.1 94.6 8.2 95.3 4.6 98.7 3.5

Pima
Indian

74.8 4.7 75.4 4.3 69.7 3.8 76.6 1.9

Breast
Cancer

94.7 1.5 95.6 1.6 96.2 1.8 96.76 0.74
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Fig. 1  Prototype data points for training and testing 
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Fig. 2.  Variations of fuzzy hypervolumes with different 
number of ellipsoids. 

V. CONCLUSIONS

This paper presents an efficient method of learning 
decision regions for classification via evolutionary
optimization.  The decision regions are approximated by
suitable number of ellipsoids.  Although GA is a notorious time
consuming optimization approach, this paper combines GA 
with GKA so that the ellipsoid learning efforts are reduced to 
simply the sizes of ellipsoids.  The learning efficiency can thus 
be greatly improved.  The reasonable number of ellipsoids to be
used for classification can also be determined by calculating 
fuzzy hypervolumes.

Although not be further used in this paper, the norm
inducing matrix of every estimated ellipsoid also contain 
important information about the data set clustered by the
ellipsoid.  The ellipsoid’s orientation in n-dimensional space is 
actually determined by the eigenvectors of norm inducting 
matrix.  This can be explored for further investigations. 
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