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2n positive periodic solutions to n species
non-autonomous Lotka-Volterra competition

systems with harvesting terms
Yongkun Li and Kaihong Zhao

Abstract—By using Mawhin’s continuation theorem of coinci-
dence degree theory, we establish the existence of 2n positive periodic
solutions for n species non-autonomous Lotka-Volterra competition
systems with harvesting terms. An example is given to illustrate the
effectiveness of our results.
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I. INTRODUCTION

THE n species Lotaka-Volterra competition model with
harvesting terms is described as follows ([1,2]):

ẋi(t) = xi(t)
(

ai − bixi(t) −
n∑

j=1,j �=i

cijxj(t)
)
− hi,

i = 1, 2, . . . , n,

where xi(t)(i = 1, 2, . . . , n) is the densities functions of the
ith species; hi(i = 1, 2, . . . , n) is the ith species harvesting
terms standing for the harvests. Realistic models require the
inclusion of the effect of changing environment. This motivates
us to consider the following nonautonomous model

ẋi(t) = xi(t)
(

ai(t) − bi(t)xi(t) −
n∑

j=1,j �=i

cij(t)xj(t)
)

−hi(t), i = 1, 2, . . . , n, (1)

In addition, the effects of a periodically varying environment
are important for evolutionary theory as the selective forces
on systems in a fluctuating environment differ from those in a
stable environment Therefore, the assumptions of periodicity
of the parameters are a way of incorporating the periodicity
of the environment (e.g., seasonal effects of weather, food
supplies, mating habits, etc ), which leads us to assume that
ai(t), bi(t), cij(t) and hi(t)(i, j = 1, 2, . . . , n) are all positive
continuous ω-periodic functions.

Since a very basic and important problem in the study of a
population growth model with a periodic environment is the
global existence and stability of a positive periodic solution,
which plays a similar role as a globally stable equilibrium does
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in an autonomous model, also, on the existence of positive
periodic solutions to system (1), few results are found in
literatures. This motivates us to investigate the existence of
a positive periodic or multiple positive periodic solutions for
system (1). In fact, it is more likely for some biological
species to take on multiple periodic change regulations and
have multiple local stable periodic phenomena. Therefore it is
essential for us to investigate the existence of multiple positive
periodic solutions for population models. Our main purpose
of this paper is by using Mawhin’s continuation theorem of
coincidence degree theory [3], to establish the existence of
2n positive periodic solutions for system (1). For the work
concerning the multiple existence of periodic solutions of
periodic population models which was done using coincidence
degree theory, we refer to [4-6].

II. EXISTENCE OF 2n POSITIVE PERIODIC SOLUTIONS

In this section, by using Mawhms continuation theorem, we
shall show the existence of positive periodic solutions of (1).
To do so, we need to make some preparations.

Let X and Z be real normed vector spaces. Let L :
Dom L ⊂ X → Z be a linear mapping and N : X ×
[0, 1] → Z be a continuous mapping. The mapping L will
be called a Fredholm mapping of index zero if dim Ker L
= codim Im L < ∞ and Im L is closed in Z. If L is a
Fredholm mapping of index zero, then there exists continuous
projectors P : X → X and Q : Z → Z such that
Im P = Ker L and KerQ = Im L = Im (I − Q), and
X = Ker L

⊕
Ker P,Z = Im L

⊕
Im Q. It follows that

L|Dom L∩Ker P : (I − P )X → Im L is invertible and its
inverse is denoted by KP . If Ω is a bounded open subset
of X , the mapping N is called L-compact on Ω̄ × [0, 1], if
QN(Ω̄×[0, 1]) is bounded and KP (I−Q)N : Ω̄×[0, 1] → X
is compact. Because Im Q is isomorphic to Ker L, there exists
an isomorphism J : Im Q → Ker L.

The Mawhin’s continuous theorem [3, p.40] is given as
follows:

Lemma 1. [3] Let L be a Fredholm mapping of index zero
and let N be L-compact on Ω̄ × [0, 1]. Assume
(a) for each λ ∈ (0, 1), every solution x of Lx = λN(x, λ)

is such that x /∈ ∂Ω ∩ Dom L;
(b) QN(x, 0)x �= 0 for each x ∈ ∂Ω ∩ Ker L;
(c) deg(JQN(x, 0),Ω ∩ Ker L, 0) �= 0.

Then Lx = Nx has at least one solution in Ω ∩ Dom L.
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For the sake of convenience, we denote by f l =
mint∈[0,ω] f(t), fM = maxt∈[0,ω] f(t), f̄ = 1

ω

∫ ω

0
f(t) dt,

respectively, here f(t) is a continuous ω-periodic function.
Throughout this paper, we need the following assumption.

(H) al
i > 2

√
bM
i hM

i , i = 1, 2, . . . , n.

For simplicity, we also introduce the following positive num-
bers

l±i =
aM

i ±
√

(aM
i )2 − 4bl

ih
l
i

2bl
i

, Ki =
aM

i bM
i

al
ib

l
i

, i = 1, 2, . . . , n.

Lemma 2. For the following equation

ai(t) − bi(t)eu∗(t) − hi(t)e−u∗(t) = 0,

where t ∈ R, i = 1, 2, . . . , n. If assumption (H) holds, then
for all t ∈ R, we have the following inequality

ln l−i < u−
∗ < ln

( l+i + l−i
2Ki

)
< u+

∗ < ln l+i ,

where u±
∗ = ln ai(t)±

√
(ai(t))2−4bi(t)hi(t)

2bi(t)
, i = 1, 2, . . . , n.

Proof: By the assumption (H) and the expression of u±
∗

and l±i , ln l−i < u−
∗ and u+

∗ < ln l+i obviously hold. Now let
us prove u−

∗ < ln
( l+i +l−i

2Ki

)
< u+

∗ . In fact,

u−
∗

(l+i + l−i )/2Ki

=
aM

i bM
i

al
ib

l
i

× ai(t) −
√

(ai(t))2 − 4bi(t)hi(t)
2bi(t)

× 2bl
i

aM
i

=
bM
i

al
i

× ai(t) −
√

(ai(t))2 − 4bi(t)hi(t)
bi(t)

=
bM
i

al
i

× 4hi(t)
ai(t) +

√
(ai(t))2 − 4bi(t)hi(t)

<
bM
i

al
i

× 4hM
i

al
i

=
4bM

i hM
i

(al
i)2

< 1

and

u+
∗

(l+i + l−i )/2Ki

=
aM

i bM
i

al
ib

l
i

× ai(t) +
√

(ai(t))2 − 4bi(t)hi(t)
2bi(t)

× 2bl
i

aM
i

=
bM
i

al
i

× ai(t) +
√

(ai(t))2 − 4bi(t)hi(t)
bi(t)

>
bM
i

al
i

× al
i

bM
i

= 1, i = 1, 2, . . . , n,

which imply that u−
∗ < ln

( l+i +l−i
2Ki

)
< u+

∗ , i = 1, 2, . . . , n.
The proof of Lemma 2 is complete.

Theorem 1. Assume that (H) hold. Then system (1) has at
least 2n positive ω-periodic solutions.

Proof: By making the substitution

xi(t) = exp{ui(t)}, i = 1, 2, . . . , n, (2)

then system (1) can be reformulated as

u̇i(t) = ai(t) − bi(t)eui(t) −
n∑

j=1,j �=i

cij(t)euj(t)

−hi(t)e−ui(t), i = 1, 2, . . . , n. (3)

Let

X = Z =
{
u = (u1, u2, . . . , un)T ∈ C(R,Rn) :

u(t + ω) = u(t), t ∈ R
}

with the norm defined by ‖u‖ =
∑n

i=1 maxt∈[0,ω] |ui(t)|, u ∈
X , then X and Z are Banach spaces. Let

N(u, λ)

=

⎡
⎢⎢⎢⎣

a1(t) − b1(t)eu1(t) − λ
∑n

j=2 c1j(t)euj(t)

a2(t) − b2(t)eu2(t) − λ
∑n

j=1,j �=2 c2j(t)euj(t)

...
an(t) − bn(t)eun(t) − λ

∑n−1
j=1 cnj(t)euj(t)

−h1(t)e−u1(t)

−h2(t)e−u2(t)

...
−hn(t)e−un(t)

⎤
⎥⎥⎥⎦

n×1

, u ∈ X.

Lu = u̇ = du(t)
dt . We put Pu = 1

ω

∫ ω

0
u(t) dt, u ∈ X; Qz =

1
ω

∫ ω

0
z(t) dt, z ∈ Z. Similar to the proof of Theorem 1 in

[7], it is easy to prove that L is a Fredholm mapping of index
0. N is L-compact on V with any V open bounded in X.

In order to use Lemma 1, we have to find at least 2n

appropriate open bounded subsets in X. Considering the
operator equation Lu = λN(u, λ), λ ∈ (0, 1), we have

u̇i(t) = λ

(
ai(t) − bi(t)eui(t) − λ

n∑
j=1,j �=i

cij(t)euj(t)

−hi(t)e−uj(t)

)
, i = 1, 2, . . . , n. (4)

Assume that u ∈ X is an ω-periodic solution of system (4)
for some λ ∈ (0, 1). Then there exist ξi, ηi ∈ [0, ω] such
that ui(ξi) = maxt∈[0,ω] ui(t), ui(ηi) = mint∈[0,ω] ui(t), i =
1, 2, . . . , n. It is clear that u̇i(ξi) = 0, u̇i(ηi) = 0, i =
1, 2, . . . , n. From this and (4), we have

ai(ξi) − bi(ξi)eui(ξi) − λ
n∑

j=1,j �=i

cij(ξi)euj(ξi)

−hi(ξi)e−ui(ξi) = 0, i = 1, 2, . . . , n (5)

and

ai(ηi) − bi(ηi)eui(ηi) − λ
n∑

j=1,j �=i

cij(ηj)euj(ηj)

−hi(ηi)e−ui(ηi) = 0, i = 1, 2, . . . , n. (6)
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According to (5), we have

bl
ie

ui(ξi) + hl
ie

−ui(ξi)

< bi(ξi)eui(ξi) +
n∑

j=1,j �=i

cij(ξj)euj(ξj) + hi(ξi)e−ui(ξi)

= ai(ξi) ≤ aM
i , i = 1, 2, . . . , n,

namely,

bl
ie

2ui(ξi) − aM
i eui(ξi) + hl

i < 0, i = 1, 2, . . . , n,

which imply that

ln l−i < ui(ξi) < ln l+i , i = 1, 2, . . . , n. (7)

Similarly, by (6), we obtain

ln l−i < ui(ηi) < ln l+i , i = 1, 2, . . . , n. (8)

From (7) and (8), we obtain

ln l−i < ui(t) ≤ ln
(

l+i + l−i
2Ki

)
, i = 1, 2, . . . , n (9)

or

ln
(

l+i + l−i
2Ki

)
< ui(t) < ln l+i , i = 1, 2, . . . , n. (10)

For convenience, we denote

Gi =
(

ln l−i , ln
(

l+i + l−i
2Ki

))
, i = 1, 2, . . . , n,

Hi =
(

ln
(

l+i + l−i
2Ki

)
, ln l+i

)
, i = 1, 2, . . . , n.

Clearly, l±i , i = 1, 2, . . . , n are independent of λ. For each
i = 1, 2, . . . , n, we choose one of the intervals among the two
intervals Gi and Hi and denote it as Δi, then define the set{

u = (u1, u2, . . . , un)T ∈ X :
ui(t) ∈ Δi, t ∈ R, i = 1, 2, . . . , n

}
.

Obviously, the number of the above sets is 2n. We denote
these sets as Ωk, k = 1, 2, . . . , 2n. Ωk, k = 1, 2, . . . , 2n are
bounded open subsets of X, Ωi∩Ωj = φ, i �= j. Thus Ωk(k =
1, 2, . . . , 2n) satisfies the requirement (a) in Lemma 1.

Now we show that (b) of Lemma 1 holds, i.e., we prove
when u ∈ ∂Ωk ∩ Ker L = ∂Ωk ∩ Rn, QN(u, 0) �=
(0, 0)T , k = 1, 2, . . . , 2n. If it is not true, then when u ∈
∂Ωk ∩ Ker L = ∂Ωk ∩ Rn, i = 1, 2, . . . , 2n, constant vector
u = (u1, u2, . . . , un)T with u ∈ ∂Ωk, k = 1, 2, . . . , 2n,
satisfies∫ ω

0

ai(t) dt −
∫ ω

0

bi(t)eui dt −
∫ ω

0

hi(t)e−ui dt = 0,

where i = 1, 2, . . . , n. In view of the mean value theorem of
calculous, there exist n points ti(i = 1, 2, . . . , n) such that

ai(ti) − bi(ti)eui − hi(ti)e−ui = 0, i = 1, 2, . . . , n. (11)

Following the arguments of (7)-(10), we have

ln l−i < ui ≤ ln
(

l+i + l−i
2Ki

)
, i = 1, 2, . . . , n

or

ln
(

l+i + l−i
2Ki

)
< ui < ln l+i , i = 1, 2, . . . , n.

Moreover, for (11), we have

u±
i = ln

ai(ti) ±
√

(ai(ti))2 − 4bi(ti)hi(ti)
2bi(ti)

, i = 1, 2, . . . , n.

According to Lemma 2, we obtain for i = 1, 2, . . . , n,

ln l−i < u−
i < ln

(
u−

i + u+
i

2Ki

)
< u+

i < ln l+i .

Then u belongs to one of Ωk ∩ Rn, k = 1, 2, . . . , 2n. This
contradicts the fact that u ∈ ∂Ωk ∩Rn, k = 1, 2, . . . , 2n. This
proves (b) in Lemma 1 holds. Finally, we show that (c) in
Lemma 1 holds. Note that the system of algebraic equations:

ai(ti) − bi(ti)exi − hi(ti)e−xi = 0, i = 1, 2, . . . , n

has 2n distinct solutions since (H) holds,
(x∗

1, x
∗
2, . . . , x

∗
n) = (ln x̂1, ln x̂2, . . . , ln x̂n), where

x±
i = ln ai(ti)±

√
(ai(ti))2−4bi(ti)hi(ti)

2bi(ti)
, x̂i = x−

i or
x̂i = x+

i , i = 1, 2, . . . , n. It is easy to verify that

ln l−i < x−
i < ln

(
l+i + l−i

2Ki

)
< x+

i < ln l+i , i = 1, 2, . . . , n.

Therefore, (x∗
1, x

∗
2, . . . , x

∗
n) uniquely belongs to the corre-

sponding Ωk. Since KerL = Im Q, we can take J = I. A
direct computation gives, for k = 1, 2, . . . , 2n,

deg
{
JQN(u, 0),Ωk ∩ Ker L, (0, 0)T

}
= sign

[ n∏
i=1

(
− bi(ti)x∗

i +
hi(ti)

x∗
i

)]
.

Since ai(ti) − bi(ti)x∗
i − hi(ti)

x∗
i

= 0, i = 1, 2, . . . , n, then

deg
{
JQN(u, 0),Ωk ∩ Ker L, (0, 0)T

}
= sign

[ n∏
i=1

(
ai(ti) − 2bi(ti)x∗

i

)]
= ±1, k = 1, 2, . . . , 2n.

So far, we have prove that Ωk(k = 1, 2, . . . , 2n) satisfies all
the assumptions in Lemma 1. Hence, system (3) has at least 2n

different ω-periodic solutions. Thus by (2) system (1) has at
least 2n different positive ω-periodic solutions. This completes
the proof of Theorem 1.
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III. AN EXAMPLE

Now, let us consider the following three species competition
system with harvesting terms:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ(t) = x(t)
(

3 + sin t − 4 + sin t

10
x(t)

−c12(t)y(t) − c13(t)z(t)
)
− 9 + cos t

20
,

ẏ(t) = y(t)
(

3 + cos t − 5 + cos t

10
y(t)

−c21(t)x(t) − c23(t)z(t)
)
− 2 + cos t

5
,

ż(t) = z(t)
(

3 + sin 2t − 8 + sin 2t

10
z(t)

−c31(t)x(t) − c32(t)y(t)
)
− 8 + cos 2t

10
.

(12)

In this case, a1(t) = 3 + sin t, b1(t) = 4+sin t
10 , c12(t) =

c12(t + 2π), c13(t) = c13(t + 2π), h1(t) = 9+cos t
20 , a2(t) =

3 + cos t, b2(t) = 5+cos t
10 , c21(t) = c21(t + 2π), c23(t) =

c23(t + 2π), h2(t) = 2+cos t
5 , a3(t) = 3 + sin 2t, b3(t) =

8+sin 2t
10 , c31(t) = c31(t + 2π), c32(t) = c32(t + 2π) and

h3(t) = 8+cos 2t
10 . Since

al
1 = al

2 = al
3 = 2, 2

√
bM
1 hM

1 = 1,

2
√

bM
2 hM

2 =
6
5
, 2

√
bM
3 hM

3 =
18
10

,

then

2 = al
1 > 2

√
bM
1 hM

1 = 1, 2 = al
2 > 2

√
bM
2 hM

2 =
6
5
,

2 = al
3 > 2

√
bM
3 hM

3 =
18
10

.

Therefore, all conditions of Theorem 1 are satisfied. By
Theorem 1, system (12) has at least eight positive 2π-periodic
solutions.
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