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Ordinary differential equations with inverted

functions
Thomas Kämpke

Abstract—Equations with differentials relating to the inverse of
an unknown function rather than to the unknown function itself are
solved exactly for some special cases and numerically for the general
case. Invertibility combined with differentiability over connected
domains forces solutions always to be monotone. Numerical function
inversion is key to all solution algorithms which either are of a
forward type or a fixed point type considering whole approximate
solution functions in each iteration. The given considerations are
restricted to ordinary differential equations with inverted functions
(ODEIs) of first order. Forward type computations, if applicable,
admit consistency of order one and, under an additional accuracy
condition, convergence of order one.

Keywords—Euler method, fixed points, golden section, multistep
procedures, Runge Kutta methods.

I. INTRODUCTION

D IFFERENTIAL equations come in a plethora of types,

but in a far less common line of modifications they

allow to be altered so that they involve the derivative and the

inverse of some unknown function. But the unknown function

itself is not a component of the equation. So modifying

one of the simplest ordinary differential equations, the linear

homogenous equation with one constant coefficient, leads to

the differential equation

y′ = c · y−1.

The constant c is assumed to be positive and the unknown

function y is replaced by its inverse function y−1. The equation

describes invariants of a certain transformation of Lorenz

curves [4] but it can be considered for its own sake when

invertibility of the unknown function can be assumed. A

closed-form solution is

y(x) =
( c

g

)
1/g

· xg

with golden section ratio g = (1 +
√
5)/2. The solution can

be found by observing that the type of a power function is

preserved by inversion and differentiation. This motivates to

consider functions y(x) = k ·xa. Insertion into the differential

equation and comparing exponents results in a = g and,

subsequently, comparing the constant values on both sides of

the remaining equation allows to resolve for the factor k. The

same approach applies to the slightly more general differential

equations

y′ = c ·
(

y−1
)n

, n = 1, 2, . . .
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with c > 0. Solutions are

y(x) =
( c

gn

)
1/gn

· xgn

with exponents gn being the positive roots of the quadratic

equation a2 − a − n = 0. The sequence of these solutions

generalizes the golden section and has the first three values

g1 =
1 +

√
5

2
; = g

g2 =
1 +

√
9

2
= 2

g3 =
1 +

√
13

2
.

This sequence must not be confused with the so-called metal-

lic means family that generalizes the golden section as the

sequence of the golden, silver, bronze section etc. which are

the positive roots of a2 − na− 1 = 0, see [3].

In the following, the focus will be on more systematic

solution strategies. Also, it is to be found out if other so-

lutions of the introductory differential equation exist and what

effects initial boundary values can have. The general form

of differential equations considered here is that of a general

ordinary differential equation but with the unknown function

– not its derivative – replaced by its inverse. With a real-valued

and continuous function F , denoted as structure function or

system function, the general form of an ordinary differential

equation of first kind with inverted function is spelled out as

y′(x) = F (y−1(x), x).

A differential equation with inverted function is abbreviated

as an ODEI and some ODEIs which admit closed-form so-

lutions are summarized in table 1. ODEIs lack linear solu-

tion spaces and straightforward, symbolic integration so that

”most” ODEIs will require numerical solutions.
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Solution function/
ODEI

y(x) = xa (power functions)

y′(x) = y−1(x) · a · xa−1−1/a, a > 1
y(x) = xa (power functions)

y′(x) = a · (y−1(x))a(a−1), a > 1
y(x) = 1/x (hyperbolic function)

y′(x) = −(y−1(x))2

y(x) = 1/x2 (hyperbolic function)

y′(x) = −2 · (y−1(x))6

y(x) = ln(x)
y′(x) = 1/ ln(y−1(x))

y(x) = exp(x)
y′(x) = exp(exp(y−1(x)))

Table 1: Sample ODEIs and their solution functions.

The system functions can be replaced by more general

operators including those for time-delayed systems [2] and

including integration. An example of the latter is y′(x) =
∫ x

0
y−1(u) du which has the solution function y(x) = (1/(s+

1))s/(s+1) · xs with silver section s = 1 +
√
2. These more

general kinds of differential equations are not considered here

but, obviously, integration allows to rewrite ODEIs which will

be exploited in Runge Kutta-like numerical solutions.

The remainder of the paper is organized as follows. Some

principal facts preparing for numerical computing schemes are

stated in section 2. Focus is laid on a reformulation of ODEIs

as ODEs with function concatenation and on an approximation

of the inverse function based on some approximation of the

solution function itself.

The difference between ordinary differential equations with

mere functions and those with inverses or concatenation be-

comes obvious by some solution concepts being no longer or

not directly applicable. One such concept is the direction field.

Also, existence results are difficult to obtain as solvability of

differential equations is, generally, only guaranteed locally.

But a small domain may be too small to define the inverse

or the concatenation of a function there. Thus, fixed point

theorems that often guarantee solvability of ODEs become,

here, difficult if not impossible to apply.

Section 3 contains iterative fixed point methods as well as

various forward methods that apply in special cases or under

special provisions. The obvious difficulty that sets all these

methods apart from solving ordinary differential equations is

that the inverse function has to be computed in some form or

another. This will be achieved ether separately or interleaved

with computations of the solution function.

Forward methods as well as iterations with complete func-

tions will be explored and their consistency as well as their

convergence will be analyzed. However, power series method

will not be inspected since the Taylor series of a differen-

tiable function and its inverse may have significantly different

convergence radii [5].

Bounds on solution functions as well as a few approxima-

tions of closed-form type are stated in the final section 4.

II. STRUCTURE

A. Linear and quadratic closed-form solutions

Beyond the cursory examples from the introduction, some

special classes of ordinary differential equations with inverted

function are solvable in closed form. While the ODEI y′(x) =
D2 · y−1(x)/(x − A) with D 6= 0 has the linear solution

functions y(x) = D · x+A for x > −A, the quadratic ODEI

y′ = A · (y−1 +B)2 +C with constants A > 0, B and C has

the solution functions and solution coefficients

y(x) = a x2 + b x+ c

a =

√

A

2
, b =

√
2AB, c =

C
√
2A

+

√
AB2

√
2

−B.

These solutions are valid for sufficiently large arguments and

condition b2 − 4 a c ≥ 0 suffices for the solutions to be valid

over all non-negative reals. No parameter constellation admits

the quadratic functions to become, in particular, linear.

B. Reformulations

Whenever possible, solution functions are assumed to be

strictly increasing. Then the original differential equation with

constant coefficient y′ = c · y−1 has no solution with value

y(0) > 0 over the non-negative reals. Assuming it had a

solution with such a value and assuming that the inverse

function were defined at zero implies, by reflection along the

diagonal line y = x, that the inverse function has a zero at

y(0) > 0. Then, because the inverse is strictly increasing

like the solution itself, y−1(0) < y−1(y(0)) = 0. Since

y′(0) = c · y−1(0) < 0, the solution function were strictly

decreasing near zero, a contradiction.

The same result can be obtained for the differential equation

in general form if the system function is strictly increasing

in the first argument and F (0, 0) ≤ 0. When, in addition, the

system function is increasing in both arguments, each solution

function being increasing then implies that it also is convex,

since its derivative is increasing. The set of solution functions

cannot be homogenous since, for α > 1,

(α · y)′(x) = α · y′(x) > y′(x) = F (y−1(x), x)

> F (1/α · y−1(x), x) = F ((α · y)−1(x), x).

The general ODEI can be reformulated equivalently without

inverted function as y′(y(x)) = F (x, y(x)) by the substitution

x = y(u) and by naming the independent variable again as

x. Also, the inverse of any solution of the ODEI satisfies the

differential equation

(y−1)
′

(x) =
1

y′(y−1(x))
=

1

F (y−1(y−1(x)), y−1(x))
.

Renaming the inverse function again y(x) and using another

system function results in the ordinary differential equation

with concatenation

y′(x) = f(y ◦ y(x), y(x)).

Though explicit inverse functions are avoided in both refor-

mulations, these forms of the ODEI do not seem to lead to any

”standard” ODE type. Considered by themselves, differential
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equations with concatenation admit non-invertible solutions

but the range of a concatenated function always must lie in

its domain. For example, when the system function vanishes

somewhere on the diagonal, which means that f(c, c) = 0
for some value c, then the concatenated ODE admits the

constant solution function y(x) = c. Yet, solution functions are

supposed to be invertible here and ODEs with concatenation

will be used, below, for forward computations.

ODEs with concatenation admit a geometrical interpretation

in terms of so-called scaled subtangents which slightly modify

Leibniz’ original subtangents as sketched in figure 1. The

original subtangent for the point x is the interval [λ(x), x]
so that the tangent slope equals y′(x) = y(x)/(x − λ(x)),
see [11, p. xix]. The scaled subtangent is understood to be

the interval [γ(x), y(x)]. The triangles over both subtangents

being similar allows to express the original slope, also, as

y′(x) = y(y(x))/(y(x) − γ(x)). Requiring now that all sub-

tangents and all scaled subtangents are constant, respectively,

results in the linear and in the concatenated ODE

y′(x) = const · y(x)

y′(x) = const · y(y(x)).

The requirements of all subtangents being constant and all

scaled subtangents being constant differ so severely that solu-

tions of the two differential equations are completely different.

Yet particular solution functions may have common features

such as both being either increasing and convex or decreasing

and concave.

-
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Fig. 1. Original subtangent [λ(x), x] and scaled subtangent [γ(x), y(x)].

A quite different reformulation of the ODEI results from a

formula for integrating the composition of a system function

and an inverse functions of the form F (y−1(x), x) [10]. The

resulting differential equation neither requires inversion nor

concatenation of the unknown function

y′(x) =
( d

dx
F (x, y(x))

)

· y(x) + F (x, y(x)) · y′(x)

−y(x) ·
d

dx
F (x, y(x)).

Though the integration formula as such may be convenient

for known functions y(x), the resulting differential equation

hardly simplifies solution processes.

C. Solvability

Solutions of a concatenated ODE have a fixed point over

a finite closed interval when the solution does not resort to

arguments from the outside. This follows, since the concate-

nation of the continuous solution function is a mapping from

its domain into its domain under the present circumstances.

But over infinite domains, solutions of a concatenated ODE

need not have a fixed point. An example is y(x) = x + 1
over x > −1; it satisfies the concatenated ODE y′(x) = 1 =
(x+2−1)/(x+1) = (y(y(x))−1)/y(x) with system function

f(a, b) = (a − 1)/b. On the other hand, a solution of the

concatenated ODE with initial value y(x0) = y0 itself is a

fixed point of the operator

T (y)(x) = y0 +

∫ x

x0

f(y ◦ y(s), y(s)) ds.

When the system function is bounded, the operator maps any

continuous function to a Lipschitz-bounded function. Also,

boundedness of the system function on some closed domain

with support points x0 < x1 < . . . < xn implies that an Euler

polygon

p(x) = p(xi) + (x− xi) f(p(p(xi)), p(xi)), xi ≤ x ≤ xi+1

with initial condition p(x0) = y0 is Lipschitz-bounded when

the concatenation does not leave that or another closed finite

domain. However, Euler polygons for concatenated ODEs are

not explicit as they are for mere ODEs since the approxima-

tions of all function values up to some support point do not

suffice to approximate the next function value – concatenated

function values must be known in addition.

A simple set of conditions for the concatenated ODEI

having a local solution around a point x0 is that an initial

condition is satisfied as fixed point condition y(x0) = x0, the

system function is Lipschitz-continuous there with Lipschitz

constant less than one and |f(x0, x0)| < 1. As general

existence results are not pivotal here, the argument is sketched

only. Continuity of the system function implies the existence

of a 2D interval I = [x0 − a, x0 + a]× [x0 − b, x0 + b] with

a, b > 0 so that M = max(x,y)∈I |f(x, y)| < 1. Selection

of a some positive parameter α ≤ min{1, a, b/M} allows to

consider the function space

F = {y : [x0 − α, x0 + α]

→ [x0 −M · α, x0 +M · α]
∣

∣

∣
y is continuous}.

The range of any function from F lies in its domain so that

concatenation is feasible. The integral operator T (y)(x) =
x0 +

∫ x

x0

f(y(y(s)), y(s)) ds maps any function from F to F
because

|(Ty)(x)− x0| = |

∫ x

x0

f(y(y(s)), y(s)) ds |

≤ M · |x− x0| ≤ M · α.

The Lipschitz condition |f(u(u(s)), u(s)) −
f(v(v(s)), v(s))| ≤ L · |u(s)− v(s)| with L < 1 implies that
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the integral operator is a contraction mapping on F since

|(Tu)(x)− (Tv)(x)| = |

∫ x

x0

f(u(u(s)), u(s)) ds

−

∫ x

x0

f(v(v(s)), v(s)) ds |

≤ |x− x0| · L · ||u− v||∞

≤ L · ||u− v||∞

with ||u − v||∞ = maxx∈[x0−α,x0+α] |u(x) − v(x)|. The

Banach fixed point theorem for metric spaces [9, p. 2] then

implies the existence of a fixed point in F .

D. Approximations

An indispensible component of any solution method for

ODEIs is some computation of the inverse. When an increas-

ing solution function is approximated piecewise linearly and

continuous, its inverse can also be approximated by a piece-

wise linear function. In the simplest case, the approximating

segments of the inverse are formed by linear interpolation. This

is possible, obviously, only for segments that are enclosed by

support points.

The support points are chosen so that the differential equa-

tion is considered, at most, over the interval [x0, xn]. Let

y0 < . . . < yn be approximate values of the solution function

with yi ≈ y(xi) for all indices. Then the inverse solution

function has the domain [y(x0), y(xn)] and the range [x0, xn].
The ODEI is meaningful only over the intersection of [x0, xn]
– so that y′ is defined – and [y(x0), y(xn)] – so that y−1 is

defined. The approximation domain is hence defined as

Dom = [x0, xn] ∩ [y(x0), y(xn)].

The approximation domain may be empty in which case the

considered domain or range of the solution function should be

enlarged. If this is infeasible, the ODEI does not admit a solu-

tion. If the approximation domain is not empty, a discretized

function can be tested to admit a linear interpolation of its

inverse by the following procedure.

Test-and-invert

1) Find j ∈ {0, 1, . . . , n− 1} with yj < xi ≤ yj+1.

2) Compute y−1(xi) = xj +
xi−yj

yj+1−yj

· (xj+1 − xj).

Due to the interpolation character of the procedure, candi-

date values of the inverse function can never be computed for

the two boundary points of the function domain. In addition,

an inverse value is not computed if no index j satisfies the

sandwich property from step 1. Sample computations are given

in figure 2; all actual computations and related drawings were

done in Scilab [7]. The linear interpolation from step 2 is

sketched in figure 3.

Computing inverse function values by interpolation can be

improved in certain situations by applying splines rather linear

segments. Slopes of the inverse function at the boundaries of

intervals [yj , yj+1] are related to certain values of the inverse
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Fig. 2. Function y(x) = x2.3
−1 over domain [x0, xn] = [0, 2.1] (top) and

[x0, xn] = [0, 0.9] (bottom) with inverses. For the larger function domain,
the inverse is also computed over the approximation domain by Test-and-
invert (bold function segment). In the other case, the approximation domain
is empty (right) since the largest value of the function is smaller than the
smallest value of the inverse.
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Fig. 3. Points on the function and on the inverse function with correspon-
dences (slanted dotted lines). The value of the inverse function at support
point xi is, in this case, linearly interpolated from the values yi−3 and yi−2

so that j = i− 3.

function by

(

y−1
)

′

(yj) =
1

y′
(

y−1(yj)
) =

1

y′(xj)
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=
1

F (y−1(xj), xj)
(

y−1
)

′

(yj+1) =
1

F (y−1(xj+1), xj+1)
.

A cubic polynomial p3(x) is thus computable from the four

equations

p3(yj) = xj , p3(yj+1) = xj+1, p
′

3(yj) =
1

F (y−1(xj), xj)
,

p′3(yj+1) =
1

F (y−1(xj+1), xj+1)
.

The inverse function value y−1(xi) can now be interpolated

as the value p3(xi) for xi ∈ [yj , yj+1] if the inverse function

values were known at xj and xj+1.

III. ALGORITHMS

One difficulty of numerically solving ODEIs is that simple

forward computations may fail. The reason is that the inverse

solution function might be required to be known, at least

approximately, for a larger argument than can be obtained

by inverting the solution function up to that argument, see

principle sketch in figure 4. Of course, extrapolation could be

invoked but it performs poorly, in particular, close to the initial

boundary.

-

6

xi

y(x)

s

y−1(x)

@@I
?

Fig. 4. Reasonably approximating the value of the inverse solution function
at xi, which would then computations allow to use the value F (y−1(xi), xi),
requires to (approximately) know the function values at larger arguments.

A. Fixed point approach

In analogy to the explicit or forward Euler method for ordi-

nary differential equations, see, for example [1], the derivative

values of solution functions of an ODEI can be approximated

by finite difference values as

y(xi + h)− y(xi)

h
≈ y′(xi) = F (y−1(xi), xi).

This gives the approximating equations

y(xi+1) = y(xi) + h · F (y−1(xi), xi)

for xi+1 = xi+h. In combination with an initial value y(x0) =
y0 these equations, in turn, give rise to the vector-valued fixed

point equation y = F(y) with

y =



















y0
y1
y2
y3
...

yn



















=



















y0
1
2 · y0 +

1
2 · (y1 + h · F (g1(y0, . . . , yn), x1))

y1 + h · F (g1(y0, . . . , yn), x1)
y2 + h · F (g2(y0, . . . , yn), x2)

...

yn−1 + h · F (gn−1(y0, . . . , yn), xn−1)



















.

Functions gi(y0, . . . , yn) indicate approximations of y−1(xi).
These can be obtained from procedure Test-and-invert which

computes approximate inverses from the current linear approx-

imation of the solution function. Since this will not work

for i = 0, the computation of the second coordinate is

exceptionally facilitated by linear interpolation between the

first and the third coordinate.

Unlike the original Euler method, one step of these com-

putations requires to know all current approximation values

of a solution function rather than a single one. Consequently,

an initial solution function is required instead of one initial

boundary value only. Termination of the fixed point method

may adhere to one of many distinct criteria. Here, it was

chosen to halt computations when the squared differences

between function values for two successive iterations summed

over all support points differ less than a given threshold.

At best, convergence of the fixed point computations is slow

and a sample result is sketched in figure 5. In this example,

initialization with the golden section function decreased by the

given initial value, which is the function y(x) = (1/g)1/g ·
xg − 200, slightly speeds up the approximations as compared

to linear initializations. Though the solution function is known

to be convex prior to any computation, see above, initialization

with a strictly concave function may be feasible. Yet, choices

of initializing functions that have a different curvature than

the solution function are delicate to select.

Two samples with trigonometric system functions leading to

solutions that are neither convex nor concave are sketched in

figure 6 with approximations based on 300 iterations. Solution

functions are conjectured to be arithmetic quasiperiodic. A

function y(x) is understood to be arithmetic quasiperiodic if

there are constants such that y(x + a) = y(x) + b for all

arguments x from the domain of the function [6].

B. Symmetric explicit method

Using whole functions in each iteration allows to sym-

metrize the explicit Euler method by averaging over approxi-

mations from above and below. The approximation from below

of the forward Euler method for xi instead of xi+1 is

y(xi) = y(xi−1) + h · F (y−1(xi−1), xi−1)
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Fig. 5. Solution function (bold curve) over Dom = [0, 800] computed
by the fixed point method for y′(x) = y−1(x) with initial boundary value
y(0) = −200. Initialization was obtained by the linear function y(x) =
x− 200 (thin curve). Included for comparison is the golden section function
y(x) = (1/g)1/g · xg solving the problem for the initial boundary value
y(0) = 0 (dashed curve).

with positive increment value h. For the same increment value,

the solution function can be approximated over support points

from above by

y(xi+1 − h)− y(xi+1)

−h
≈ y′(xi+1) = F (y−1(xi+1), xi+1).

This leads to the expressions

y(xi+1 − h) = y(xi+1)− hF (y−1(xi+1), xi+1)

=⇒ y(xi) = y(xi+1)− hF (y−1(xi+1), xi+1).

Averaging the approximations over support points from above

and below results in the formula

y(xi) =
1

2
·
(

y(xi−1) + h · F (y−1(xi−1), xi−1)
)

+
1

2
·
(

y(xi+1)− hF (y−1(xi+1), xi+1)
)

.

Obviously, the leftmost and rightmost support point do not

admit such an averaging approximation. As it may be difficult

to compute the inverses at these points as well, it may be

necessary to also exclude the second left and second right

support point. In case of an initial value at the lower bound,

only one support point at the lower bound and two support

points at the upper bound must be excluded. The resulting

vector-valued fixed point equation becomes























y0
y1
y2
...

yn−2

yn−1

yn























=























y0
1
2 · y0 +

1
2 · y2

1
2 · y1 +

1
2 · y3

...
1
2 · yn−3 +

1
2 · yn−1

yn−2

yn−1
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Fig. 6. Solutions (bold curves) over Dom = [0, 80] computed by the fixed
point method for y′(x) = sin(y−1(x))+1 (top) and y′(x) = sin(y−1(x))·
cos(0.1 · y−1(x)) + 1 (bottom) both with initial boundary value y(0) = 0
and initialization function y(x) = x (thin curves).

+h ·























0
− 1

2 F (g1(y0, . . . , yn), x2)
1
2 F (g1(y0, . . . , yn), x1)
...
1
2 F (gn−3(y0, . . . , yn), xn−3)
F (gn−2(y0, . . . , yn), xn−2)
F (gn−1(y0, . . . , yn), xn−1)























−h ·























0
0
1
2 F (g1(y0, . . . , yn), x3)
...
1
2 F (gn−1(y0, . . . , yn), xn−1)
0
0























C. Forward method

A forward method of the Eulerian type or another is feasible

in the special case of the inverse at any given support point

being computable either from initial conditions or from values

of the solution function to the left of that support point. Thus,

a situation like in figure 4 must be avoided.

A sufficient condition therefore is that an increasing solution

function satisfies y(x0) = x0 and y(x) ≥ x for all arguments

x from the approximation domain. This condition implies
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y−1(x0) = x0 = y(x0) and y−1(x) ≤ x ≤ y(x). Informally,

the solution function initially touches its inverse and lies above

or touches its inverse over the whole approximating domain.

This is equivalent to lie on or above the diagonal and exactly

on the diagonal at the initial fixed point.

Under certain circumstances, forward methods can be modi-

fied to approximate sections of the solution function below the

diagonal. This requires some fixed point to the right of such

a section and then proceed backwards from the fixed point.

1) Initial value on the diagonal: As opposed to fixed

point computations, no initial approximate solution function

is required and approximations of the inverse function may

or may not be interleaved with approximations of solution

function. The condition y0 = x0 suffices for initialization

resulting in two iteration schemes for the solution function

and its inverse. They are denoted as discretized ODEI and

discretized concatenated ODE.

y(xi+1) = y(xi) + hF (y−1(xi), xi), i = 0, . . . , n− 1

y−1(xi) = y−1(xi−1)

+h
1

F (y−1(y−1(xi−1)), y−1(xi−1))
, i =

1, . . . , n− 1.

Both formulas are derived from the original ODEI and its

reformulation with concatenation, see section 2, having the

respective linear expansions y(xi+1) = y(xi) + h · y′(xi) and

y−1(xi) = y−1(xi−1) + h · (y−1)′(xi−1). Then the ODEI is

applied to both expansion.

Individual iterations based on function and inverse

Making use of only the discretized ODEI and the numerical

inversion procedure Test-and-invert results in the compara-

tively simple iterations

y0 = x0

y1 = y0 + hF (y0, x0)

yi+1 = yi + hF (gi(y0, . . . , yi), xi), i = 1, . . . , n− 1.

The present conditions ensure that the functions gi do only

depend on the support points and on function values computed

in previous iterations allowing the notation gi(y0, . . . , yi).
Since it avoids iterations over whole functions, the forward

method is computationally less expensive than the fixed point

method. In particular, the search for adjacent function values

that enclose the current support point – as computed in step 1

of Test-and-invert – can be organized as a single sweep.

This means that when an enclosing pair has been found, the

enclosing pair of the next support point needs only be searched

to the right.

Also, the forward method is robust in the sense that the

solution function may slightly underpass the diagonal function

when it has surpassed it to the left. For example, the solution

from figure 6 (left) can be obtained by the forward method

and that method uses far less than 1% of the computing time

of the fixed point method. This speed-up adds to the comfort

of not having to specify an initial solution function.

Individual iterations based on the inverse alone

Making use of only the concatenated ODE allows for an

approximation of the inverse solution function and, after these

computations have been completed, a subsequent inversion.

The inverse function values vi ≈ y−1(xi) are iteratively

computable as

v0 = x0

v1 = v0 +
h

F (v0, x0)

vi+1 = vi +
h

F (wi, vi)
, i = 1, . . . , n− 1.

Once inverse values y−1(xi) are known approximately, the

second application of the inverse can be computed approxi-

mately by (1) a search for adjacent support points followed

by (2) linear interpolation similar to single inversion compu-

tations. The steps for wi ≈ y−1(y−1(xi)) are summarized in

the next procedure.

Test-and-concatenate

1) Find j ∈ {0, 1, . . . , n− 1} with xj < y−1(xi) ≤ xj+1.

2) Compute y−1(y−1(xi)) = y−1(xj) +
y−1(xi)−xj

xj+1−xj

·

(y−1(xj+1)− y−1(xj)).

The index search from step 1 can be restricted to j ∈
{0, 1, . . . , i − 1} which makes the scheme a forward com-

putation.

Conjoint iterations

Individual iterations can be interleaved to form conjoint

iterations of the solution function and its inverse. Out of the

possible mixing patterns one with alternating value compu-

tations will be sketched. Alternating values will be used if

the most recent value of the inverse computations affects the

current function computation and vice versa. Values that reach

to far back or too far ahead are discarded for interleaving in

order to keep the computational control simple.

Forward-conjoint

1) Input x0 < x1 < . . . < xn and system function

F (·, ·).
Initialization y(x0) = y−1(x0) = x0.

2) For i = 0, . . . , n− 1 do

a) If y(xi) ∈ (xi, xi+1) then compute

y−1(xi+1) = xi + (xi+1 − y(xi))
1

F (y−1(xi), xi)
;

else compute

y−1(xi+1) = y−1(xi)

+h
1

F (y−1(y−1(xi)), y−1(xi))
.

b) If y−1(xi+1) ∈ (xi, xi+1) then compute

y(xi+1 = xi+1 + (xi+1 − y−1(xi+1)) ·

F (y−1(y−1(xi+1)), y
−1(xi+1));

else compute

y(xi+1) = y(xi) + hF (y−1(xi), xi).



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:5, No:12, 2011

1880

3) Output y(x1), . . . , y(xn).

Inverse values and inverse values of inverse values are

computable by the procedures Test-and-invert and Test-

and-invert 2. An example showing gain in accuracy of the

conjoint forward iterations over individual forward iterations

is sketched in figure 7.

1.009985e+00 1.009990e+00 1.009995e+00 1.010000e+00 1.010005e+00

1.01995e+00

1.02000e+00

1.02005e+00

1.02010e+00

1.02015e+00

Fig. 7. Exact solution function y(x) = x2 (top curve) of y′ = 2·(y−1)
2

in a
small interval around x1 = 1.01 with approximations starting at x0 = y0 =
1 for the conjoint forward iterations (middle curve) and individual forward
computations based on the function and its inverse (bottom curve).

2) Given initial value off the diagonal: When the initial

value lies above the diagonal, values of the inverse solution

function are not coupled by the ODEI to values of the solution

function for small arguments. Even initial boundary values for

the solution function do not suffice so that additional infor-

mation is required. This information will come as an initial

boundary value of the inverse y−1(x0) = z0 which is either

provided explicitly or approximated by a slope condition. Both

options are sketched beginning with the explicit additional

provision, see figure 8.

-
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Fig. 8. Initial linear segments of the solution function and its inverse with
extra specification of the initial value z0 of the inverse function. This allows
to approximate the slope of the solution function at x1 because y−1(x1) is
now approximately given.

The initial boundary value of the inverse solution function

is used as extra value allowing for linear interpolations that

approximate the values y−1(x1), y
−1(x2) etc. until the argu-

ment exceeds the first proper value: xi ≥ y0. Denoting these

approximations by gi(z0, y0, . . . , yi) allows to specify the for-

ward method for the initial boundary value y(x0) = y0 ≥ x0

as

y1 = y0 + hF (y0, x0)

yi+1 = yi + hF (gi(z0, y0, . . . , yi), xi), i = 1, . . . , n− 1.

Though the method is fast, errors may grow quite fast shown in

figure 9. Improvements of the approximation can be achieved

by overwriting the initial linear segment in each iteration

in which the considered support point is still smaller than

the initial function value y0. The linear segment used for

computing yi+1 would then linearly interpolate the inverse

function over the domain [xi−1, yi]. However, the gain in

accuracy from overwriting linear segments is moderate.

0.995 1.000 1.005 1.010 1.015 1.020 1.025 1.030 1.035

0.0

0.5

1.0

1.5

2.0

2.5

Fig. 9. Solution function y(x) = (5/g)1/g · xg (top curve) and forward
approximation (middle curve) with exact boundary value y0 = y(1) and value
z0 = 0.1 for the ODEI y′ = 5 · y−1 over the interval [x0, x3] = [1, 1.03].
Relative approximation errors at the support points x1, x2 and x3 are 1.35%,
2.69% and 3.89% respectively. The error values are identical – up to three
decimals – for the pure forward method and for the forward method with
overwriting. Solutions lie above the diagonal (bottom curve).

3) Missing initial value off the diagonal: When an initial

boundary value of the inverse function is not provided, a

surrogate value can be chosen along the following argument.

For ideal solution functions – rather than for linear approxi-

mations – the derivative of the inverse and the initial boundary

value are related by

(

y−1
)

′

(y0) =
1

y′(y−1(y0)
=

1

y′(x0)
.

Evaluating the ODEI at the initial boundary value results in

the exact equation y′(x0) = F (y−1(x0), x0) = F (z0, x0).
Replacing the derivative of the inverse by the slope of its linear

segment yields the approximate equation (y−1)′(y0) =
x0−z0
y0−x0

.

Combining these expressions results in the equations

x0 − z0
y0 − x0

=
1

F (z0, x0)

=⇒ (x0 − z0)F (z0, x0) = y0 − x0.
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Typically, the last equation cannot be solved for z0 exactly

but it may be approximately. Even more, a least squares

approximation may be set up from the very beginning

z0 = argminz∈[0,x0)

(

(x0 − z)F (z, x0)− (y0 − x0)
)2

.

D. Methods based on numerical integration

In the sprit of Runge Kutta methods, solutions of ODEIs

can be approximated by methods that make use of numerical

integration. Therefore, the differential equation is rewritten

as an integral equation and the integral is approximated by

a Riemann sum. Different Riemann sums result in different

overall computing schemes. In a simple version, the Riemann

sum consists of two terms only and samples the function to

be integrated at the left and right interval boundary.

y(xi+1) = y(xi) +
(

y(xi+1)− y(xi)
)

= y(xi) +

∫ xi+1

xi

y′(u) du

≈ y(xi) +
h

2
y′(xi) +

h

2
y′(xi+1)

= y(xi) +
h

2
F (y−1(xi), xi)

+
h

2
F (y−1(xi+1), xi+1).

For the more frequently used Simpson rule, the approximation

becomes

y(xi+1) ≈ y(xi) +
h

6
F
(

y−1(xi), xi)

+
4

6
hF (y−1(

xi + xi+1

2
),
xi + xi+1

2

)

+
h

6
F (y−1(xi+1), xi+1).

Since the inverse solution function is to be evaluated at several

points in order to compute the ”next” function value, the

fixed point approach rather than the forward approach is the

conceptually easier candidate to obtain a full computation

scheme.

1) Fixed point method: The fixed point equation resulting

from numerical integration with the foregoing approximation

is similar to that for the symmetric explicit method. Again,

the difficulty of computing inverse function values for the

leftmost and rightmost support point result in different formu-

las involving these support points. For example, when using

the numerical approximation that samples the integral without

intermediate point, the fixed point iteration formula becomes
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0



















.

2) Forward method: Unlike in Runge Kutta methods for

nere differential equations, present solution values in the argu-

ment of the system function need more intricate treatment than

Taylor expansions; those would yield approximations with

derivative values computable only by repeated evaluation of

the system function; see, for example, [8]. For the simple case

of the numerical integral approximation without intermediate

point, the expansion here becomes

y(xi+1) ≈ y(xi) +
h

2
F (y−1(xi), xi)

+
h

2
F (y−1(xi+1), xi+1)

≈ y(xi) +
h

2
F (y−1(xi), xi) +

h

2
F (y−1(xi)

+
h

F (y−1(y−1(xi)), y−1(xi))
, xi+1).

The last approximate equation is derived similar to the forward

computations for concatenated ODEs, see above. In case the

solution function does not underpass the diagonal and when

it satisfies an initial fixed point condition y(x0) = x0, the

forward computation allow to solve the ODEI. The inverse

function values are approximated by procedure Test-and-

invert while their concatenations are approximated by proce-

dure Test-and-concatenate. For the Simpson rule and similar

rules, the forward computations need no more evaluation of

inverse functions and concatenated inverse function though the

system function is evaluated at additional points. This can be

seen from the next approximate expansion.

y(xi+1) ≈ y(xi) +
h

6
F
(

y−1(xi), xi)

+
4

6
hF (y−1(

xi + xi+1

2
),
xi + xi+1

2

)

+
h

6
F (y−1(xi+1), xi+1)

≈ y(xi) +
h

6
F (y−1(xi), xi)

+
4

6
hF (y−1(xi) +

h/2

F (y−1(y−1(xi)), y−1(xi))
,

xi + xi+1

2
)

+
h

6
F (y−1(xi) +

h

F (y−1(y−1(xi)), y−1(xi))
,

xi+1).
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E. Error analysis

Forward computations for ODEIs are consistent and con-

vergent similarly to ODEs. However, since computations of

function inverses or function concatenations are involved,

their approximations must also be accounted for in the error

analysis.

1) Consistency for concatenated ODEs: Forward computa-

tions for concatenated ODEs with Lipschitz-bounded system

functions, if applicable, are shown to be consistent of order

one for twice continuously differentiable solution functions.

To simplify the notation, the concatenated ODE is formulated

for mere functions instead of their inverses as y′(x) =
f(y(y(x)), y(x)).

In analogy to mere ODEs, an approximation scheme

of difference equations is here understood to be con-

sistent over some bounded closed region U if limh→0

maxxk∈U |δh(xk)| = 0 and it is consistent of order p if

maxxk∈U |δh(xk)| = O(hp) for the pointwise error

δh(xk) =
y(xk+1)− y(xk)

h
− f

(

y(xj)

+
y(xk)− xj

h
· (y(xj+1)− y(xj)), y(xk)

)

.

For a linear approximation of concatenated function values, the

index j = j(k) is chosen such that xj ≤ y(xk) ≤ xj+1. This

linear approximation results from the exact solution inserted

into the procedure Test-and-concatenate. The pointwise

error results from inserting any increasing exact solution

function of the concatenated ODE into the equations of the

approximation scheme; no approximate solution is involved so

that the error is a discretization error rather than an approxi-

mation error. Discretization refers to both, the differentiation

– as for mere ODEs – and the concatenation – as is special

here.

It can now be seen from a Taylor expansion with second

order error term that

δh(xk) =
y(xk+1)− y(xk)

h
− f(y(y(xk)), y(xk))

+f(y(y(xk)), y(xk))− f
(

y(xj)

+
y(xk)− xj

h
· (y(xj+1)− y(xj)), y(xk)

)

= y′(xk) +
h

2
y′′(x∗

k)− f(y(y(xk)), y(xk))

+f(y(y(xk)), y(xk))− f
(

y(xj)

+
y(xk)− xj

h
· (y(xj+1)− y(xj)), y(xk)

)

=
h

2
y′′(x∗

k) + f(y(y(xk)), y(xk))− f
(

y(xj)

+
y(xk)− xj

h
· (y(xj+1)− y(xj)), y(xk)

)

with x∗

k ∈ (xk, xk+1). The last equality follows from function

y(x) being a solution of the concatenated ODE. in contrast

to mere ODEs, the resulting expression for the discretization

error still contains the system function and, thus, complicates

the analysis. The solution function of the concatenated ODE

being continuous over U and the system function being

Lipschitz-bounded there leads to

|δh(xk)| ≤
h

2
|y′′(x∗

k)|+ L · |y(y(xk))− y(xj)

−
y(xk)− xj

h
· (y(xj+1)− y(xj))|

≤ h ·M.

Lipschitz-boundedness of the solution function follows from

it being (twice) continuously differentiable over a bounded

closed region. With Lipschitz constant Ly and z = y(xk)
this allows to bound the last term which then completes the

argument of the consistency result:

|y(xj) +
z − xj

h
· (y(xj+1)− y(xj))− y(z)|

= |
xj+1 − z

xj+1 − xj

(y(xj)− y(z))

+
z − xj

xj+1 − xj

(y(xj+1)− y(z))|

≤
xj+1 − z

xj+1 − xj

|y(xj)− y(z)|

+
z − xj

xj+1 − xj

|y(xj+1)− y(z))|

≤
xj+1 − z

xj+1 − xj

Ly |xj − z|+
z − xj

xj+1 − xj

Ly |xj+1 − z|

≤ hLy.

2) Consistency for ODEIs: An approximation scheme for

the ODEIs based on difference equations is understood to be

consistent (of order p) over some bounded closed region U
if the corresponding limit condition holds as for ODEs with

concatenation with modified pointwise error term

δh(xk) =
y(xk+1)− y(xk)

h

−F
(

xj +
xk − y(xj)

y(xj+1)− y(xj)
· (xj+1 − xj), xk

)

.

The index j = j(k) is chosen to approximate the inverse func-

tion at xk via y(xj) ≤ xk ≤ y(xj+1). For twice differentiable

solution functions and a Lipschitz bounded system function

the forward computations of the ODEI are consistent or order

one. The argument is similar to those for concatenated ODEs,

namely by a Taylor expansion for the error term resulting in

δh(xk) =
h

2
y′′(x∗

k) + F (y−1(xk), xk)

−F
(

xj +
xk − y(xj)

y(xj+1)− y(xj)
· (xj+1 − xj), xk

)

for x∗

k ∈ (xk, xk+1). The Lipschitz bound of the system

function allows to reduce the remaining considerations to

the first arguments. With α =
y(xj+1)−xk

y(xj+1)−y(xj)
∈ (0, 1) the
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difference between these arguments can be bounded as

|xj +
xk − y(xj)

y(xj+1)− y(xj)
· (xj+1 − xj)− y−1(xk)|

= |α · (xj − y−1(xk)) + (1− α) · (xj+1 − y−1(xk))|

≤ α · |y−1(y(xj))− y−1(xk))|

+(1− α) · |y−1(y(xj+1))− y−1(xk))|

≤ α · L−

y · |y(xj)− xk|+ (1− α) · L−

y · |y(xj+1)− xk|

≤ α · L−

y · |y(xj)− y(xj+1)|

+(1− α) · L−

y · |y(xj+1)− y(xj)|

≤ α · L−

y · Ly h+ (1− α) · L−

y · Ly h

= L−

y · Ly h.

Thus, the discretization error satisfies the linear bound

|δh(xk)| ≤
h
2 |y′′(x∗

k)| + L−

y · Ly h = O(h) on the closed

bounded region.

3) Convergence: An approximation scheme for an ODEI

is convergent over some bounded closed region U if limh→0

maxxk∈U |∆h(xk)| = 0 and it is convergent of order p
if maxxk∈U |∆h(xk)| = O(hp) for the approximation error

∆h(xk) = yk − y(xk); yk and y(xk) denote values of an

approximate function and an exact solution function, respec-

tively. As in mere ODEs, the approximation error for ODEIs

will be bounded with the help of the discretization error.

A featuring difficulty of establishing an order of con-

vergence of the forward iterations is that, simultaneously,

convergence of that order of the approximate inverse towards

the inverse solution function must be established. A suffi-

cient condition therefore is that the forward computations are

accurate enough to approximate the inverse for all required

arguments in the correct interval of successive support points.

This means that

y(xj) ≤ xk ≤ y(xj+1) =⇒ yj ≤ xk ≤ yj+1.

Under this ”accuracy” condition, Lipschitz boundedness of

the system function, double differentiability of the solution

function and the initial fixed point condition y(x0) = x0 imply

that the forward computations is convergent of order one on

a suitable bounded closed interval.

IV. BOUNDS AND CLOSED-FORM APPROXIMATIONS

Bounds for system functions can imply bounds for solution

functions. Such bounds will be considered for the special case

of initial boundary valuw zero at the origin. Let the system

function have non-negative values and a positive upper bound

so that 0 ≤ F (a, b) ≤ M for all suitable arguments. Then

y′(x) ≤ M so that y(x) ≤ M x. This upper bound on the

solution implies a lower bound on is inverse y−1(x) ≥ 1/M x
whenever M > 1. Inserting the lower bound or a steeper linear

function into the system functions allows to define a function

via its derivative: y′lin(x) = F (αx, x). Indefinite integration

yields the linearly induced approximating function

ylin(x) =

∫ x

0

F (αu, u) du.

The approximation satisfies the initial boundary value

ylin(x) = 0. A sample situation with F (a, b) = sin(a) + 1

and upper bound M = 2 is depicted in figure 10. Linearly

induced approximating function can be found, similarly, when

the system function has a strictly positive lower bound.

Empirical investigations suggest that solutions of the ODEI

y′(x) = sin(y−1(x)) + A, with y(0) = 0 and A ≥ 1, have

periodic derivatives with period of about (1 + A) 2π. Every

such solution satisfies

(A− 1)x ≤ y(x) =

∫ x

0

sin(y−1(u)) du+Ax ≤ (A+ 1)x.
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Fig. 10. Solution (bold curve, partially occluded) over Dom = [0, 80]
for y′(x) = sin(y−1(x)) + 1 with initial boundary value y(0) = 0 as in
figure 6 (left). Linearly induced approximating functions ylin(x) = x − 2 ·

cos(0.5x)+2 for α = 0.5 (bold curve, same frequency and ”mostly” above
the solution) and ylin(x) = x− 0.5 · cos(2x)− 0.5 for α = 2 (thin, high
frequency curve).

V. CONCLUSION

First order differential equations with inverted functions

have been introduced and their numerical solvability has been

shown to be feasible. Accuracy is affected by approximations

of the inverse to at least the same degree as by the proper

function approximation. This can be expected, also, for more

complex differential equations of the given type.
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