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Adomian method for second-order fuzzy differential
equation
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Abstract—In this paper, we study the numerical method for solving
second-order fuzzy differential equations using Adomian method un-
der strongly generalized differentiability. And, we present an example
with initial condition having four different solutions to illustrate
the efficiency of the proposed method under strongly generalized
differentiability.
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[. INTRODUCTION

HE study of fuzzy differential equation (FDE) forms a

suitable setting for mathematical modeling of real world
problems in which uncertainties or vagueness pervade. The
concept of a fuzzy derivative was defined by Chang and
Zadeh in [13]. It was followed up by Dubois and Prade
in [14], who used the extension principle. The term “fuzzy
differential equation” was introduced in 1987 by Kandel and
Byatt [21,22]. There have been many suggestions for the
definition of fuzzy derivative to study FDE. The first and
the most popular approach is using the Hukuhara differen-
tiability for fuzzy-value functions. Under this setting, mainly
the existence and uniqueness of the solution of a FDE are
studied [13,20,25,28]. This approach has a drawback: the
solution becomes fuzzier as time goes by. Hence, the fuzzy
solution behaves quite differently from the crisp solution.
Seikkala [29] introduced the notion of fuzzy derivative as
an extension of the Hukuhara derivative and fuzzy integral,
which was the same as what Dubois and Prade [14] proposed.
Buckley and Feuring [11]gave a very general formulation
of fuzzy first-order initial value problem.They firstly find
the crisp solution, fuzzify it and then check to see if it
satisfies the FDE. To alleviate the situation, Hllermeier [18]
interpreted FDE as a family of differential inclusions. The
main shortcoming of using differential inclusions is that we do
not have a derivative of a fuzzy-valued function.The strongly
generalized differentiability was introduced in [8] and studied
in [9,10,12]. In [24] a generalized concept of higher-order dif-
ferentiability for fuzzy-valued functions is presented to solve
nth-order fuzzy differential equations.This concept allows us
to resolve the above mentioned shortcoming. Indeed, the
strongly generalized derivative is defined for a larger class of
fuzzy-valued functions than the Hukuhara derivative. Hence,
we use this differentiability concept in the present paper.
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Under appropriate conditions, the fuzzy initial value problem
(FIVP) considered under this interpretation has locally two
solutions [9]. Numerical solution of an FDE is obtained now
in a natural way, by extending the existing classical methods
to the fuzzy case [19]. Some numerical methods for FDE
under the Hukuhara differentiability concept such as the fuzzy
Euler method, predictor-corrector method, Taylor method and
Nystr?m method are presented in [1,2,6,16,24]. In 1990, G.
Adomian [4] introduced the Adomian decomposition method
and applied it to solve nonlinear equations.Babolian [7] studied
the first-order fuzzy initial value problem using this method.
In this paper, we develop numerical methods for addressing
second-order fuzzy differential equation by Adomian decom-
position method using the strongly generalized derivative.
The rest of the paper is organized as follows: Section 2
contains the basic material to be used in the rest of paper; In
section 3 we define a second-order fuzzy differential equation
under strongly generalized differentiability and in section 4
we discuss Adomian decomposition method. In section 5 the
proposed method is illustrated by a numerical example and
the conclusion and future research is drawn in the last section
6.

II. PRELIMINARIES

Let us denote by Ry the class of fuzzy subsets of the real
axis u : X — [0, 1] satisfying the following properties:

1) w is normal, i.e. Jzg € X with u(zg) =1,

2) w is convex fuzzy set(ieu(tz + (1 — t)y) >
min{u(z),u(y)},vt € [0,1],z,y € R),

3) w is upper semicontinuous on R,

4) {x|r € R,u(z) > 0} is compact, where A denotes the
closure of A.

Then Ry is called the space of fuzzy numbers [15]. Obvi-
ously R C Ry. Here R C Ry is understood as R =), : T is
usual real number. For 0 < A < 1 denote [u]* = {x |u(z) >
Az € R} and [u]® = {z |u(z) > 0,z € R}. Then it is well-
known that for any A € [0, 1], [u] is a bounded closed interval.
The notation [u]* = [u},u}] denotes explicitly the A—level
set of u. One refers to u* and ui as the lower and upper
branches of u, respectively. The following defition shows when
[u?,u}] is a valid A—level set.

Definition 2.1 ([29]) The sufficient conditions for [u?,u? ]
to define the parametric form of a fuzzy number are as follows:

(@ w* is a bounded monotonic increasing
(nondecreasing)left-continuous ~ function on [0,1] and
right-continuous for A = 0,
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(b) uj}_ is a bounded monotonic decreasing
(nonincreasing)left-continuous function on [0,1] and right-
continuous for A = 0,

(©) vt <wu}, X €0,1].

For u,v € Ry and k € R, the sum u+wv and the product are
defined by ku are defined by [u + v]* = [u]* + [v]}, [kv] =
E[v]* for any X € [0,1], where [u]* + [v]* = {z +y|z €
[u]*,y € [v]*} means the usual addition of two intervals
(subsets) of R and k[u]* = {kz|z € [u]*} means the usual
product between a scalar and a subset of R, let D : Ry x Ry —
Ry U {0}, D(u,v) = sup maz{|u} — v*|, |[u} — v} |}

A€[0,1
be the Hausdorff distance[ blatween fuzzy numbers, where

[w* = [u,u}], []* = [v},v}]. The following properties
are well-known [17].

(@ D(u+w,v+w) = D(u,v), Yu,v,w € Ry,

(b) D(ku, kv) = |k|D(u,v), Vk € R,u,v € Ry,

(¢) D(u+v,w+e)D(u,w) + D(v,€),Yu,v,w,e € Ry.

and (Ry, D) is a complete metric space.

Definition 2.2 ([26]). Let x,y € Ry. If there exists z € Ry
such that z = y + z, then z is called the H-difference of x
and y,it is denoted by z =z — g y.

In this paper the ” — g sign stands always for H-difference
and let us remark that * —g y # x + (—y). Let us recall the
definition of strongly generalized differentiability introduced
in [9,10].

Definition 2.3 Let f : [a,b] — Ry and t € [a,b]. We say
that f is strongly generalized differentiable at ¢, if there exists
an element f’(t) € Ry, such that

(1) for all A > 0 sufficiently small, 3f (¢+h) —

f@), ﬂf( )—u f (t — h) and the limits (in the metric D)
lim +h) af) _ hm f)= Hft h) _ = f' ().
h—0

(2) for all h > () gufﬁ(:lently small, 3f(t—h) —pg

F(t),3f (t) =g f (t+ 1) and the limits %ﬁ%ﬁm =
. t)—u f(t+h /
}lllg%)f() 7£( ):f(t).

For the sake of simplicity, we say that the fuzzy-valued
function f is (1)-differentiable if it satisfies in the Definition
2.3 case (1) and we denote its first derivatives by D§1> f(t), we
say fuzzy-valued function f is (2)-differentiable if it satisfies
in the Definition 2.3 case (2) and we denote its first derivatives
by DSV f (1).

Remark 2.1 In the Definition 2.3, (1)-differentiability cor-
responds to the H-derivative introduced in [29], so this differ-
entiability concept is a generalization of the H-derivative and
obviously more general.

In the special case when f is a fuzzy-valued function, we
have the following result.

Theorem 2.1([12]) Let f [a,b] — Ry be a fuzzy-

valued function and denote [f(t)]* = [fA(t), f2(t)], for
A € [0, 1].Then

(1) If f is (1)-differentiable, then f2(¢) and f3(¢) are dif-
ferentiable functions and [D(l) O =[(f20), (f2(1)].

(2) If f is (2)-differentiable, then f(t) and f}(¢) are dif-
ferentiable functions and [Dé1 FOP=[(f20)), (A1)

Now we introduce definitions for second order derivatives
based on the selection of derivative type in each step of
differentiation.

For a given fuzzy-valued function f, we have two possibili-
ties (Definition 2.3) to obtain the derivative of f at ¢ : D%l) f (@)
and Dél) f (t). Then for each of these two derivatives, we
have again two possibilities D;l)(Dil)f (1), Dél) (D%l)f ®)),
Dgl)(Dél)f(t)),Dél)(Dél)f(t)) respectively, so the second-
order derivative of f has four cases.

Definition 2.4 Let f : [a,b] — Ry and t € [a,b]. We say
that f is second-order strongly generalized differentiable at ¢,
if there exists an element f” (¢) € Ry, such that

()for all h > 0 sufficiently small, 3D f (£ + h) —
DWr@),aDWrt) —ny DWfF(—h), and the
limits (in the metric D)lim 2S¢+ i 1Dy 7 (1)

h—0
lim

DM f(t)— DM f(t—h) -
= 1),
lim ; 1" (@)

(ii) for all h > 0 sufficiently small, ﬂDgl)f(t— h) —u
DW @), 3DVt (t) —y DWW (t+h), and the limits

DO f(t)— g DM ft+h) DM f(t—n)—u D £ (1)
—h —h

lim
h—0

lim
h—0
f// (t),

(iii) for all » > 0 sufficiently small, EID;I) f@+hn)—
DV f (¢ ) aDMf) —y DVf(t—h), and the limits
Jim 22 S (EHh) —n D7 (1) D" 7(t)~u DV f(t=h)

D

h—0

f7 (@),
(iv) for all A > O sufficiently small, HDél)f(t —h) —n

DV f(t), 3DV (t) —g DSV (t+h), and the limits

DSV f(t)— g DSV f(t+h) DV f(t—h)— DSV f(t)
—h —h

; lim
v h—0

lim
h—0

lim
h—0
f @)

Remark 2.2 Let f : [a,b] — Ry and n,m = 1,2, if
DS exists on a neighborhood of ¢ as a fuzzy-valued function
and it is (m)-differentiable at ¢, the second derivatives of f
are denoted by D,@n,n,m = 1,2. One says f is (n,m)-
differentiable at ¢.

Theorem 2.2 Let D™V f (t) : [a,b] — Ry, i = 1,2. be fuzzy-
valued function where [f(t)]* = [f2(t), f2(t)], then

O If D<1 f(t) is (1)-differentiable, then (f2(¢))’ and
(f2(t))" are differentiable functions and [D§21 G
[(F2@)", (F2()"].

an 1t DV f(¢) is (2)-differentiable, then (f*(t)) and
(f2(t))" are differentiable functions and [D§21) fory =
[(F2@)", (F2 ()],

iy If DSV £ (¢) is (1)-differentiable, then (f*(t))’ and
( fj_(t))’ are differentiable functions and [D%) f (t)])‘ =
[(F2@)", (F2(2)"].

av) 1f DSV f (1) is (2)-differentiable, then (f*(¢))" and
(f2(t))" are differentiable functions and [D%) foy =
[(F2@0)", (f2())"]-

Proof. We present the details only for the case (I), since the
other cases are analogous. Since D%l) f (¢) is (1)-differentiable,
for A € [0,1], from the case (1) of Theorem 2.1, we
have [DIVF (0P = [(fA®), (F2(1))]. Similarly, from
the case (2) of Theorem 2.1, we obtain [Dfl) foPy =
[(f2())”, (f2(t))"], this completes the proof of the theorem.
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III. SECOND-ORDER FUZZY DIFFERENTIAL
EQUATION

In this section, we study the fuzzy initial value problem for
a second-order linear fuzzy differential equation:

z'(t) + a(t)z' (t) + b(t)z(t) = w(t),
z(0) = c1, ey
2'(0) = ca.

where,ci,co € Ry, a(t),b(t),w(t) € R. In this paper, we
suppose a(t), b(t) > 0. Our strategy of solving (1) is based on
the selection of derivative type in the fuzzy differential equa-
tion. We first give the following definition for the solutions of
(D).

Definition 3.1 let = : [a,b] — Ry be a fuzzy-valued
function and n,m = 1, 2. One says z is an (n,m)-solution for
problem (1). if DMz (t)7D512,2n;v (t) exist and D,(f,)ﬂx t) +
a(t)Dwx () +b(t)x(t) = w(t), z(0) = ¢y, DMz (0) = ca.

Let x be an (n,m)-solution for (1). To find it, utilizing
Theorems 2.1 and 2.2 and considering the initial values, we
can translate (1) to a system of second-order linear ordinary
differential equations hereafter, called corresponding (n,m)-
system for (1).

Therefore, four ODEs systems are possible for (1), as
follows:

(1,1)-system

2 (60) + (e (5 3) + bt (1)) = w(t),
(B N) Falt)x!, (B A) + ()t N) = w(t), )
z(0;0) = -, 4 (03 0) = ¢y,

2 (0;0) = c_, 2/ (0;A) = 3.

(1,2)-system
L (G N) +at)z(t A) + b(t)z— () = w(t),

2 (tA) +a(t)z! (B A) +b()z4 (8 A) = w(t), 3)
:1’*(01 )‘) = C{\—7 er(O? )‘) = Ci\+7
2’ (0;0) =3, 2/, (0;\) = 3.

(2,1)-system
(G A) + a(t)z! (G A) +b()z_(t;N) = w(t).

2 (6 A) + a(t)z (5 A) + () x4 (6 AN) = w(t). @
2 (0;0) = o, 2 (03 0) = ¢y,
2 (0;0) = c3_, 2/, (0;\) = 3.

(2,2)-system
(G A) +at)z! (G A) + b(t)r_ (5 A) = w(t),

L (G A) +at)z_ (G A) + b(t)z4 (5 A) = w(t), )
T (0;0) =,z (0;0) = cﬁ_,
e (0;0) = 5, 2, (0;0) = 3.

The previous discussion illustrates the method to solve
(1).We first choose the type of solution and translate (1) to
a system of ordinary differential equations. Then, we solve
the obtained ordinary differential equations system.

Remark 3.1 We see that the solution of fuzzy differential
(1) depends upon the selection of derivatives. It is clear that
in this new procedure, the unicity of the solution is lost, an
expected situation in the fuzzy context.

IV. ADOMIAN METHOD FOR FUZZY
DIFFERENTIAL EQUATION

The decomposition method was introduced by Adomian
[3,4,5] in the 1980s in order to solve linear and nonlinear
functional equations. Adomian has developed a decomposi-
tion technique for solving nonlinear functional equations, in
this section we solve the fuzzy differential equation under
strongly generalized differentiability by Adomain decomposi-
tion method and restrictions of the method will be discussed.

We only consider the (2) in section 3 and solve by Adomain
decomposition method, since the other cases are analogous.
For the sake of simplicity, we denote x_(t; A) by ~z, denote
x4 (t; \) by Z, denote a(t),b(t),w(t) by a,b,w, respectively.

Letxy = 2, 20 = ~2/,~23 = 2,77 = T,T5 =
', 23 =1", P~y = 29, P 20 = 23 =W —a"x9 — b1,

P.fl = fz,Pi’g = T3 =W —aT2 —bfl, where P = %, then

t
T = 71’1(0) +/ 7{1}’2dt (6)
0

t
To = T2(0) + / (w— aZy — bZ)dt )
0

where ~21(0) = ¢}_,721(0) = ct4, “22(0) = ¢3_,Z(0) =
3. Adomian decomposition method considers the solutions

o0
-z and Z as the sum of a series as: ~x; = Y ~x;;, T; =
i=0

Z; 4,7 = 1,2. So, we can calculate the terms of ~x; =

™8

0

J

oo (oo}
> %, T = Y Ty,,i¢=1,2.term by term as long as we
J=0 Jj=0
derive desired accuracy, the more terms the more accuracy.
Therefore, we have

¢
w10+ w11+ ="21(0) + / (mzo,0+ ~22,1 + - -)dt
’ (10)

t
“Tao 4+ w21+ = Z1(0) + / w(t)—
0
a(~@a o+ w2 +--) —b("x10+ "z +--0)]dt (A1)

¢
Zi0+ T+ = "22(0) + / (Zo,0 + &2 +---)dt (12)
0

¢
To0+ Ton + - =T2(0) +/ [w(t)—
0

a(j270+.f2,1 +) 7b(£2170+:f1_’1 +)}dt (13)

By solving (10)-(13), we can calculate the terms of above
series. Three other cases are the same.
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V. NUMERICAL EXAMPLE

Let us consider the following second-order fuzzy initial
value problem

(0) =0, (14)

where 0 and 1 are the triangular fuzzy number having A-
level sets [0]* = [A—1,1— )] and [1]* = [\,2— )], A € [0,1],
respectively.

By Adomian decomposition method, we obtain the (1,1)-
solution of (14) is

{ To(tA) = (A= 1)+ X+ (1 —2N)/2)t2 + (1/6)t3
o) =1 =N+ 2=Nt+ ((2A = 3)/2)t% + (1/((;);)3
for t € [0, (1 ++/5)/2].
The (1,2)-solution of (14) is

{ T_(tA) = (A= 1)+ X+ ((2A = 3)/2)t2 + (1/6)t3
(BN = (1=X) + (2= Nt + ((1—2))/2)t2 + (1/(61)616)3
for ¢ € [0, +00).
The (2,1)-solution of (14) is

{ T_ (X)) = (A =1) + M+ (=1/2)2 + (1/6)t3,
(BN = (1=X) + (2= Nt + ((1—2))/2)t2 + (1/((;)7%3

for ¢t € [0, +00).
The (2,2)-solution of (14) is

T_ (X)) = (A =1) + M+ (=1/2)2 + (1/6)t3,
{ (BN = (1= X))+ (2= Nt + (=1/2)t2 + (1/6)¢3.
(18)
for ¢ € [0, +00).
We only count to three times Adomian polynomials, we
obtain the (1,1)-solution of (14) is local existence and others
are global existence.

VI. CONCLUSION

In this paper we presented the strongly generalized differen-
tiability for the second order linear differential equation having
fuzzy initial conditions. We apply Adomian decomposition
method. Note that Adomian method gives explicit formula
of solution even for some nonlinear problems that cannot be
solved by classical methods and this is an advantage whereas
more numerical methods lack this ability. Future research will
be concerned with improved Adomian decomposition method
and other methods..
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