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Abstract—The burst noise is a kind of noises that are destructive 

and frequently found in semiconductor devices and ICs, yet detecting 
and removing the noise has proved challenging for IC designers or 
users. According to the properties of burst noise, a methodological 
approach is presented (proposed) in the paper, by which the burst noise 
can be analysed and detected in time domain. In this paper, principles 
and properties of burst noise are expounded first, Afterwards, 
feasibility (viable) of burst noise detection by means of wavelet 
transform in the time domain is corroborated in the paper, and the 
multi-resolution characters of Gaussian noise, burst noise and blurred 
burst noise are discussed in details by computer emulation. 
Furthermore, the practical method to decide parameters of wavelet 
transform is acquired through a great deal of experiment and data 
statistics. The methodology may yield an expectation in a wide variety 
of applications. 
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I. INTRODUCTION 
ITH the rapid development of contemporary electronic, 
electrical and computer techniques, there are more and 

more rigorous demands to electronic circuits and devices. It is 
inevitable to have some defects in electronic circuits or devices 
due to inherent factors like fabrication workmanship. What we 
are focusing on is detecting those devices with defects from 
electronic devices or circuits. 

When bipolar transistors have severe g-r noise, a series of 
random jumps like rectangle pulses, with different width and 
similar amplitudes, may be found, which is so called Burst 
Noise, or Popcorn Noise.  In addition, there are some other 
burst noise phenomena like sporadic burst noise generated 
from arc discharge [1], but burst noise generated from fault 
devices proves to be the most involved. 

The earliest model describing burst noise was proposed by 
Hsu at al [2]. According to this model, metal impurities 
precipitate in the space-charge region of an emitter-base 
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junction and compose a metal-semiconductor point contact 
with semiconductor. If there is a dislocation-like g-r center in 
the space-charge region formed by a point contact, the center 
occupied by carriers may give rise to fluctuating voltage to 
control the current flowing through metal-semiconductor 
junction so as to contribute noise. The pulse amplitude and 
pulse width of the noise behaves as an abrupt style.  

A further interpretation to the origin of burst noise is 
presented in the literature [3], in which the author found it may 
bring about burst noise if there is a high density of impurity 
levels in a barrier potential section with forward bias of a p-n 
junction, and the defects just locate adjacent to the cross of 
defective levels and Fermi levels. The explanation implies that 
metal impurities are dispensable for burst noise. The 
occurrence of burst noise is particularly troublesome for an 
electronic component or a system because its amplitude in radio 
frequency range is much higher than the thermal or 1/f noise 
normally observed in the device or system. As a summary of 
above-mentioned, the author believe:  

1. Burst noise is substantially ascribed to g-r noise. When 
semiconductor device have severe defects, that is the density of 
the impurity levels is high, burst noise may come up. 

2. The device with burst noise implies that the device may 
have severe defects, probably in the p-n junction, hence the 
device is unreliable.  

3. The burst noise comes primarily up in forward-biased p-n 
junctions of bipolar transistors and in bipolar VLSI circuits as 
well. 

Our lab has ever carried out the testing and analyzing 60 
model GO103 optic couplers made in a factory, as a result, of 
the 60 couplers, 19 showed burst noise to some extent, forming 
a large portion of the products by 31.7%. If those devices with 
burst noise were applied into circuits, the reliability of the 
circuit system would be declined or even fail to work [3].  

There is no effective and practicable method to detect burst 
noise so far. The traditional methods used to detect burst noise 
should be viewed as approaches for detection within the 
frequency domain. The methods demonstrate the utility only if 
the amplitude of burst noise is distinctly high to be identified, 
and the methods prove to be time consuming, computation 
cumbersome; therefore, approaches for detection within the 
frequency domain are not applicable for non-stationary 
process. Furthermore� the weakness of the Fourier domain is 
that it does not economically represent signals with 
singularities[4]. 

Most detection techniques rely on prior knowledge of either 
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the signal or the noise performance or both. But a correlator 
may fail to detect time-varying signals since the waveforms of 
those kinds of signals may be significantly discrepant 
sometimes. In other words, the validity of the approach may be 
questioned on the premise of no more prior knowledge about 
the signals to be detected[5]. Traditional work, in addition, 
aimed at reconstructing the power spectral density of random 
signals using infinitely long sequences of non uniformly 
distributed signal samples or tackled deterministic signals and 
estimate the Fourier transform using finite numbers of signal 
samples, which proves to be accurate[6], however, proves to be 
hugetime-consuming as well.  

Considering the limitations of traditional approaches, we 
restrict attention signal analyzing in the 2-D plane by wavelet 
transforms[7]. The wavelet transform can be viewed as a 
time-frequency representation that has good identifying 
properties. The analysis of singularity of the signals to be 
detected tells us that signals and noises have different modulus 
maxima of wavelet transform in multiscale space so that           
endowed with advantages beyond debate.  

II. DETECTION THEOREM FOR TRANSIENT SIGNAL 
Burst noise looks a sequence of random pulses with 

non-uniform waveform width and comparatively large 
variation of amplitude.  Those random pulses overlap each 
other sometimes, or far away each other. Observing waveform 
of burst noise, a transient character can be found whatever on 
the leading edge or trailing edge of the pulse mode noise, which 
proves to be an important information for investigation to burst 
noise.  It should be mentioned that it is necessary for us to 
regard one of them, burst noise, as a "signal" when we study 
two or more types of noise submerged together.  

Burst noise, known to be endowed with singularity of 
function, can be analyzed by Fourier transforms, investigating 
decay of the function in the Fourier transform domain so as to 
deduce whether the function bears singularity or not, and 
magnitude of the singularity as well. Fourier transforms, 
however, lack localizing properties, and can only carry the 
frequency information, whereas, wavelet transforms are 
endowed with space localizing properties, and can localize the 
signal in both time and frequency domain simultaneously.  It 
proves to be practicable by exploiting wavelet transforms to 
estimate and detect nonstationary or time-varying signals 
[8-11]. 

The previous work of Mallat indicates: let n be positive 
integer and n≤α≤n+1, a signal x�t� is said to be Lipschitz 
exponentα , at moment t0 , if and only if there exists two 
constants A,   and a polynomial of order n, Pn�h�, such that for  
0<h<h0 [12]. 

)()( 0 hPhtx n−+
≤

αhA
       (1) 

The signal x�t�is said to be uniformly Lipschitz exponentα
over an open interval ]a�b[, if equation (1) holds for any t0   
�]a�b[�and t0 +h�]a�b[. 

The Lipschitz exponentαof the signal x� t�at t0 is the 

magnitude of the local regularity for x(t)  at t0 . The larger value 
of α, the stronger the local regularity of x(t) at the moment. x(t) 
is called singularity at t0 , if the local regularity for x(t)  at t0 is 
not 1. The classical for measuring the Lipschitz regularity of a 
function x(t) is to investigate the asymptotic decay of its 
Fourier transform decay, but one can not determine whether the 
function is locally more regular at a particular point. This can 
be interpreted as the Fourier transform unlocalizes the 
information along the spatial variable. The Fourier transform is 
therefore not well adapted to measure the local Lipschitz 
regularity of functions[12].  

According to the initial definition of continuous wavelet 
transform first introduced by Morlet and Grossmann [13], the 
continuous wavelet transform of a signal x(t) is defined as 

)(txWTa =
∫ )(1 τx

a
ττψ d

a
t )( −

     (2) 

or it may be written as 
)(txWTa = )(tx ⊗ )(taψ       (3) 

here, )(taψ = a
1 )(

a
tψ

 denotes the dilation of basic 
wavelet functionψ(t) by scale. The following theorem may be 
exploited to procure the relationship between the uniform 
Lipschitz exponentαof x(t) in the neighborhood of singularity 

and the modulus maxima of  )(txWTa  at multiscale. 
Theorem 1 
Let 0<α<1, and let t�(a,b),  x(t) is uniformly Lipschitzαat all 

points of an open interval if and only if there exists a constant K 
such that for all t in this interval 

|
)(

2
txWT j |≤K

α)2( j
         (4) 

here,  
j2 is a discretized scale[14]. 

Let basic wavelet function be viewed as first-order 
derivative of Gaussian low-pass function, θ(t), that is 

)(tψ = dt
td )(θ

=- π2
1

t
2

2t

e
−

        (5) 

here, 

)(tθ = π2
1

2

2t

e
−

        (6) 

If let 

)(taθ = a
1 )(

a
tθ

        (7) 

it is not difficult to obtain 

)(txWTa = a )(tx ⊗ dt
td a )(θ

= a dt
d

[ )(tx ⊗ )(taθ        

       (8)  
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 The above formula implies that the continuous wavelet 

transform of x(t) performs imposing x(t) upon low-pass filtering 

by the low-pass functions, )(taθ  and )(tθ  , then procuring 

derivation calculus. The maxima of )(txWTa corresponds to 

the inflexion of the smoothed signal.  The Lipschitz exponent 

corresponds to transient edges of the signal to be detected is 

larger or equal to zero, here so called signal to be detected is 

burst noise in fact, whereas the Lipschitz exponent corresponds 

to noise is much smaller than zero, therefore, the modulus 

maxima corresponding to transient edges of the signal to be 

detected enhances or remains relatively unchanged with larger 

scales, but the modulus maxima corresponding to wavelet 

transform of noise decays remarkably with larger scales. Those 

analysis indicate that both the transient edges of the signal to be 

detected and the background noise be endowed with singularity, 

but their modulus maxima of continuous wavelet transform 

wear quite different character. Hence, it is reasonable to exploit 

maxima of )(txWTa to detect singularity out from signal x(t) 

and locate precisely. 

It is easy to find out from the power spectral density of burst 
noise that low-frequency components of burst noise without 
other background noise are abundant, but the energy of the 
high-frequency components is typical small relative to that of 
low-frequency. The energy of the high-frequency components 
and the low-frequency components of burst noise must be 
retained while background noise is filtered out by 
decomposition of burst noise in terms of wavelets. Concerning 
above factors and the waveform features of burst noise, Haar 
wavelet is to be used to decompose and reconstruct burst noise 
when burst noise in terms of wavelets, as a signal to be detected 
here, is carried out. The Haar Wavelet gives a slightly faster 
decomposition speed compare to the other Wavelets at the same 
decomposition level[15]. The operation of Haar wavelet is 

( )
⎪
⎩

⎪
⎨

⎧
≤<−

≤≤
=

otherwise
t

t
tf

 ,0 
15.0 ,1
5.00 ,1    

         (9) 

Considering the waveform of Haar wavelet, burst noise to be 
detected is described as 

( ) ( ) ( )21 ttuttuts −−−=    ( )21 tt <        (10) 

  Here, ( )tu denote unit-step function. 

Assume that the signal to be detected, burst noise in fact, is 
not interfered by background noise, that is 

( ) ( )tstf =          (11) 

( )tf  is 1 over the interval 21 ttt ≤≤  ,and it is 0 over other 

arbitrary interval. When t is over the interval σ211 +<≤ ttt   
and in the neighborhood of  t1, 

 

( ) ( ) ( ) τττψσ σσ
dtuttW t

t a 12 , −−∫= −          

( ) ( ) ( ) ( ) ττδτττ
σ

τ
στσ dtttut

t

t a
t
ta 1221, −−Ψ−−−Ψ= ∫−

=
−=

   

     ( ) ( )σσ +−Ψ−Ψ= ttaa 1            (12) 

Here, ( )tδ denotes unit-impulse function, and ( )taΨ  is 

primitive function of  ( )taψ . 
By the same token, when t is over the interval 

σ222 +<≤ ttt and in the neighborhood of t2 , 
( ) ( ) ( )σσσ +−Ψ+−Ψ−= tttW aa 2       (13) 

Whereas when t  is over the interval 21 2 ttt <≤+ σ , 
( ) ( ) ( )σσ −Ψ−−Ψ= aaa tW        (14) 

Obviously,  ( ) 0≡Ψ tσ keeps on the rest arbitrary interval 

of the abscissa axis.  It is easy to be obtained since ( )taψ is 
restricted, mentioned above, that 

( ) ( ) 0=−Ψ=Ψ σσ σσ       (15) 

Based upon the above, it is obtained that 

( )
( )
( )

⎪
⎩

⎪
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⎧
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=
otherwise                            ,0
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σσ
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The formula indicates the singularity at the positive-edge or 
negative-edge of burst noise. 

The local Lipschitz exponents of a signal can be estimated by 
tracing the evolution of its wavelet transform modulus maxima. 
With the assumption that “noiseless” signals have singularities 
with positive Lipscliitz exponents while the noise creates 
singularities whose Lipschitz exponents are negative, the 
detection of signals in noise can be effectively solved [15]. It 
can be proved that Gaussian noise is a random distribution 
endowed with singularities at any point along the abscissa axis, 

with negative singular exponent 
εα −−=

2
1

 , 0>∀ε  , 

while singular exponent of a unit-step function is 0=α  . By 
means of algorithms for singularity and modulus maxima of 
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wavelet transform coefficients, one can estimate that the 
singularity at some point is brought about by burst noise or 
background noise so as to estimate the turning-up moment and 
impulse width of the burst noise. 

Here, we regard burst noise as a generic signal to be analyzed. 
The high frequency of a one-dimensional discrete signal 
influences on the first level of the high frequency based on the 
decomposition of the signal in terms of wavelets, whereas the 
low frequency of the signal influences on the last level and low 
frequency based on the decomposition[16]. If the 
decomposition of Gaussian noise in terms of wavelets is carried 
out, it can be found that the amplitude of the high frequency 
coefficients decays associated with augmenting of 
decomposition levels, and the variances of the high frequency 
coefficients decay quickly as well. 

III.  SIMULATION AND ANALYSIS ON BURST NOISE DETECTION 
Regarding probability distribution functions of noise, noise 

can be divided into Gaussian noise, following a normal 
distribution, and non-Gaussian noise. In linear two-port 
analogous circuits, Gaussian noise is predominant noise, and 
color noise occurs primarily at fairly high or fairly low 
frequency [17]. 

Let's focus on a prototype version, to study the 
characteristics of additive Gaussian noise by multi-resolution 
analysis. Fig. 1 presents the emulation experiment results of 
multi-resolution analysis on each step in terms of Gaussian 
noise. In Fig. 1, A3 denotes the 3rd -step-up reconstruction 
signals gotten from low-frequency wavelet decomposition 
coefficients of decomposed Gaussian noise; D3 denotes the 3rd 
-step-up reconstruction signals gotten from scale 
high-frequency wavelet decomposition coefficients of 
decomposed Gaussian noise; D2 denotes the 2nd -step-up 
reconstruction signals gotten from scale high-frequency 
wavelet decomposition coefficients of decomposed Gaussian 
noise; and D1 denotes the reconstruction signals through the 
process of 1st up decomposition. Fig. 1 indicates that 
high-frequency wavelet decomposition coefficients gradually 
decrease associated with larger scales, which corresponds with 
the previous analysis. 

Burst noise in an electronic device generally has a series of 
pulses with approximate amplitudes and varied pulse-widths, 
but pulse amplitudes of different electronic device defer each 
other. Computer emulation is carried out in our experiment to 
generate burst noise waveforms, which is shown in Fig. 2. Here, 
we assume that the signals to be observed are two rectangle 
pulses to represent burst noise waveforms, which have the same 
amplitudes and different pulse-widths. The burst noise 
waveforms obtained by measuring in reality are not highly 
desirable as we assumed due to background noise interfused, 
but it does not impact our study consequence because there is 
fair agreement between real burst noise and the burst noise we 
made, the rectangle pulses with background noise. 

It is intractable to detect burst noise immerged in the 
background noise. The threshold strategy has to be taken into 

account because those two noise mix together. In terms of the 
model of the noise to be detected, 4 ways may be considered to 
determine thresholds as follows: 

- Universal Thresholding Rule [18], the simplest threshold 
selection rule. 

- A wavelet threshold selection based on Stein’s unbiased 
risk estimator theory, or SURE. One can obtain risk estimation 
for a defined threshold and selected threshold by means of 
minimize the non-likelihood threshold. 

- A heuristic variant of SURE, by mixing the two previous 
rules [19]. 

- Another threshold rule realizes the minimum of the 
maximum mean square error in a given set of functions, and 
this rule is named the Minimax Threshold Selection Rule. 

 

 
Fig.1 Wavelet mult-resolution analysis additive Gaussian 

noise 

 
Fig. 2 Wavelet Mult-resolution analysis for burst noise 

 
It should be mentioned in the process of thresholding that 

intensity of the noise must be estimated on each wavelet level to 
transform threshold scale if the ground noise is known as 
non-Gaussian noise. We take advantage of plotting levels to 
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determine threshold scale�together with the threshold selection 
criteria described in [20], and carry out burst noise simulations 
by the Heuristic thresholding. The simulation results are 
obtained through just 3 levels of decomposition as shown in Fig. 
3, where A3 denotes the 3rd -step-up reconstruction signals 
gotten from low-frequency wavelet decomposition coefficients 
of decomposed burst noise; D3, D2 and D1 denotes the 3rd 
-step-up, 2nd -step-up, and 1st-step-up reconstruction signals, 
respectively, gotten from scale high-frequency wavelet 
decomposition coefficients of decomposed burst noise. It is 
easy to find that the reconstruction signals the 1st, 2nd, and 
3rd-step-up reconstruction signals gotten from scale 
high-frequency wavelet decomposition coefficients of blurred 
burst noise is pretty similar with early analysis on 
reconstruction signals gotten from low-frequency wavelet 
decomposition coefficients of decomposed Gaussian noise, and 
the difference between those reconstruction signals are no more 
than that the 3rd -step-up reconstruction signals gotten from 
low-frequency wavelet decomposition coefficients of 
decomposed blurred-burst-noise retain the signal features of 
burst noise very well. By exploiting multi-resolution analysis, 
approximation, thresholding and signal reconstruction, most of 
background noise will be filtered out after wavelet transform, 
whereas the energy of the burst noise to be detected does not 
lose, which proves it is practicable to detect burst noise in time 
domain by wavelet transform. 

IV. CONCLUSION 
In contrast to traditional approaches for detecting burst noise 

in frequency domain, the approaches for detecting burst noise 
in time domain appear to have more advantages. Traditional 
approaches investigate frequency spectrums of noise in 
frequency domain, by which lots of data need to be acquired so 
that real-time performance is not good, and furthermore, labor, 
resource and time cost is considerably high, or even makes 
devices breakdown. Traditional approaches obtain statistic 
analysis consequences by batches; therefore, it is impracticable 
to valuate the reliability of a device specifically. Wavelet 
transform, however, creates a new concept for us. Wavelet 
transform provides us with good local performance in both the 
time and frequency domains. The use of the wavelet transform 
appeared to be the most relevant to transient detection due to its 
inherent localization properties in both time and frequency 
domains. The simulation we implemented indicates that 
wavelet transform is endowed with perfect adaptation 
properties, depending upon prior knowledge scarcely, 
computing fast, being able to be reconstructed completely 
(having inverse transformation), leading to a higher 
signal-to-noise ratio, preferably retaining the desired 
information and properties in the signal wave, and so forth, but 
those are what traditional approaches cannot do. Exploring of 
multi-resolution analysis and implement based on wavelet 
transform yields a new scheme for weak signal detection, and 
the approach is able to detect signals with low signal-noise-rate, 
or even burst noise merged in background noise. 
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