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Abstract—Several valve stiction models have been proposed in 

the literature to help understand and study the behavior of sticky 
valves. In this paper, an alternative black-box modeling approach 
based on Neural Network (NN) is presented. It is shown that with 
proper network type and optimum model structures, the performance 
of the developed NN stiction model is comparable to other 
established method. The resulting NN model is also tested for its 
robustness against the uncertainty in the stiction parameter values. 
Predictive mode operation also shows excellent performance of the 
proposed model for multi-steps ahead prediction.  

 
Keywords—Control valve stiction, neural network, modeling.  

I. INTRODUCTION 
SCILLATIONS in process variables are widely encountered 
in process plants [1]. The presence of oscillations in a 

control loop enhances the variability of the process variables 
hence creating inferior quality products, higher rejection rates, 
increased energy consumption and reduced average 
throughput. Interactions among process units further facilitate 
the propagation of oscillations across the plant.  

There are many causes that may contribute to the oscillatory 
behavior observed in control loops. These include poorly 
tuned controllers, presence of oscillatory disturbances and 
nonlinearities [2]. A survey reported in [1] found that 30% of 
the loops are oscillatory due to control valve problems. 
Control valves constitute an important element in chemical 
process control systems.  Through a control valve, control 
actions are implemented on the process. They manipulate 
energy flows, mass flows or forces as a response to low 
energy input signals, for example, electrical voltages or 
currents, pneumatic and hydraulic pressures or flows [3].   

Due to their continuous motions, control valves tend to 
undergo wear and aging. In general, they contain static and 
dynamic nonlinearities including saturation, backlash, stiction, 
deadband and hysteresis [4].  Among the many types of 
nonlinearities in control valves, stiction is the most commonly 
encountered in the process industry [4]. In general, stiction is a 
phenomena that describes the valve’s stem (or shaft) sticking 
when small changes attempted [4]. Stiction causes fluctuation 
of process variables, which lowers productivity. The 
variability of process variables makes it difficult to keep 
operating conditions close to their constraints, and hence 
causes excessive or unnecessary energy consumption.  It is 
therefore desirable to understand and study the dynamics 
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behavior of stiction so that necessary actions can be 
implemented to eliminate or hinders its deleterious effect 
before it propagates. 

Several valve stiction models have been proposed in the 
literature. Muller [5] described a detailed physical model that 
formulates the stiction phenomenon as precisely as possible. 
However this type of model is not only impractical, it is also 
time-consuming since there are a number of unknown physical 
parameters that must be solved. On the other hand, [4] 
proposed a data-driven model that describes the relationship 
between a controller output and a valve position. An extended 
version of [4] model that includes the flexibility of processing 
deterministic and stochastic signals has been proposed in [6]. 
However, both these empirical approaches involved with a 
rather complex logic making them difficult to implement.  

This paper presents an alternative approach via a pure black-
box modeling strategy based on artificial Neural Network. An 
artificial neural network (ANN) or commonly just neural 
network (NN) is an interconnected group of artificial neurons 
that uses a mathematical model or computational model for 
information processing based on a connectionist approach to 
computation. In most cases an ANN is an adaptive system that 
changes its structure based on external or internal information 
that flows through the network. There are various types of NN 
available, however, in this paper we will focus only on 
Recurrent Nonlinear AutoRegressive with eXogenous Inputs 
(NARX) Neural Networks. It is noted in [7] that NARX NN is 
capable of modeling heat exchangers, waste water treatment 
plants, catalytic reforming systems and various artificial 
nonlinear systems.  

The outline of this paper is as follows: Section II describes 
stiction in general. In Section III, six Neural-Network 
algorithms considered in this paper are presented while 
Section IV illustrates the proposed methods in numerical 
simulations and benchmarked against the proven and validated 
model developed by Choudhury et. al [3] as well as the 
robustness study. Finally, the conclusions are drawn. 

II. CONTROL VALVE STICTION 
Fig. 1 shows the general structure of a pneumatic control 

valve. Stiction happens when the smooth movement of the 
valve stem is hindered by excessive static friction at the 
packing area. The sudden slip of the stem after the controller 
output sufficiently overcomes the static friction caused 
undesirable effect to the control loop.  

Fig. 2 illustrates the input-output behavior for control valve 
with stiction. The dashed line represents the ideal control 
valve without any friction.  
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Fig. 1 Structure of pneumatic control valve adapted from [6]. 

 

 
Fig. 2 Typical input-output behavior of a sticky valve adapted from 

[6]. 
 

Stiction consists of primarily of deadband, stickband, slip 
jump and the moving phase [8].  For control valve under 
stiction resting at point (a), the valve position remains 
unchanged even when the controller output increases due to 
the deadband caused by the static friction. Only when the 
controller output exceeds the maximum static frictional force, 
fS, the valve starts to response (point(b)).  A slip jump of 
magnitude J is incurred when the valve starts to move at point 
(b) when the frictional force fS converts to kinetic force fD. 
From (c) to (d), the valve position varies linearly. The same 
scenario happens when the valve stops at point (d), and when 
the controller output changes direction. Parameter S represents 
the deadband plus stickband regions. 

There are four types of stiction, namely, deadband (J=0), 
stiction undershoot (S>J), stiction no offset (S=J) and stiction 
overshoot (S<J).   

III. NEURAL-NETWORK 
An artificial neural network (ANN) or commonly just neural 

network (NN) is an interconnected group of artificial neurons 
that uses a mathematical model or computational model for 
information processing based on a connectionist approach to 
computation. In most cases an ANN is an adaptive system that 
changes its structure based on external or internal information 
that flows through the network. In this paper, six types of NN 
for modeling the control valve stiction are investigated.   

 
A. Feedforward-Backpropagation Neural Network 
Feedforward backpropagation neural networks (FF 

networks) are the most popular and most widely used models 
in many practical applications [9]. They are known by many 
different names, such as "multi-layer perceptrons." The 
following diagram illustrates a FF networks network with 
three layers: 
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Fig. 3 Graphical representation of a BP network architecture. 

 
Backpropagation (BP) network was created by generalizing 
the Widrow-Hoff learning rule to multiple-layer networks and 
nonlinear but differentiable transfer functions [10]. BP 
network with biases, a sigmoid (‘tansig’ or ‘logsig’) transfer 
functions at the hidden layers, and a linear transfer function at 
the output layer is capable of approximating any functions. BP 
networks architecture is slightly more complex than a single 
layer network. In addition to a single (hidden) layer consisting 
nodes with sigmoid transfer function, another layer called the 
output layer is required. The output layer is usually kept linear 
to produce output values in the similar range as the target 
values. However, the sigmoid transfer functions (either 
‘logsig’ or ‘tansig’) are often used if the outputs need to be 
constrained to the range of [0, 1] or [-1, 1]. The minimum 
architecture of BP networks is illustrated as layer diagram in 
Fig. 3. The (R x 1) inputs p are fed to Layer 1 (hidden layer) 
consisting of S1 ‘tansig’ nodes. The resulting outputs a2 with 
‘linear’ transfer function retain the same size (S2 x 1) as the 
net inputs n2 to Layer 2 (output layer). With this architecture, 
the BP networks are capable of approximating any linear and 
nonlinear functions given adequate number of hidden nodes. 
 

B. Cascade-forward Backpropagation Network  
Feedforward networks have one-way connections from 

input to output layers. They are most commonly used for 
prediction, pattern recognition, and nonlinear function fitting. 
Supported feedforward networks include feedforward 
backpropagation and cascade-forward backpropagation. In CF 
network, each subsequent layer has weights coming from the 
input as well as from all previous layers. 

Like FF networks, CF networks uses BP algorithm for 
updating of weights but the main symptoms of the network is 
that each layer neurons related to all previous layer neurons. In 
[11], several NN topologies were evaluated and it was found 
that the cascade forward NN with BP training provides the 
best performance in terms of convergence time, optimum 
network structure and recognition performance. The training 
of multi-layer perceptron (MLP) networks normally involves 
BP training as it provides high degrees of robustness and 
generalization [12]. 
 

C. Recurrent Neural Network 
In Feedforward NN, the neurons in one layer receive inputs 

from the previous layer. Neurons in one layer deliver its 
output to the next layer; the connections are completely 
unidirectional; whereas in Recurrent NN, some connections 
are present from a layer to the previous layers. The next value 
of output is regressed on previous values of input signal (see 
Fig.4). 
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NARX Network 

The nonlinear autoregressive network with exogenous 
inputs (NARX) is a recurrent dynamic network, with feedback 
connections enclosing several layers of the network.  

 
Fig. 4 Recurrent NARX NN structure. 

 
The NARX model is based on the linear ARX model, which 

is commonly used in time-series modeling.  The defining 
equation for the NARX model is shown in (1), where the next 
value of the dependent output signal y(t) is regressed on 
previous values of the output signal and previous values of an 
independent (exogenous) input signal. 

 
))(,),2(),1(),(,),2(),1(()( uy ntututuntytytyfty −−−−−−= KK  (1)

                       

 
(a) 

 
(b) 

Fig. 5 NARX network architecture. 
 
Standard NARX architecture is as shown in Fig. 5(a). It 

enables the output to be fed back to the input of the 
feedforward neural network. This is considered a feedforward 
BP network with feedback from output to input. In series 
parallel architecture (NARXSP), Fig. 5(b), the true output 
which is available during the training of the network is used 
instead of feeding back the estimated output. The advantage is 
that the input to the feedforward network is more accurate. 
Besides, the resulting network has a purely feedforward 
architecture, and static BP can be used for training.  

 
Simple Recurrent Network (SRN) 

Simple Recurrent Network (SRN) is also known as Elman 
network. In Elman network, the input vector is similarly 

propagated through a weight layer but also combined with the 
previous state activation through an additional recurrent 
weight layer. A two-layer Elman network is shown as in Fig.6. 

 
Fig. 6 Elman network structure. 

 
The output of the network is determined by the state and a 

set of output weights, W, 
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Elman network has activation feedback which embodies 

short-term memory. A state layer is updated through the 
external input of the network as well as the activation from the 
previous forward propagation. The feedback is modified by a 
set of weights as to enable automatic adaption through 
learning (e.g. BP). Elman network differs from conventional 
two-layer networks in that the first layer has a recurrent 
connection. The delay in this connection stores values from 
the previous time step, which can be used in the current time 
step. Because the network can store information for future 
reference, it is able to learn temporal patterns as well as spatial 
patterns. The Elman network can be trained to respond to, and 
to generate, both kinds of patterns.  

  
Layer-recurrent Network (LRN) 

An earlier simplified version of this network was introduced 
by Elman. In the LRN, there is a feedback loop, with a single 
delay, around each layer of the network except for the last 
layer. The original Elman network had only two layers. The 
original Elman network was trained using an approximation to 
the BP algorithm. Fig. 7 illustrates a two-layer LRN.  

LRN generalizes the Elman network to have an arbitrary 
number of layers and to have arbitrary transfer functions in 
each layer. LRN is trained using exact versions of the 
gradient-based algorithms used in BP. 

 
Fig. 7 Layer-recurrent neural network structure. 
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IV. NUMERICAL EVALUATIONS 
This section is divided into three main parts. Section A 

presents results on the optimization of Neural Network model 
structures for valve stiction modeling. Section B illustrates the 
robustness study on the selected NARXSP-based stiction 
model whilst Section C compares the model and predictor 
modes of operation for the developed NN stiction model.   
 

A. Optimization of Neural Network Model Structure 
In this section, the six types of NN for modeling valve 

stiction are applied to simulated data generated using the 
validated and proven Choudhury’s model of [3] from a simple 
sine wave function.  The four cases of stiction are 
investigated, namely, deadband (J=0), stiction undershoot 
(S>J), stiction no offset (S=J) and stiction overshoot (S<J).  
The model structures for each of the NN types are initially 
analyzed and the optimized architecture is selected.  
 Figures 8 -13 show the results for stiction undershoot case 
for the six stiction models in comparison to the Choudhury’s 
model. In stiction undershoot, the valve output can never reach 
the valve input, i.e., there will always be some offset. In this 
case, an imprecise matching between the Feedforward BP, 
Cascade, Elman, Layer Recurrent and NARX NN with the 
Choudhury’s model output can be perceived. Feed forward BP 
NN failed to track the stiction behavior dexterously when it is 
unable to follow the shape of the data driven stiction model.  
 Both Cascade and Elman NN can merely follow the trend of 
the data driven model. There is an apparent deviation at the 
bottom peak when the signal changes direction. There is also a 
slight deviation at the top peak when the signal changes 
direction and both are unable to capture the sharp edges 
typical of stiction. The same observation can be seen when 
Layer-recurrent NN is applied. The NARX NN also cannot 
correctly match the Choudhury’s model. Only NARXSP NN 
with real output fed to the network feature tracks the stiction 
behavior as efficient and as accurate as the Choudhury’s 
model.  
 Statistical analysis verified the visual inspection. Root Mean 
Square Error (RMSE) of 0.3416, 0.3442, 0.2059, 0.206 and 
0.27 are obtained for Feedforward BP, Cascade, Elman, Layer 
Recurrent, and NARX NN respectively, whilst NARXSP NN 
achieved RMSE value as low as 0.0907.  However comparable 
Correct Directional Change (CDC) values are obtained for all 
networks as indicated by the satisfactory directional change 
tracking. 
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Fig. 8 Data driven vs. feedforward BP NN for stiction undershoot.  
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Fig. 9 Data driven vs. Cascade NN for stiction undershoot. 
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Fig. 10 Data driven vs. Elman NN for stiction undershoot. 
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Fig. 11 Data driven vs. Layer-recurrent NN for stiction undershoot. 
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Fig. 12 Data driven vs. NARX NN for stiction undershoot.  
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Fig. 13 Data driven vs. NARXSP NN for stiction undershoot. 

 
The same observations are obtained for the deadband, 

stiction no offset and stiction overshoot cases. Only NARXSP 
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can efficiently and accurately model the stiction behavior. The 
summary of the results are as tabulated in Table 1. 

 
TABLE I 

STATISTICAL ANALYSIS FOR NN ARCHITECTURE 

Neural Network Model RMSE  
CDC 

NARXSP Deadband 0.0097 83% 
 Stiction overshoot 0.0123 83% 
 Stiction no offset 0.0234 69% 
FF networks Deadband 0.1221 83% 
 Stiction overshoot 0.1312 83% 
 Stiction no offset 0.1930 69% 
CF networks Deadband 0.1223 83% 
 Stiction overshoot 0.1345 83% 
 Stiction no offset 0.1929 69% 
Elman Deadband 0.0971 83% 
 Stiction overshoot 0.1117 83% 
 Stiction no offset 0.1975 69% 
LRN Deadband 0.1035 83% 
 Stiction overshoot 0.1997 83% 
 Stiction no offset 0.1573 69% 
NARX Deadband 0.1331 83% 
 Stiction overshoot 0.1312 83% 
 Stiction no offset 0.1962 69% 

 
Results in this section clearly indicate that proper selection 

of the NN type, together with optimum configuration of the 
corresponding network architectures, obtained via heuristic 
approach, can efficiently and accurately model the stiction 
behavior. It is obvious that NARXSP-based stiction model 
gives the best performance for all four types of stiction. In the 
next section, the performance of this NARXSP-based stiction 
model is tested for robustness.  

 
B. Robustness Study on NARXSP-based Stiction Models 

 
As can be seen in the previous section, NARXSP NN is 

able to model stiction excellently for fixed S and J values. 
However, empirical modeling approaches such as NN are 
known to suffer from degradation in performance when 
operating conditions changes. It is imperative to investigate 
how robust such a model is under uncertainty in the values of 
S and J. In this section, the robustness of the developed 
NARXSP-based stiction models are tested against varying 
values of S and J, as well as against other types of stiction 
behavior. 
 
Robustness analysis against varying values of S and J for 
same stiction types 

 For this analysis, a NARXSP-based stiction model is 
developed for the base case of 3=S  and 1=J  (i.e. stiction 
undershoot). Fig. 15 to 23 show the resulting behaviors when 
the base model is tested against varying values of S and J. It 
can be clearly observed that the base model is able to track the 
stiction behavior accurately and effectively for small S and J 
values. However, as the values of S and J increased, the 
performance of the base NARXSP model decreased.  

Table 2 shows the summary of the performances of the 
other stiction NARXSP types. In general, the base model is 
able to tolerate mismatch if stiction is less than 6% of valve 
travel span for the same stiction type. 
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Fig. 15 NARXSP NN for test set S=2 and J=1 
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Fig. 16 NARXSP NN for test set S=3 and J=2 
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Fig. 17 NARXSP NN for test set S=4 and J=1 
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Fig. 18  NARXSP NN for test set S=4 and J=2 
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Fig. 19 NARXSP NN for test set S=4 and J=3 
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TABLE II 
PERFORMANCE SUMMARY FOR ANALYSIS IN ROBUSTNESS 

AGAINST VARYING S AND J VALUES OF SAME STICTION TYPES 
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Fig. 20 NARXSP NN for test set S=5 and J=1 
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Fig. 21 NARXSP NN for test set S=5 and J=2 
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Fig. 22 NARXSP NN for test set S=5 and J=3 
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Fig. 23 NARXSP NN for test set S=5 and J=4 

 
Robustness analysis against other stiction types 

 In this section, the NARXSP base model that has been 
developed for stiction undershoot case ( 3=S  and 1=J ) is 
tested against three other types of stiction, namely stiction 
overshoot (S=3, J=1), pure deadband (S=1, J=0) and no offset 
(S=J=1). From Fig. 24-26, it can be clearly observed that 
there is a perfect match between NARXSP stiction model and 
Choudhury’s stiction model. The stiction undershoot 
NARXSP model is capable to predict the behavior of the other 
stiction types excellently provided that the stiction parameter 
values, i.e. S and J, are within reasonable limits to the base 
model. 
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Fig. 24. Stiction undershoot NARXSP NN for test set S=1 and J=0 
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Fig. 25. Stiction undershoot NARXSP NN for test set S=J=1 

 
Stiction Type 

 
Base 

 
Test 

 
Performance 

 
 S J S J  

Pure deadband 1 0 5 0 Robust 
   4 0 Robust 
   3 0 Robust 
   2 0 Robust 
No offset 1 1 5 5 Not robust 
   4 4 Not robust 
   3 3 Not robust 
   2 2 Robust 
Stiction overshoot 1 3 1 5 Robust 
   1 4 Robust 
   1 3 Robust 
   1 2 Robust 
   2 5 Robust 
   2 4 Robust 
   2 3 Robust 
   3 5 Robust 
   3 4 Robust 
   4 5 Robust 
Stiction undershoot 3 1 5 4 Robust 
   5 3 Robust 
   5 2 Robust 
   4 3 Robust 
   4 2 Robust 
   4 1 Robust 
   3 2 Robust 
   2 1 Robust 
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Fig. 26 Stiction undershoot NARXSP NN for test set S=1 and J=3 

 
Table 3 summarizes the same robustness analysis for other 
types of stiction. In general, the NARXSP model has 
satisfactory robustness properties when subjected to 
uncertainty in the type of stiction that exists in the system. 
However, one exception can be seen in the stiction no offset 
type. For this case, the robustness margin is very small. 
 

TABLE III 
PERFORMANCE SUMMARY FOR ANALYSIS IN ROBUSTNESS 

AGAINST OTHER STICTION TYPES. 
 

Stiction Type 
 

Base 
 

Test 
 
Performance 

 
 S J S J  

Pure deadband 1 0 1 1 Robust 
   1 3 Robust 
   3 1 Robust 
No offset 1 1 1 0 Robust 
   1 3 Not robust 
   3 1 Not robust 
Stiction overshoot 1 3 1 0 Robust 
   1 1 Robust 
   3 1 Robust 
Stiction undershoot 3 1 1 0 Robust 
   1 1 Robust 
   1 3 Robust 

 
C. Predictor vs. model modes of operation 

 
It is widely accepted that NARXSP structure always results 

in excellent performance since the actual output available 
during training is fed back to the network as part of the inputs 
for prediction [13], i.e. the process outputs are predicted a 
single time step into the future. Consequently, a significant 
disadvantage of this mode of operation, termed the predictor 
mode, is the inability of the model to be used independently 
from the plant. An alternative as proposed by [13] is to use the 
trained NARXSP network in the parallel (feedback) 
architecture, where the predicted output from the network is 
being delayed and fed back along with the input to the 
network. This alternative mode of operation is called model 
mode. 

In this study, the network is first trained using the series-
parallel NARX network (NARXSP) or predictor mode. The 
network is then converted to the model mode (or parallel 
(feedback) form) using ‘sp2narx’ function in MATLAB. Its 
performance is then being evaluated against the validated and 
proven Choudhury’s model for stiction undershoot case (i.e. 
S=3 and J=1) for 10000 time steps into the future. Fig. 24 to 
25 showed the performance of the model. 
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Fig. 24 NARXSP NN model vs. Choudhury et al for stiction 

undershoot 
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Fig. 25 PV vs. OP plot of NARXSP NN model 

 
As can be observed from figures, the resulting stiction 

model structure is able to follow the stiction behavior as 
satisfactorily as the siction model of Choudhury. There is 
insignificant deviation at the top and bottom peak when the 
signal is changing direction. 

V. CONCLUSION 
In this work, a black box Neural Network-based modeling 

approach is proposed in modeling control valve stiction. 
Numerical evaluations showed that with optimized model 
structures, NARXSP NN stiction model is able to predict the 
control valve behavior in all four types of stiction to sufficient 
accuracy. Robustness analysis against the uncertainty in the 
stiction parameters (S and J) is tested under various 
conditions. It is shown that the NARXSP-based stiction model 
is robust when the stiction is less than 6% of the valve travel 
span for the same type of stiction behavior. For different types 
of stiction, the NARXSP-based stiction model is fairly robust 
to with the exception of stiction no offset. It is also found that 
parallel (feedback) network trained using the series-parallel 
form (NARXSP) is able to provide multi-steps ahead 
prediction with sufficient accuracy. 
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