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Numerical solution of Volterra integro-differential
equations of fractional order by Laplace
decomposition method

Changqing Yang, Jianhua Hou.

Abstract—In this paper,the Laplace decomposition method is
developed to solve linear and nonlinear fractional integro-differential
equations of Volterra type. The fractional derivative is described in
the Caputo sense. The Laplace decomposition method is found to be
fast and accurate. Illustrative examples are included to demonstrate
the validity and applicability of presented technique and comparison
is made with exacting results.
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I. INTRODUCTION

N this paper, we study the Laplace decomposition method
for a special kind of nonlinear fractional integro-differential
equation

D%y(t) = p(t)y(t) +9(t) +/\/O k(t, T)F(y(r))dr, t € [0, 1],
(1

with the initial conditions
y =6,i=01,2,--,n—1ln—1<a<nmneN, ()

where ¢ € L2([0,1]), p € L?*([0,1]), k¥ € L?([0,1]?)
are known functions, y(t) is the unknown function, D is
the Caputo fractional differential operator of order «. Such
equations arise in the mathematical modeling of various
physical phenomena, such as heat conduction in materials
with memory. Moreover, these equations are encountered in
combined conduction, convection and radiation problems[1],
[2].

Most of nonlinear fractional integro-differential equations
do not have exact analytic solution, so approximation and
numerical technique must be used. There are only a few of
techniques for the solution of fractional integro-differential
equations, since it is relatively a new subject in mathematics.

Recently, several numerical methods to solve fractional
differential equations and fractional integro-differential equa-
tions have been given such as variational iteration method[3],
homotopy perturbation method[4], Adomian decomposi-
tion method[5], [6], homopoty analysis method[7], collo-
cation method[8], [9] wavelet method[10], [11] and other
method[12].

The Laplace decomposition method is a numerical algo-
rithm to solve nonlinear ordinary, partial differential equations.
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Khuri[13] used this method for the approximate solution of a
class of nonlinear ordinary differential equations. The numer-
ical technique basically illustrates how the Laplace transform
can be used to approximate the solution of the nonlinear
differential by manipulating the decomposition method which
was first introduced by Adomian. To the best of authors
knowledge no attempt have been made to exploit this method
to solve nonlinear fractional integro-differential equation. Our
aim in this paper is to apply this technique to fractional
integro-differential equation.

A padé approximant is the ratio of two polynomials con-
structed from the coefficients of the Taylor series expansion of
a function. The [L/M] Padé approximant to a formal power
series y(t) = Y.~ a;t’ is given by:

{£} _ P(t)  po+pit+---+prth
M Qu(t)  1+aqt+ - +quth

3

The two polynomials in the numerator and denominator of
(1) have no common factor. This means that the formal power
series

_ P
t) = Qu(t)

In this case Padé approximant [L/M] is unique determined.

In this paper, we applied Laplace decomposition method
to solve nonlinear Volterra integro-differential equation of
fractional order.

The paper organized as follows: In section 2, we introduce
some necessary definitions and properties of the fractional
calculus theory and Laplace transform. In section 3, we con-
struct our method to approximate the solution of the fractional
integro-differential equation(1). Numerical examples are given
in Section4.

+ O(tL M+,

II. BASIC DEFINITIONS

In this section, we give some definitions and properties of
the fractional calculus and Laplace transform.
Definition 1 A real function f(t),¢ > 0, is said to be in the
space C,, ;i € R, if there exists a real number p > p, such
that f(t) = tPhy(t), where f1(t) € C(0,00), and it is said to
be in space C}; if and only if f™eC,,neN.
Definition 2 The fractional derivative D® of f(¢) in the
Caputo’s sense is defined as

a _ 1 ¢ —r n—a—1 g(n) T T
D) = =y | (=TT O, @
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forn—1<a<n,neN,t>0,f(t)eC".
Definition 3 The Laplace transform of a function f(t),¢ > 0
is defined as

+o00o
zvun:F@r:A o f (1)t

where s can be either real or complex. It has following
properties:
Lemma 1: Laplace Transform of an Integral: If F(s) =

(1) then
v [ /0 t f(T)dT} Sl s)

Definition 4 Given two functions f and g, we define, for any

t>0,
/f

The function f * g is called the convolution of f and g.
Theorem 2: The convolution theorem

Lf gl =Z[f(t)]- L[g(t)]. (7

Theorem 3: The Laplace transform Z[f(t)] of the Caputo
derivative is defined as [14]

(f*g)(t g(t —x)d 6)

n—1

sYF(s) — Z s rR0), n—1<a<n
= ®)

ZIDf(1)] =

III. ANALYSIS OF THE METHOD

According to Laplace decomposition method we apply
Laplace transform first on both sides of (1)

Z[D%(t)] = ZLp(t)y(t)] + ZL[g(t)]
+7 {)\/0 k'(t,T)F(y(T))dT:| .

Using the differentiation property of Laplace transform (8) we
get

)

s*Zy(t)] — e = ZLpt)y ()] + ZL[g(1)]

+Z {)\/0 k(t,T)F(y(T))dT:| , (1%
where ¢ = 327 ' s* k= 1y (0), and
LI = 5 + Loy + — Zlo(0)
(1D

+ Siaf {)\ /Ot k:(t,r)F(y(r))dr] .

The second step in Laplace decomposition method is that we
represent solution as an infinite series given below

)=> yn. (12)
n=0
The nonlinear operator is decomposed as
Ny=F((y(t) = An(y) (13)
n=0

where A, is the Adomian
Y0, Y1, Y2, ,Yn, - that are given by

A, = 'd/\" [ Z)‘Zyl ]

For the nonlinear function Ny =
polynomials are given by

polynomials[15]  of

n=0,1,2-.
A=0
F(y) the first Adomian

Ao = F(yo),
Al = ylF(l)(y0)7
Ay = pF'(y) + 59t F P (yo),
1 .
Az = y3FY(yo) + 192 F P (o) + §y‘fF(3) (o)
A, = Z c(v, n)F(")(yo).

v=1

The first index of ¢(v,n) is the order of derivatives from 1 to
n, and the second is the order of the Adomian polynomial. The
¢(v,n) are products (or sums of products) of v components of
f whose subscripts sum to n, divided by the factorial of the
number of repeated subscripts.

Substituting (12)and (13) into (11), we will get

2 |S| -5t Lol + o 3o

1 t >
+S—az {)\/0 k(t,r)nZ:OAn(y)dr

(14)

Matching both sides of (14) yields the following iterative
algorithm:

Zl) ? + L2l (15)
L] =52 O] + 22 |3 [ ke doyr|.
(16)
Ll = 2 O] + 2 |3 [ ke s)ir
17

In general, the recursive relation is given by

Llynsa] = Siaz p(t)yn] + éiz {)\ /0 K, T)An(y)dT] .
(18)

Applying inverse Laplace transform to (15-18), so our required
recursive relation is given below

Yo(t) =H(t) (19)
() =27 | p(ow.]] +
z7 Liaf {A /Otk(f,T)An(y)dTH ,n >0,
(20)
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where H(t) is a function that arises from the source term
and the prescribed initial conditions. The initial solution is
important, the choice of (19) as the initial solution always
leads to noise oscillation during the iteration procedure. The
modified Laplace decomposition method[16] suggests that the
function H(t) defined above in (19) be decomposed into two
parts:
H(t) = Hi(t) + Ha(2).

Instead of iteration procedure (19) and (20), we suggest the
following modification

yo(t) =H: (), 21)
yi () =Ha(t) + 27! [iz [p(t)yo]} N

SO(

o1 sia.z) {/\ /O tk:(t,T)Ao(y)dTH, (22)

ynJrl(t) :j_l Siaf [p(t)yn]:| +

jfl

1 t
o= {/\ / k:(t,T)An(y)dT”. 23)
L 0

The solution through the modified Laplace decomposition
method high depend on the choice of Hi(t) and Hs(t).
We will show how to suitably choose Hp(t) and Hy(t) by
examples.

IV. NUMERICAL EXAMPLES

In order to show the effectiveness of the Laplace de-
composition method for solving Volterra integro-differential
equations of fractional order, we present some examples. All
the results are calculated by using the symbolic calculus
software Mathematica.

Examplel Consider the following linear fractional integro-
differential equation[8]:

VA = 61974 —t2¢t
I'(13/4) 5

t
) y(t) + / elry(r)dr (24)
0
with the initial condition
y(0) =0 (25)

and the the exact solution is y(t) = 3. First, we apply the
Laplace transform to both sides of (24)

2] =2 {Fﬁ;@} v [(£5) w0
+Z {/Ot etTy(T)dT:|

Using the property of Laplace transform (8) and the initial
conditions (25), we get

L2y =2 {%} -z K%et) y(t)}

+7 { /0 t etry(T)dT}

and

s [%] - [(‘i S

1 rot
+ Wﬁ / 6t7'y(7')d7'} .
§ L/o

Substituting (12) into (13)into above equation, we have

=, 1 [ 6194 1 —12e!

# (S =2 ] + 70 |(5°) v

1 b
t
+ Mg /0 e TZyn(T)dT .

n=0

(26)

Match both side of (26), we have the following relation:

1 [ 6t9/4 }

Lol =552 | Tz

1 [ [ —t2e! 1 L
f[yl]:mf 5 Yo +83j$ A e Tyo(T)dr

1 [ —t2e! 1 b
g[yn+1] :Mg 5 Yn -+ @z o & Tyn(T)dT .

Applying inverse Laplace transform to (27-29) we get

27

yo =t

n=o [ [(557) ]

1 ¢ )
K7 —z/ tr.m3dr|| =0
+ {83/4 {067' TodT

Yn+1 =0.

Therefore, the solution is obtained to be

y(t) = Zyn =t
n=0

The results are better than the results of [8].

Example2 Consider the following nonlinear integro-
differential equation with a difference kernel[10]
5 PR ¢
Diy(t) = =15 —— t—7)2[y(m))dr, 0 <t <1
W) = st g, P 0 <t <
(30)

with the initial condition
y(0) =4'(0) =0 (31

Applying the Laplace transform to both sides of (30) and using
the initial conditions we obtain
5 4 0 ]

L0 =2 |t - o

t
+Z [/ (t— T)Z[y(T)]BdT] :
0
Applying convolution theorem (7), we can get
5 4t

L0 =2 |3t - g

2I'(4/5) ] L2 ],
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or equivalently

LW 52 |sriars o~
+%ﬁ%$MWL

ZLlyt) = 2 — 1440 —— 06/0 +82% L [y(t)*]. (32)

Substitutmg (12) and (13) into (32) leads to
[Z yn} - — 144057 56/5 21/5 ’ ;}A

So we have following relation:
2l = = (33)
s
L] = 1440 /d o /d {Z AO] (34)
9 oo
L] = Fi5 2 ;)An ,m> 1 (35)

Taking the inverse Laplace transform of both sides of (33,34),
and using the recursive relation (35) gives

v = t*
y1. = 0
Yn+1 =

Therefore, the solution is obtained to be

oo
=Y =1,
n=0

which is the exact solution.
Example3 Consider the following equation

t
yr(t) =1 +/ y(Hy(r)dr, 0<t<1, 0<a<1l (36)
0

with the initial condition y(0) = 0. Applying the Laplace
transform to both sides of (36) gives

ﬂww=zMazubwwmﬂ,

so that

s*Ly(t)] = % +Z {/Ot y/(T)y(T)dT:| ,

or equivalently
1 1 L
L= o5+ ¥ LY (T)y(r)dr| .
Substituting the series assumption for y(¢) and the Adomian
polynomials for ¢’y as given above in (12) and (13) respec-
tively, we obtain

“[Epf e | [T

So we can get the following relation:

1
Llyo] = sy (37
t
LlYnt1] = giaf {/0 Andr} ,n>0. (38)

Taking the inverse Laplace transform of both sides of (37) and
(38) gives

ta
Yo = 7F(1+a)
1 t
Yn = ZL7 |:*$ |:/ A7L71d7:|:|’n21
s 0

The general form of the approximation y(t) is given by

_ Z th(2k+1)a7 (39)
k=0
where the coefficients are given by
1
Co TI(1+a)
B I'(2a)
C1 700000[11(1 T 30&)
B I'(4a)
CQ —(0001306 + C()Cloz)ip(l T 50[)
B I'(6c)
03 —(0002504 + 01C13a + 020004)7[‘(1 T 704)
I'(8c
04 :(000370é + 0102505 + 02013Oé + CgCQOé) 71_‘(1(_"_ 9)0[)
Cs :(0004904 + C1C37a + CyC55a + C1C33a0 + 000406)
I'(10«)
I(1+11a)
Cn =(CoCr(2n — 1a+ C1Cp_1(2n —2)a+ - - - 4+ CoCra)

I'(2na)
I'l+2n+1)a)

To consider the behavior of solution of solution for different
value of «, we will take advantage of the formula (39)
available for 0 < a < 1, and consider the following two
special cases: Firse order case: Setting o = 1 in (39), we
obtain the approximate solution in a series form as

1 1 17 29 431
t)y=t4 —t3+ —t° ¢

y(®) + 6 + 30 + 2520 22680 2494800
The [5/5] Padé approximants gives

§ - —139/3780t° + 19/18t3 + ¢

5/ 1+8/9t2 —55/252t4
A Comparison between the exact and the approximate solu-
tions at 10 points is demonstrated for n = 6 in Tablel. From
Tablel, it can be found that the obtained approximate solutions
are very close to the exact solution.

Fractional order case: In this case we will examine the
equation (36). Setting « = 1/2 and n =6

y(t) =1.1284tY2 + 0.9578t%/% + 0.65041>/% + 0.6151¢7/2
+0.6039t%/2 4 0.8494¢11/2,

7+ 0+
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Fig. 1. Comparison of approximate solution for o« = 1/4,1/3,1/2,1.
For simplicity, let ¢'/2 =  then,
y(x) =1.1284x + 0.95782> + 0.65042° + 0.61512"
+ 0.60392" + 0.8494x'".

Calculating the [5/5] Padé approximants and recalling that x =
t/2 we get

m —0.2798¢%/2 — 0.2529¢%/2 4 1.1283¢/2

5 1 — 1.0729¢ + 0.0863¢2

Similarly, we can get the results for « = 1/3,1/4. The
obtained numerical results for « = 1/2,1/3,1/4 and a = 1
are summarized in Fig.1. The comparisons how that as o — 1,
the approximate solutions tend to y(t) = v2tan(v/2t/2),
which is the exact solution of the equation in the case of
a=1

TABLE 1
THE EXACT AND APPROXIMATE SOLUTIONS OF EXAMPLE 3(a = 1)

t Exact solution Approximate solution Absolute error
0 0 0 0
0.1  1.001670006759728e-001  1.001670006758852¢-001  8.7624e-014
0.2 2.013440870547489¢-001  2.013440870107435¢-001 4.4005e-011
0.3 3.045825027604838e-001  3.045825011179013e-001 1.6426e-009
0.4 4.110194230146166e-001  4.110194019290210e-001 2.1086e-008
0.5 5.219305154476182e-001  5.219303645940214e-001 1.5085e-007
0.6 6.387957042783595e-001  6.387949568679495e-001  7.4741e-007
0.7 7.633858022505827e-001  7.633829181184960e-001  2.8841e-006
0.8  8.978815374544917e-001  8.978722284210225¢-001  9.3090e-006
0.9 1.045043135437502e+000 1.045016794826786e+000  2.6341e-005

V. CONCLUSION

In this paper, the Laplace decomposition method has been
successfully applied to finding the approximate solution of
nonlinear fractional integro-differential equation. The method
is very powerful and efficient in finding analytical as well as
numerical solutions for wide classes of linear and nonlinear

fractional integro-differential equations. It provides more real-
istic series solutions that converge very rapidly in real physical
problems. Finally, the behavior of the solution can be formally
determined by using the Padé approximants.

The proposed method can be applied for other nonlinear
fractional differential equations, systems of differential and
integral equation.
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