
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

1910

Abstract—Although Model Driven Architecture has taken

successful steps toward model-based software development, this

approach still faces complex situations and ambiguous questions

while applying to real world software systems. One of these

questions - which has taken the most interest and focus - is how

model transforms between different abstraction levels, MDA

proposes. In this paper, we propose an approach based on Story

Driven Modeling and Aspect Oriented Programming to ease these

transformations. Service Oriented Architecture is taken as the target

model to test the proposed mechanism in a functional system.

Service Oriented Architecture and Model Driven Architecture [1]

are both considered as the frontiers of their own domain in the

software world. Following components - which was the greatest step

after object oriented - SOA is introduced, focusing on more

integrated and automated software solutions. On the other hand - and

from the designers' point of view - MDA is just initiating another

evolution. MDA is considered as the next big step after UML in

designing domain.

Keywords—SOA, MDA, SDM, Model Transformation,

Middleware Transparency, Aspects and Jini.

I. INTRODUCTION

HE goal of this research is to provide a successful and

usable conjunction between these two technologies. We

have tried to provide a simple yet effective process which can

be viewed as a framework. In the vision inspired by this

framework, SOA is the product and MDA makes its

production line. During this process, input model is provided

via XMI [2] standard and with a high level of abstraction.

Proposed framework analyses the elements and their relations

within the given model and tries to recognize the SOA

components.

In two phases (Fig. 1), the input model is first transformed

into a SOA profile based model and then into a middleware

independent code. Middleware transparency is achieved via

the concept of Aspect. The final phase of framework is to

transform middleware transparent code into an executable

code based on one of known middlewares for SOA. Jini

middleware and pre-process weaving is used in the last phase.

Rest of the paper is organized as follows: section II introduces

proposed SOA profile. Sectiın III, IV and V relatively

focus on the 1st, 2nd and 3rd phases of the framework.

Section VI contains some implementation details and finally,

section VII will conclude the paper.

Authors are with Islamic Azad University, Naragh Branch and Malayer

Branch, Iran (e-mail: alitaee@gmail.com).

II. PROFILE FOR SERVICE-ORIENTED ARCHITECTURES

As shown in Fig. 1, generating a profile for service-oriented

architecture is the first step to produce such a framework. This

profile enables the designer to describe the platform specific

model based on SOA. Profiles are standard techniques for

extending UML. By using profiles for precise modeling, we

ensure that the designed model can be used in different views

of MDA with the same concepts, as we are following the

MDA for defining standard models.

The elements of SOA profile is selected based on

knowledge of the main elements of service-oriented

architectures (Fig. 2).

Fig. 2 Components of SOA [3]

Fig. 3 Proposed SOA Profile

A Middleware Transparent Framework for

Applying MDA to SOA

Ali Taee Zade, Siamak Rasulzadeh, and Reza Torkashvan

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

1911

Although there are different approaches for implementing

of service-oriented systems [4], these elements are used in all

of them and it shows a correct implementation of such

architecture. Based on this idea, besides studying different

service-oriented systems, and identifying their core

components, the profile shown in Fig. 3 is proposed.

III. FROM PIM TO PSM

This phase can be considered as the most important and

complex part of the framework. In this step, the platform

independent model - based on UML standard profile - is

transformed to the platform specific model - based on

proposed SOA profile. Although we have tried to apply MDA

to SOA for simpler model [5], the approach taken here has

more capabilities and can handle relatively more complex

cases.

In this approach, the input model (PIM) has no direct

information about SOA. Obviously using such an abstract

input - based on standard UML - needs a more autonomous

model transformer. By autonomous we mean a model

transformer which tried to depend on the specification of

model rather than human guidelines. Such a model

transformation is beyond what we expect from an MDA based

model transformer and also beyond most of the current

frameworks.

Second notable point about our framework is its declarative

approach in PIM to PSM phase. Declarative transformation is

considered as a huge advantage, since designer is not directly

involved in the logic of model transformation. What is

considered the logic of transformation is generated

automatically, based on a declaration of how and what should

be done. Using declarative approach, we need a formal way to

express transformation for which a unique and correct code is

generated. We have used story driven modeling profile [6] for

this formal definition of transformation [7, 8, 9].

A. Input Model

Input model is based on standard UML. Designer has

designed this model having SOA in mind but has not placed

any SOA specific details in it. Transformer uses graph

specifications of the input model (such as relations etc) to

determine SOA components. We categorize these graph

cifications into two main groups:

Conditions over vertices: which shows what tagged

values a vertex, can have.

Conditions over edges: This shows the type, and

specification of edges connecting vertices.

Considering these two categories and the general SOA model

(Fig. 2) we conclude the following conditions:

A vertex of sterotype Interface

A vertex of type Class, implementing above interface.

A vertex using above class.

An edge connecting above class of type use.

A vertex presenting registry service.

B. Formal Definition of Transformation

We have used SDM to present a formal definition of model

transformation. A Detailed discussion on SDM is beyond the

scope of this paper.

To have a general perspective of it, SDM uses a

combination of activity and collaboration diagrams to define a

story based presentation of the model. Fig. 4 shows a view of

our main activity diagram. Swim lanes divide the sequences

into two parts, i.e. human interactive and machine interacted.

Steps of this diagram fall into two groups:

Conditional steps which test occurrence of a specific case

in the model

Functional steps which perform a change in the model

Details of each step are as follows:

1. Start is the very first node of the diagram. A state without

any input and only one exit.

2. Print defined with <<code>> stereotype and prints out

an informative message.

3. Initial check of the input model, where we check whether

input model contains at least one UML package and four

classes (Fig. 5).

Fig. 5 Initial check of the input model

4. Selecting input model components and iterate over them.

(Fig. 6)

5. Copying the selected model into the target model.

6. Initial check of the selected element which checks

whether this element has at least 3 connecting edges.

7. Applying SOA profile to the selected element, which has

passed the initial checking. This step contains a number of

UML sequence and collaboration diagrams which is shown in

Fig. 7.

As it can be seen, this diagram checks the selected elements

precisely and applies SOA profile to them by the weaves of

some consecutive conditional expression.

Fig. 6 Selecting input model components

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

1912

Here we present conditions and function of detecting a

service interface and applying it (Fig. 8).

IV. GENERATING ASPECT-ORIENTED CODES FROM PSM

The second stage is, transforming PSM model to the

middleware independent codes. As we have labeled the

elements of model in the first stage, the process of generating

code is a simple one-to-one mapping and we have used a

template based approach for this mapping.

Another point considered during code generation, is the

middleware that PSM model specifies it and in this case it is a

middleware for service-oriented architecture. But one of the

goals of the framework is middleware independency. For this

reason and considering the fact that we can see the most

resulting changes of using middleware as Aspects, it is

possible to generate a middleware independent code with

required Aspects for service-oriented architecture.

In fact, this code has the ability to implement the service-

oriented architecture. But only when Aspects are used in a

particular middleware environment (this process is illustrated

in final stage).

A. Required Aspects for Service-Oriented Architecture

It is possible to consider aspects as profiles in code level.

This property makes it easy to select Aspects which are

related to the profile. Therefore, we will introduce Aspects

that are selected based on service-oriented architecture profile.

These Aspects are presented in code level (Java) based on JSR

175 standard [11] (annotations).

Interface that is recognized with ServiceDescription

Service that is recognized with Service.

Client with the Aspect named Client and

Registry which is recognized with Registry.

These Aspects are appeared at the beginning of definition of

classes and variables.

For example:

@Client

public class SamleClient {

...

}

B. Templates for Code Generation

As said before, code generation based on templates is one

of the ideal methods for easily code generation. Easy, because

the most complex part of transformation is done in first stage

and in second stage, there is a one-to-one transformation.

We have used templates based on Velocity template engine

[12] for code generation. This template engine is used with

AndroMDA [13], for making the code generation easier.

A simple instance of such templates is shown bellow:

package $service.packageName;

@Service

public class ${service.name}Service \

implements

${service.name}ServiceDescription{

#foreach($operation in

${service.operations})

$operation.visibilty

$operation.returnType

$operation.signature;

#end

}

V. FROM ASPECT TO EXECUTABLE CODE

The last phase of framework, transforms SOA enabled code

to a full executable code based on an SOA middleware. Two

main questions of this phase are 1) weaving technique and 2)

target middleware

A. Pre-Process Weaving

There are various techniques for weaving aspects and

converting them to executable code, like compile time, and

deploy time to name a few. To select a weaving technique,

one must consider various factors such as coordination of

weaving technique and problem, ease of use, tools etc.

Considering these factors, we have decided to use pre-process

weaving in this framework. This type of weaving techniques

are used in cases that code changes inspired by aspect are few

considered to other changes such as configuration stuff.

Pre-process weaving is in fact a special kind of AOP,

known as Attribute Oriented Programming. XDoclet [14] is a

famous attribute oriented programming tool. With

standardizing annotation in Java 5 most of the time attributes

are defined using annotation and we have used the same

approach.

B. Choosing Middleware

Nowadays there are various middleware which support

SOA development and bring facilities to ease this architecture.

Among them are Java EE, Microsoft .NET, and Web Services.

But we have used less know middleware Jini [15] as our SOA

enabled middleware. Although Jini is less know, but this

middleware has build in and complete features for SOA

development among them: platform independent, PnP, and

interface base design.

VI. IMPLEMENTATION

According to the previous sections, this framework has

been formed from different multiple parts and each part has its

own complexities and requirements. The main part of this

framework is description of model transformation based on

story driven approach and its implementation. And these

activities are done, adherence to the FOTS team from

Antwerpern University. The required transformation in this

stage, are implemented according to the extension of

MoTMoT [16]. In second stage, we have used from

AndroMDA [13]. The structure and testing of templates is

done based on Java language and APT software.

VII. CONCLUSION

Although MDA can be considered a successful movement

in model based software development, but this approach still

has ambiguous questions to face especially when applied to

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

1913

complex real world systems. One of these questions - which

has taken the most attempts in this way - is model transformed

across different abstraction layers, MDA propose. What this

paper presented, was how to use story driven modeling and

aspect oriented programming to ease model transformation

from PIM to PSM and from PSM to code. We have also tried

to use SOA as our target model and test the proposed method

in a functional environment.

REFERENCES

[1] Object Management Group. Model-Driven Architecture.

www.omg.org/mda/.

[2] Object Management Group, XML Metadata Interchange Specification,

Version 2.0, OMG Document: formal/03-05-02, May 2003.

[3] L. Baresi, R. Heckel, S. Thöne and D. Varró. Modeling and Analysis of

 Architecture Styles Based on Graph Transformation - A Case Study on

Service-Oriented Architecture, European Research Training Network

(SegraVis), 2003.

[4] L. Baresi, R. Heckel, S. Thöne and D. Varró. Modelling and Validation

of Service-Oriented Architectures: Application Vs. Style. In Proc.

ESEC/FS 03 European Software Engineering Conference and ACM

SIGSOFT Symposium on the Foundations of Software Engineering,

Pages 68-77. ACM Press, 2003.

[5] Adel Torkama Rahmani, Vahid Rafe, Saeed Sedighian, Amin

Abbaspour. An MDA-Based Modeling and Design of Service Oriented

Architecture. International Conference on Computational Science (3) ,

Volume 3993 of LNCS, Pages 578-585, Springer Verlag, 2006.

[6] Thorsten Fischer, Jorg Niere, Lars Torunski, and Albert Zundorf.

StoryDiagrams: A New Graph Rewrite Language Based on

UnifiedModeling Language, and Java. In Proceedings of the 6th

International Workshop on Theory and Applications of Graph

Transformation (TAGT) , volume 1764 of LNCS , pages 296-309.

Springer Verlag, November 1998.

[7] Hans Schippers, Pieter Van Gorp. Standardizing SDM for Model

Transformation. Formal Techniques in Software Engineering,

Universiteit Antwerpern, Belgium. Fujaba Days Programme , 2004.

[8] Hans Schippers, Pieter Van Gorp, and Dirk Janssens. Leveraging UML

Profiles to Generate Plugins from Visual Model Transformation.

Accepted at Software Evolution through Transformation (SETra).

Satellite of the 2nd Intl. Conference of Graph Transformation. October

2004.

[9] L.Baresi and R. Heckel. Tutorial Introduction to Graph Transformation:

A Software Engineering Perspective. In Proceedings of the First

International Conference on Graph Transformation (ICGT 2002),

volume 2505 of Lecture Notes in Computer Science, Pages 402-429.

Springer-Verlag, 2002.

[10] Albert Zundorf. Rigorous Object Oriented Software Development,

Habiliation hesis, 2001.

[11] Java Community Process. JSR 175 : A Metadata Facility for the Java

Programming Language. http://jcp.org/en/jsr/detail?id=175 , Sep 2004.

[12] Velocity 1.3.1, The Apache Jakarta Project,

http://jakarta.apache.org/velocity/, March 2003.

[13] M. Bohlen, AndroMDA - From UML to Deployable Components,

version 3.1, http://www.andromda.org/, 2002-2005.

[14] XDoclet, Attribute Oriented Programming, http://xdoclet.sf.net/, Sep

2003.

[15] Jim Waldo, Alive and Well: Jini Technology Today. IEEE Computer,

33(6), pages 107-109, June 2000.

[16] Formal Techniques in Software Engineering. Model driven, Template

based, Model Transformer (MoTMoT). http://sf.net/projects/motmot/ ,

2004.

Fig. 1 Framework Components

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

1914

Fig. 4 Flow Diagram of Transformation

Fig. 7 Appling SOA profile

Fig. 8 Detecting a service interface

