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Abstract—This paper considers the problem of scheduling 

maintenance actions for identical aircraft gas turbine engines. Each 
one of the turbines consists of parts which frequently require 
replacement. A finite inventory of spare parts is available and all 
parts are ready for replacement at any time. The inventory consists of 
both new and refurbished parts. Hence, these parts have different 
field lives. The goal is to find a replacement part sequencing that 
maximizes the time that the aircraft will keep functioning before the 
inventory is replenished. The problem is formulated as an identical 
parallel machine scheduling problem where the minimum completion 
time has to be maximized. Two models have been developed. The 
first one is an optimization model which is based on a 0-1 linear 
programming formulation, while the second one is an approximate 
procedure which consists in decomposing the problem into several 
two-machine subproblems. Each subproblem is optimally solved 
using the first model. Both models have been implemented using 
Lingo and have been tested on two sets of randomly generated data 
with up to 150 parts and 10 turbines. Experimental results show that 
the optimization model is able to solve only instances with no more 
than 4 turbines, while the decomposition procedure often provides 
near-optimal solutions within a maximum CPU time of 3 seconds. 
 

Keywords—Aircraft turbines, Scheduling, Identical parallel 
machines, 0-1 linear programming, Heuristic. 

I. INTRODUCTION 
ACH year, a large amount of money is spent on the 
maintenance of high cost equipment such as aircraft. Such 

equipment consists of several life-limited parts which 
frequently require replacement and which never seem to fail 
(or need replacement) at the same time. Each failure of key 
parts causes the machine to fail to perform its intended 
function. Since supplying the inventory with spare parts is 
expensive, there must be a maintenance action that makes the 
aircraft functions without breakdowns until the inventory is 
replenished. 

In this paper, we consider the application of scheduling 
maintenance actions on gas turbine engines of an aircraft. 
Each aircraft contains several gas turbine engines. These 
turbines are identical. A finite inventory of spare parts is 
available and all parts are ready for the replacement at any 
time. The inventory consists of both new and refurbished 
parts. Hence, these spare parts have different field lives. The 
objective of this paper is to find a replacement part sequence 
that maximizes the time that the aircraft will keep functioning 
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without breakdowns before the inventory is eventually 
replenished. 

The problem can be formally described as follows: A set J 
of n spare parts (jobs) has to be scheduled on m identical 
parallel turbines (machines) with. The processing time (the life 
cycle of the spare part) is denoted by (pj). All the data are 
deterministic. Each machine processes at most one job at one 
time. All jobs are ready for processing at time zero. The 
problem consists in maximizing the minimum machine 
completion time denoted by Cmin. This problem is denoted by 
Pm || Cmin. 

The Pm || Cmin received scant attention in the scheduling 
literature. The first polynomial-time approximation scheme 
has been derived by Woeginger [5]. Tan and He [4] proposed 
two asymptotically optimal algorithm classes which have 
worst-case ratios very close to the upper bound for any given 
m. Tan et al. [3] considered the on-line variant problem with 
two uniform machines. They presented a comprehensive lower 
bound on the competitive ratio, which is a piecewise function 
of machines speed ratio s, and derived an algorithm which is 
optimal for any s ≥ 1.Haouari and Jemmali [1] proposed the 
first exact algorithm which includes several distinctive 
algorithmic features. It is based on tight lower and upper 
bounds as well as an effective symmetry-breaking branching 
strategy. 

A very closely related problem is minimization of 
maximum completion time denoted by Pm || Cmax. Clearly, for 
the case of two machines, the Pm || Cminand Pm || Cmaxare 
equivalent. A lot of literature has been devoted to this 
problem. For a comprehensive survey in Pm || Cmax, the reader 
is referred to Mokotoff [2]. 

In this paper, two models have been developed. The first 
one is an optimization model which is based on a 0-1 linear 
programming formulation, while the second one is an 
approximate procedure which consists in decomposing the 
problem into several two-machine subproblems.  

The paper is organized as follows. In Section II, a 0-1 linear 
programming model is proposed. Section III is devoted to the 
presentation of the decomposition-based approach. Finally, the 
experimental performance of our algorithms is analyzed in 
Section IV. 

II.  A 0-1 LINEAR PROGRAMMING MODEL 

Decision variables: 
xij= 1 if job j is assigned to machine i 
0 otherwise. 
Cmin = Denote the minimum completion time. 
The 0-1 linear programming model is described in the 
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following: 
Maximize Cmin 
Subject to: 
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Constraints (1) ensure that the completion time of minimum 

machine does not exceed the completion time of any other 
machine. Constraints (2) guarantee that each job is assigned to 
exactly one machine. Constraints (3) ensure that the minimum 
completion time is nonnegative. Constraints (4) show the 
binary nature of the decision variables xij. 

This model has been implemented using the optimization 
software LINGO 10. A CPU time limit of 2 minutes has been 
fixed. If this time limit is reached, then the program delivers 
the best found solution as well as a computed upper bound.  

III. A DECOMPOSITION APPROACH 
In this section, we propose an approximate procedure which 

consists in decomposing the problem into several two-machine 
subproblems. Each subproblem is optimally solved using the 
0-1 linear programming model.The decomposition approach 
can be described by the following steps: 
Step 1. Construct an initial solution using Constraints (1)-(4). 
Step 2. Rank machines in non-increasing order of their 

completion time (the maximum machine will have rank 
one and the minimum machine will have rank m). 

Step 3. Determine the optimal solution on the subproblem 
defined by the jobs assigned on machine 1 and machine 
m using the 0-1 linear program. 

Step 4. If the value of Cmin is improved, then update it and go 
to Step 3. 

Step 5. If there is no improvement, then replace the maximum 
machine by the next ranked machine in the two-
machine subproblem and reiterate.  

Step 6. If all the m-1 subproblems yield no improvement then 
the procedure stops.  

The model will keep looping until one of the following 
stopping criteria occurs (the processing times are assumed to 
be ranked according to the non-increasing order): 
1. Cmin reaches an upper bound U which is computed as 

follows: 
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2. There are no improvements between Cmin and all other 

machines. 
3. The CPU time reaches 2 minutes. 
4. The number of iterations (number of two-machine 

subproblems) reaches 1000. 

IV. EXPERIMENTAL RESULTS 
We assessed the two proposed approaches on two sets of 

randomly generated data. In the first data set (A), all 
processing times are generated using the discrete uniform 
distribution on [1, 25]. On the other hand, each instance of the 
second data set (B) includes 50% of jobs with processing 
times equal to 25, whereas the remaining processing times are 
generated using the discrete uniform distribution on [1,20]. 
This set is assumed to simulate real data where 50% of the 
parts are new (with maximum life time equal to 25 months) 
and the remaining parts are refurbished (having thus less life 
times). 

 
TABLE I 

PERFORMANCE OF THE 0-1 LINEAR PROGRAMMING MODEL ON DATA SET A 
  m=2 m=4 m=6 m=8 m=10 

n=20 

Timeavg 0.30 1.30 26.20 94.20 114.40 
Timemax 1 4 120 120 120 
Solved 10 10 9 3 1 
Gap 0 0 0.17 2.86 4.37 

n=50 

Timeavg 0.20 0.70 29.20 73.60 99.00 
Timemax 1 1 120 120 120 
Solved 10 10 9 4 2 
Gap 0 0 0.07 0.73 1.50 

n=100 

Timeavg 0.20 0.50 73.00 108.90 120.00 
Timemax 1 1 120 120 120 
Solved 10 10 4 1 0 
Gap 0 0 0.21 0.64 1.04 

n=150 

Timeavg 0.10 0.70 28.90 95.60 120.00 
Timemax 1 1 120 120 120 
Solved 10 10 8 3 0 
Gap 0 0 0.05 0.25 0.79 

 
TABLE II 

PERFORMANCE OF THE 0-1 LINEAR PROGRAMMING MODEL ON DATA SET B 
  m=2 m=4 m=6 m=8 m=10 

n=20 

Timeavg 0.50 120.00 74.70 120.00 120.00 
Timemax 2 120 120 120 120 
Solved 10 0 4 0 0 
Gap 0.00 1.74 1.48 10.77 6.05 

n=50 

Timeavg 0.00 26.90 96.10 120.00 120.00 
Timemax 0.1 106 120 120 120 
Solved 10 9 3 0 0 
Gap 0.00 0.04 0.97 1.39 4.11 

n=100 

Timeavg 0.10 34.80 106.00 112.70 120.00 
Timemax 1 120 120 120 120 
Solved 10 10 2 1 0 
Gap 0.00 0.00 0.39 1.12 3.29 

n=150 

Timeavg 0.10 42.30 107.00 120.00 120.00 
Timemax 1 120 120 120 120 
Solved 10 0 2 0 0 
Gap 0.00 0.06 0.35 1.10 1.84 
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The number of parts n has been taken equal to 20, 50, 100 
and 150. The number of turbines m has been taken equal to 2, 
4, 6, 8 and 10. For each pair (n,m), 10 instances have been 
generated, resulting in a total number of 400 instances. 

A. Performance of the 0-1 Linear Programming Model 
Tables I and II depict the performance of the proposed 0-1 

linear programming model on data sets A and B, respectively. 
For each pair (n,m), the following performance indicators are 
reported: 
• Timeavg: the average CPU time (in seconds) computed 

over the corresponding 10 instances 
• Timemax: the maximum CPU time computed over the 

corresponding 10 instances.  
• Solved: the number of solved instances out of 10. 
• Gap: the average gap computed with respect to the best 

obtained upper bound. 
From Tables I and II, we observe that the average CPU time 

required by the 0-1 linear programming model increases as the 
number of machines increases. In particular, almost all 
instances with 10 machines are not optimally solved within the 
time limit of 2 minutes. Also, it seems that Data Set B is more 
difficult to solve. Indeed, except for m=2, the model is not 
able to solve all the instances for a given number of turbines. 

B. Performance of the Decomposition Approach 
Tables III and IV depict the performance of the 

decomposition approach on data sets A and B, respectively. 
From these tables, it is clear that the decomposition approach 
performs much better than the 0-1 linear programming model 
both on instances A and B. Indeed, the maximum required 
CPU time never exceeds 3 seconds. Moreover, the solutions 
provided by the decomposition approach are very close to the 
upper bounds. In particular, all of the largest instances with 
100 parts and 10 turbines are optimally solved for both types 
of data sets. Also, it should be noticed that the decomposition 
approach does not seem to be sensitive to the data generation, 
which indicates a promising robustness behavior. 

 
TABLE III 

PERFORMANCE OF THE DECOMPOSITION APPROACH ON DATA SET A 
  m=4 m=6 m=8 m=10 

n=20 

Timeavg 0.90 1.40 1.20 2.00 
Timemax 3 2 2 3 
Solved 10 10 10 10 
Gap 0.23 0.54 3.31 7.02 

n=50 

Timeavg 0.60 1.20 0.70 1.80 
Timemax 1 2 1 2 
Solved 10 10 10 10 
Gap 0.00 0.41 0.18 0.00 

n=100 

Timeavg 0.50 1.70 0.70 2.10 
Timemax 1 2 1 3 
Solved 10 10 10 10 
Gap 0.00 0.00 0.00 0.00 

n=150 

Timeavg 0.50 2.00 1.00 2.70 
Timemax 1 2 1 3 
Solved 10 10 10 10 
Gap 0.00 0.00 0.00 0.00 

TABLE IV 
PERFORMANCE OF THE DECOMPOSITION APPROACH ON DATA SET B 
  m=4 m=6 m=8 m=10 

n=20 

Timeavg 1.10 1.10 1.60 1.80 
Timemax 5 2 2 2 
Solved 10 10 10 10 
Gap 1.84 1.64 11.65 6.05 

n=50 

Timeavg 0.50 1.50 1.50 2.50 
Timemax 1 2 2 3 
Solved 10 10 10 10 
Gap 0.04 0.45 0.87 3.56 

n=100 

Timeavg 0.30 1.60 1.20 2.20 
Timemax 1 2 2 3 
Solved 10 10 10 10 
Gap 0.00 0.00 0.04 0.00 

n=150 

Timeavg 0.40 2.00 1.30 2.00 
Timemax 1 2 3 3 
Solved 10 10 10 10 
Gap 0.00 0.00 0.09 0.00 
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