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Abstract—In this paper the fatigue crack initiation location of 

double shear lap joints, treated by interference fit and bolt clamping, 
have been investigated both experimentally and numerically. To do 
so, using the fracture section of available fatigue tested specimens of 
interference fitted and torque tightened Aluminum 2024-T3 plates, 
the crack initiation location was determined. The stress distribution 
attained from the finite element analysis was used to help explain the 
results observed in the experimental tests. The results showed that the 
fatigue crack initiation location changes from top and mid plane at 
the hole edge to somewhere far from the hole edge (stress 
concentration region) in different combination of clamping force, 
interference fit size and applied cyclic load ranges. It is worth 
mentioning that the fatigue crack initiation location affects the fatigue 
life of the specimens too. 
 

Keywords—Fatigue crack initiation, Interference fit, Bolt 
clamping, Double shear lap joint 

I. INTRODUCTION 
NVESTIGATIING the fatigue behaviour of mechanical 
fastened joints is essential in engineering design in metallic 

and specifically in aerospace structures. In such structures, 
implementing riveted or bolted joints needs the components to 
be drilled to create fastener holes, which cause geometrical 
discontinuities and entail local stress concentration during 
loading. In order to countervail the disadvantage of the holes, 
different fatigue life improvement techniques have been 
proposed such as pin interference fitting [1, 2] and bolt 
clamping [3]. When bolt clamping, in addition to compressive 
pre-stress, a resistant force is created against fatigue crack 
growth by means of frictional shear stress when the contacted 
surfaces are pressed in the joint [3, 4]. Interference fitting a 
hole in a cyclic loaded specimen reduces the local cyclic stress 
amplitude around the hole which increases the fatigue life, but 
also increases the mean stress which causes the fatigue life to 
be reduced [3, 4].Researchers have shown that the efficiency 
of the mentioned techniques is related to geometrical 
specifications (such as the size of interference fit, the shape of 
the joint), the type of subsequent loading, lubrication, quality 
of contacted surfaces, tightening torque in bolt clamped 
specimens and many other parameters [5-7]. Crack initiation 
and growth location in the specimens is another important 
parameter that affects the fatigue life of the specimen. In this 
paper the location of fatigue crack initiation and growth in 
different geometric and loading conditions is investigated both 
experimental and numerical.  
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To do so, using fracture section of the available double 

shear lap experimental fatigue tested specimens of Al 2024-T3 
alloy the fatigue crack initiation location has been 
investigated. Results show that mostly the crack nucleates near 
the entrance plane in interference fitted specimens and from 
the mid plane in the bolt clamped specimens. However, the 
fatigue crack initiation location is different in combined 
interference fitted-bolt clamped specimens where the crack 
initiation location varies from the entrance plane to the mid 
plane in different load ranges.  Also in a number of specimens, 
the cracks nucleate far from the hole edge which is due to 
occurrence of fretting wear and fatigue. The numerical results 
show that the maximum longitudinal stress occurs at the hole 
edge in a depth confirming the experimental fatigue crack 
initiation location.  

II. EXPERIMENTS 
Fatigue test results were available for similar configurations 

and loading conditions for different specimen types of 
clearance fitted (CF), interference fitted (IF, pin interference 
fitted with the configuration of Figure1.a), bolt clamped (BC) 
specimens which were torque tightened according to the 
configuration of Figure 1.b and finally interference fitted-bolt 
clamped (IF-BC) specimens which were interference fitted 
and then torque tightened. Consequently, fracture sections of 
the different specimen types were visual examined to 
determine the crack initiation location of different specimen 
types under various cyclic loading ranges. The detailed 
preparation processes of specimen can be found in Refs. [8-
10].  
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