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NonStationary CMA for Decision Feedback Equalization

of Markovian Time Varying Channels
S. Cherif, M. Turki-Hadj Alouane

Abstract— In this paper, we propose a modified version of the
Constant Modulus Algorithm (CMA) tailored for blind Decision
Feedback Equalizer (DFE) of first order Markovian time varying
channels. The proposed NonStationary CMA (NSCMA) is designed
so that it explicitly takes into account the Markovian structure of
the channel nonstationarity. Hence, unlike the classical CMA, the
NSCMA is not blind with respect to the channel time variations.
This greatly helps the equalizer in the case of realistic channels, and
avoids frequent transmissions of training sequences.

This paper develops a theoretical analysis of the steady state
performance of the CMA and the NSCMA for DFEs within a time
varying context. Therefore, approximate expressions of the mean
square errors are derived. We prove that in the steady state, the
NSCMA exhibits better performance than the classical CMA. These
new results are confirmed by simulation.

Through an experimental study, we demonstrate that the Bit Error
Rate (BER) is reduced by the NSCMA-DFE, and the improvement
of the BER achieved by the NSCMA-DFE is as significant as the
channel time variations are severe.

Keywords— Time varying channel, Markov model, Blind DFE,
CMA, NSCMA.

I. INTRODUCTION

IN wireless communications the channel time variations
often conflict with the equalizer, and, as a result, impair

communication efficiency. Classical blind equalizers designed
for stationary channels are not robust with respect to the
channel time variations. We present in this paper a solution
to the particular problem of radio-mobile transmission. In this
context, the channel time variations are often modeled by
a first order Markov process [1], [2]. Furthermore, we are
interested in Decision Feedback Equalizers (DFEs) that are
preferred to transverse equalizers in the case of severe multi-
path time varying channels [3]. Precisely, only the Feedback
FIR filter is considered. As a matter of fact, we refer to the
CMA tailored for a DFE (CMA-DFE) as proposed in [4], [5].
To guarantee better performance of the blind DFE, we propose
a new adaptive algorithm that can identify the Markovian
time variations of the actual channel impulse response. The
proposed NonStationary CMA (NSCMA), which is based on
the classical CMA [6], is designed to take into account the
prior knowledge on the stochastic nonstationarity model of
the channel to equalize. The adaptive identification of the
unknown Markovian parameter of the nonstationarity model

Manuscript received October 4, 2005.
S. Cherif is with the Department of Mathématiques Appliquées, Signaux
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is carried out in a blind mode without using any training se-
quences. The update of the Markovian parameter is performed
by the Recursive Least Square (RLS) algorithm chosen for
its good convergence rate in presence of correlated inputs as
it is the case here. The proposed approach is different from
those presented in the literature [7], [8] in order to improve
the performance of equalizers operating in fading propagation
context and in semi blind or blind mode.

In this paper, we develop a theoretical analysis of the
steady state performance of the CMA and the NSCMA for
DFEs within a time varying context. Therefore, approximate
expressions of the mean square errors are derived. These new
results that are confirmed by simulation, have not been dealt
with previously in the literature. However, in [9], [10], similar
theoretical analysis are developed in the case of transversal
CMA equalizer for a time constant channel.

In addition, an extensive experimental study of the NSCMA-
DFE performance, under several realistic propagation condi-
tions, is carried out. The results reported here, demonstrate the
ability of the NSCMA to identify the actual parameter of the
Markovian model of the channel time variations. Hence, it is
shown that the NSCMA exhibits better tracking ability than the
classical CMA. Moreover, the superiority of the NSCMA blind
DFE over the CMA blind DFE becomes even more significant
when the propagation conditions are severe.

This paper is organized as follows. Section II presents a
formulation of the studied equalization problem. The design
of the proposed NSCMA is presented in Section III. The
analysis of the steady state performance of the NSCMA-
DFE is presented in Section IV. Section V, presents the
experimental study of the NSCMA performance.

II. PROBLEM FORMULATION

A more typical and indeed more general DFE structure
usually consists of a Feedforward FIR filter followed by a
Feedback FIR filter. However, in this paper, only the Feedback
FIR filter is considered for two reasons. Firstly, in the more
general structure it is usually possible to separate the adap-
tation of the FIR section from the feedback one. Secondly,
the aim of this paper is to highlight the good properties of
the new proposed algorithm dedicated to the adaptation of the
feedback section. The classical formulation of the studied DFE
equalization problem is illustrated by Fig. 1.

The noisy received signal at the output of the channel is

yn = xn + ηn = an + ΞT
nAn + ηn, (1)

where xn is the noiseless channel output of power Px =
E(x2

n), Ξn =
(

ξ1
n, ξ2

n, . . . , ξN
n

)T is the time varying channel



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:4, 2008

561

�� �

Θ(z) �

�

+

�

ân�1 + Ξ (z) � �
�

+

ηn

�yn
an xn

Adaptation

cn

−

� �

Fig. 1. Functional block diagram of the blind DFE

linear filter of length N , An = (an−1, an−2, . . . , an−N )T

is the input data vector, and ηn is an additive white noise
assumed to be Gaussian with zero mean value and independent
of An. The noise power, Pη = E(|ηn|2), is fixed through the
Signal to Noise Ratio,

SNR(dB)
�
= Px(dB) − Pη(dB). (2)

This equation shows the presence of a direct path in the
transmission channel.

The input of the decision device is given by

cn = yn − ΘT
n
̂An, (3)

where Θn =
(

θ1
n, θ2

n, . . . , θN
n

)T is the adaptive feedback filter
of length N that represents the equalizer impulse response, and
̂An = (ân−1, ân−2, . . . , ân−N )T the adaptive equalizer tap-
input with ân being the estimation of the transmitted symbol
an of power Pa = E(|an|2).

The time variations of the channel filter, Ξn, are represented
by a first order Markovian model

Ξn = αΞn−1 +
√

1 − α2Ωn, (4)

where 0 ≤ α < 1 and Ωn =
(

ω1
n, ω2

n, . . . , ωN
n

)T
is the nonsta-

tionarity noise vector. The noise components ωi
n are assumed

to be Gaussian, zero mean value, statistically independent and
characterized by the power Pω = E

{

∣

∣ωi
n

∣

∣

2
}∣

∣

∣

i=1,··· ,N
. The

power of the nonstationarity noise vector, PΩ = E(ΩH
n Ωn) =

NPω, is fixed by the Signal to Interference Ratio,

SIR(dB)
�
= Pa(dB) − E

{

∣

∣ΞT
nAn

∣

∣

2
}

(dB) = −PΩ(dB). (5)

As a matter of fact, the Markov model is a widely used
approximation model in radio mobile communication [2].
Moreover, if the channel components are assumed to fade in-
dependently following the same statistical model, the channel
nonstationarity can be modeled, without loss of generality, by
a first order Markov model [1]. The value of the Markovian
parameter α is fixed through the value of parameter fdTs

according to the following relation, α = J0 (2πfdTs), where
fd is the maximum Doppler frequency, Ts is the sampling
period of the digital communication system, and J0 is the
Bessel function of first kind of order zero.

III. DESIGN OF THE NONSTATIONARY CMA
We propose in this paper to design an adaptive algorithm

that takes into account the prior knowledge of the nonstation-
arity model structure (4). Hence, we keep the structure of the
classical CMA 2-2 and include the constraints on the nature
of the nonstationarity as follows

Θn+1 = βΘn + μεG
n

̂A∗
n, (6)

where μ is the step size that controls the adaptation of Θn,
β is an estimate of the unknown Markovian parameter α, and
εG
n is the error signal described by

εG
n = cn

(

|cn|2 − R2

)

, R2 =
E

{

|an|4
}

E
{

|an|2
} . (7)

The estimation of the Markovian parameter at every instant
n, is performed by the RLS algorithm. It is given by the

minimization of the cost function Jn (β) =
n

∑

i=1

|ei|2, where

ei = ci − âi, (8)

is the instantaneous error relating to the DFE output. There-
fore, the estimate at time n, βn, is the solution of

∂

∂β
J (β) = 2enR

∂enR

∂β
+ 2enI

∂enI

∂β
= 0, (9)

where enR = Re {en} and enI = Im {en} . The partial
derivative of enR with respect to β is given by

∂

∂β
enR =

∂

∂β

(

en + e∗n
2

)

=
1
2

∂

∂β

[

yn − ΘT
n
̂An − ân + y∗

n − ΘH
n

̂A∗
n − â∗

n

]

= −Re
{

ΘT
n−1

̂An

}

− β
∂

∂β
Re

{

ΘT
n−1

̂An

}

(10)

− μ
∂

∂β
Re

{

εG
n−1

̂AH
n−1

̂An

}

,

whose complexity is due to the recursive nature of the DFE.
In fact, an infinite memory is needed to calculate the two last
terms of (10). Basing on classical approximations, one can
write that

∂

∂β
enR � −Re

{

ΘT
n−1

̂An

}

. (11)

In the same manner, one obtain
∂

∂β
enI = −Im

{

ΘT
n−1

̂An

}

. (12)

Finally, in view of (11) and (12) and by replacing enR and
enI by their expressions as functions of en and e∗n in (9), we
can write that

∂

∂β
J (β)

∣

∣

∣

∣

β=βn

= −2
n

∑

i=1

Re
{

eiΘH
i−1

̂A∗
i

}

= −2
∑n

i=1 Re

⎧

⎨

⎩

(

yi − âi

−μεG
i−1

̂AH
i−1

̂Ai

)

ΘH
i−1

̂A∗
i

⎫

⎬

⎭

+2βn

∑n
i=1

∣

∣

∣
ΘT

i−1
̂Ai

∣

∣

∣

2

.

(13)
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Thus, it follows from (9) and (13) that

βn =

n
∑

i=1

Re
{(

yi − μεG
i−1

̂AH
i−1

̂Ai − âi

)

ΘH
i−1

̂A∗
i

}

n
∑

i=1

∣

∣

∣
ΘT

i−1
̂Ai

∣

∣

∣

2
. (14)

The NSCMA is then described by the following equations
where a recursive implementation of βn is deduced from the
optimal solution given by (14):

Θn+1 = βnΘn + μεG
n

̂A∗
n, (15)

βn =
numn

denn
, (16)

where

numn = numn−1 + Re

⎧

⎨

⎩

(

yn − ân

−μεG
n−1

̂AH
n−1

̂An

)

ΘH
n−1

̂A∗
n

⎫

⎬

⎭

;

num0 = 1,

denn = denn−1 +
∣

∣

∣
ΘT

n−1
̂An

∣

∣

∣

2

; den0 = 1.

(17)

IV. PERFORMANCE ANALYSIS OF THE NSCMA ADAPTIVE
FILTER

The aim here is to study the ability of the NSCMA adaptive
filter to track, in the steady state, the time variations of
the channel. Given that the adaptation process is nonlinear,
the theoretical analysis is carried out under the following
considerations:

• The channel is noiseless.
• The equalizer performs in a training mode; therefore,

̂An = An.
• The adaptive parameter βn has already converged to a

constant mean value denoted by β = lim
n→∞E {βn}. The

time variations of the NSCMA adaptive filter vector are
then described by,

Θn+1 = βΘn + μεG
n A∗

n. (18)

The steady state performance of the NSCMA adaptive filter
is measured by its mean square error (MSE), which is defined
as

MSE = lim
n−→∞E

{

|en|2
}

. (19)

If Vn = Ξn − Θn denotes the deviation vector, then the
instantaneous error (8) is rewritten as

en = yn − ΘT
nAn − an = V T

n An. (20)

By combining (18) and (4) one can show that

Vn+1 = βVn + (α − β) Ξn −μεG
n A∗

n +
√

1 − α2Ωn+1. (21)

Assumption 3.1 The transmitted symbols an are assumed
i.i.d. and zero mean valued. Moreover, for complex valued
data E

{

a2
n

}

= 0 is assumed, which is most often verified by
modulation scatter diagrams.

Assumption 3.2 In steady state, |en|2 is reasonably small,
therefore en components of power ≥ 2 are neglected.

Assumption 3.3 The deviation vector Vn is independent of
an that is valid for small values of the step size. So, we can
write the following:

E
{

‖Vn‖2
}

=
E

{

|en|2
}

Pa
. (22)

By squaring (21) and taking expectations of both sides, we
get under the assumptions 3.1, 3.2, and 3.3 which are used in
[9], the following relation (the computation steps are detailed
in Appendix):

lim
n−→∞E

{

‖Vn+1‖2
}

= β2 lim
n−→∞E

{

‖Vn‖2
}

+ lim
n−→∞E

{

|en|2
}

(

μ2NPaT1

−μβT3

)

+γPΩ + μ2NPaT2

(23)
where,

γ = 1 − α2 + (α − β)2 + 2 (α − β)
β − μU

1 + Z
,

Z =
μαU

1 − αβ
,

and U , T1, T2 and T3 are given by the following :

Real valued data
U Pa (3Pa − R2)

T1 9E
(

|an|4
)

− 12R2E
{

|an|2
}

+ R2
2

T2 E
{

|an|6
}

− 2R2E
{

|an|4
}

+ R2
2E

{

|an|2
}

T3 6E
{

|an|2
}

− 2R

Complex valued data (E
{

a2
n

}

= 0 )
Pa (2Pa − R2)

5E
(

|an|4
)

− 8R2E
{

|an|2
}

+ R2
2

E
{

|an|6
}

− 2R2E
{

|an|4
}

+ R2
2E

{

|an|2
}

4E
{

|an|2
}

− 2R2

As in the steady state lim
n−→∞E

{

‖Vn+1‖2
}

=

lim
n−→∞E

{

‖Vn‖2
}

, by substituting (22) into (23) the
following expression of the MSE is deduced:

MSE =
γPaPΩ + μ2NP 2

a T2

1 − β2 − μ2NP 2
a T1 + μβT3Pa

. (24)

The analytical expression of the MSE, which is valid for small
values of the step size, is interesting for a preliminary study of
the tracking ability of the NSCMA adaptive filter. Furthermore,
from the result (24), one can easily deduce the misadjustment
related to the CMA-DFE that corresponds to β = 1.

Based on (24), the tracking ability of the NSCMA is
compared with that of the CMA. The superiority of the
NSCMA over the CMA is noticed in several transmission
contexts. To illustrate this superiority, we choose the two
transmitted signals that are presented in [9]: s1 a complex
16 QAM signal with E

{|an|6
}

= 1950, E
{|an|4

}

= 132,
Pa = E

{|an|2
}

= 10, and R2 = 13.2; s2 a real values 6-PAM
constellated an ∈ {5, 3, 1,−1,−3,−5} with E

{|an|6
}

=



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:4, 2008

563

5451.7, E
{|an|4

}

= 235.7, Pa = E
{|an|2

}

= 11.67, and
R2 = 20.2.

The Markovian parameter is α = 0.9, the value of PΩ is
fixed by a SIR = 11 dB, and N = 5 as in radio mobile
communication. Fig. 2 and Fig. 3 illustrate, for the two
transmitted signals s1 and s2, the variations of the theoretical
MSE (24) over μ, for various values of β: β = 1 (CMA-
DFE), β = 0.95 and β = α = 0.9. They show that for all
values of β, the variation of the MSE exhibits a minimum
corresponding to an optimal μ value. This behavior that can
be deduced from ( 24), is appropriate to the time variation of
the equalized channel. In fact, when the channel is constant
over time, the MSE is an increasing function of μ.

For the input signals, the NSCMA outperforms the CMA
not only for β = α but also for β = 0.95. Hence, the NSCMA-
DFE is expected to outperform the classical CMA-DFE even
if the convergence of the adaptive Markovian parameter, βn,
to the actual Markovian parameter, α, occurs with a bias.

10
−4

10
−3

10
−2

−2.2

−2

−1.8

−1.6

−1.4

−1.2

−1

Step size, μ

β = 0.9
β = 0.95
β = 1.0

Fig. 2. Variations of the theoretical MSE over the step size μ (16 QAM
signal; N = 5, α = 0.9, SIR = 11 dB).
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1.4

1.2
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0.8

0.6

0.4

0.2

0

0.2

0.4

Step size, μ

β = 0.9
β = 1.0
β = 0.95

Fig. 3. Variations of the theoretical MSE over the step size μ (6-PAM signal;
α = 0.9, SIR = 11 dB, N = 5).

A comparison between the theoretical MSE and the experi-
mental results is shown in Fig. 4 and Fig. 5 which correspond
respectively to the transmitted signals s1 and s2. Here, we

consider the NSCMA with α = β. These figures show an
agreement between theory and simulation for small values of
the step size.

10
−7

10
−6

10
−5

10
−4

1.5

1.45

1.4

1.35

1.3

1.25

1.2

1.15

1.1

1.05

−1

Step size, μ

Experimental MSE
MSE from Theory

Fig. 4. Evolution of theoretical MSE over the step size μ (16 QAM signal;
α = 0.95, SIR = 11 dB, SNR = 20 dB)
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0.65
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0.55

0.5

0.45

0.4

0.35

0.3

Step size, μ

MSE from theory
Experimental MSE

Fig. 5. Evolution of theoretical MSE over the step size μ (6 PAM signal;
α = 0.95, SIR = 11 dB, SNR = 20 dB)

V. EXPERIMENTAL STUDY OF THE NSCMA-DFE
PERFORMANCE

We show in this section the results of an experimental
study that demonstrate the good properties of the proposed
NSCMA. Our simulations are carried out under the following
considerations. The transmitted signal an is assumed i..i.d.
and belongs to the QPSK alphabet {±1 ± j}. The equalized
Rice type channel is constituted of a LOS (Line Of Sight)
path plus five (N = 5) supplementary paths modeling
interference as in radio mobile (cost 207) or WLAN channel
models.

A. Convergence of the adaptive Markovian parameter

To study the mean convergence behavior of the adaptive
Markovian parameter, we consider the case of a noiseless
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channel (Pη = 0). Fig. 6 shows the time variations of βn in the
case of a quite severe time varying channel as α = 0.94 and
SIR = 8 dB. The value of α = 0.94 (fdTs = 0.08) indicates
a fast time varying channel and the small value of the SIR
(8 dB) corresponds to a high intersymbol interference. The
step size μ of the adaptive equalizer is fixed to the optimal
value that provides the lowest value of the MSE. This figure
shows that the adaptive estimate βn converges, in almost 150
samples, to an average value close to the actual value of the
Markovian parameter α. This significant convergence rate is
due to the good convergence properties of the RLS algorithm.

0 50 100 150 200 250 300 350 400 450 500

0.7

0.8

0.9

1

1.1

1.2

Time, n

Fig. 6. Time variations of βn (α = 0.94, SIR = 8 dB).

To go further into the analysis, the variations of convergence
bias, Bias =

(

|E{βn}−α|
α

)

(%), and the standard deviation

σβ =
√

E {β2
n} − (E {βn})2, of the adaptive Markovian

parameter are evaluated. Therefore, Tab. I recaps the variations
of Bias and σβ over the SNR. Two types of the channel
time variations are considered: (α = 0.95, SIR = 8 dB) and
(α = 0.9, SIR = 8 dB). The results reported in Tab. I, show
that the values of the convergence bias are relatively low for
the two cases of α. Indeed, the values of Bias vary in the
range [0 : 3](%). Therefore, the proposed NSCMA exhibits a
good ability to identify the Markovian parameter.

B. Tracking ability of the NSCMA

Fig. 7 shows the variations over μ of the MSEs relating to
the CMA, the NSCMA, and the NSCMA with a fixed Marko-
vian parameter (βn = α). Two values of α are considered:
0.95 and 0.9 (SIR = 8 dB; SNR = 20 dB).

TABLE I
VARIATIONS OF THE CONVERGENCE BIAS OVER THE SNR

SIR (dB) 10 11 12 13 14 15 16 17 18 19 20

α = 0.95 Bias (%) 0.27 0.89 0.26 0.6 1.17 0.11 0.67 0.90 1.15 0.03 0.24

σβ (×10
−3

) 2.3 1.8 2.0 1.7 1.5 1.6 1.5 1.4 1.4 1.5 1.5
α = 0.9 Bias (%) 1.56 0.90 2.5 0.04 1.25 2.17 2.83 0.37 0.95 1.38 1.71

σβ (×10
−3

) 4.5 3.5 3.0 3.2 2.9 2.6 2.4 2.8 2.6 2.5 2.4

This figure shows that the NSCMA outperforms the CMA
(gain � 1 dB). Moreover, the similarity of the performance of
the NSCMA with that of the NSCMA with fixed Markovian
parameter (βn = α) indicates that the adaptive Markovian
parameter βn has converged to its true value α. Therefore,
one can conclude that, for this case, the convergence of the
Markovian parameter is achieved with an insignificant bias.

1 2 3 4 5 6 7 8 9 10

x 10
−3

6.5

−6

5.5

−5

4.5

−4

3.5

Step size, μ

NSCMA (βn = α = 0.95)
NSCMA (α = 0.95)
NSCMA (α = 0.9)
NSCMA (βn = α = 0.9)
CMA (α = 0.9)
CMA (α = 0.95)

Fig. 7. Variations of the MSE over μ for SIR = 8 dB, SNR = 20 dB.

C. Performance of the blind DFE

The ability of the NSCMA to reduce the BER is firstly
checked through the scatter diagrams of the equalizer output.
Fig.8 shows the scatter diagrams of the NSCMA equalizer out-
puts and those of the CMA equalizer outputs for respectively
two cases of channel time variations: α = 0.95, SIR = 8 dB
and α = 0.9, SIR = 8 dB. The first represents a moderate time
varying channel, however the latter represents fast variations.
In both cases, the SNR = 20 dB and the step size μ is fixed
to its optimal value for the two algorithms. Fig. 8 shows that,
for these two considered propagation contexts, the NSCMA
equalizer outputs are more closer to the transmitted QPSK
alphabet ({±1 ± j}) than the CMA equalizer outputs. This
results in an enhancement of the BER by the NSCMA-DFE.

To go further into the evaluation of the NSCMA perfor-
mance, the variations of the BER over the SNR are evaluated
for the above two considered values of α (0.95 and 0.9) and
for two different values of SIR: 8dB and 11dB. Fig. 9 and Fig.
10 display the experimental results relating to the CMA-DFE
and the NSCMA-DFE.
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Fig. 8. Scatter diagram of the equalizer output: a - CMA, b - NSCMA 1 -
α = 0.95, 2 - α = 0.9 for QPSK constellation

Fig. 9 that corresponds to SIR : 11dB, shows that in
both cases of α, the NSCMA outperforms the CMA for all
considered values of the SNR.

Particularly, when the channel time variations are fast, (α =
0.9), the gain achieved is very important. For example by
setting the BER at 5 × 10−4, the gain in SNR is equal to
3.59 dB for α = 0.9, while it is only equal to 2.44 dB when
α = 0.95.

Fig. 10 corresponds to SIR 8 dB (a more severe transmission
context). Unsurprisingly, the NSCMA presents lower BER
than the CMA. The gain in SNR is more important when
SIR = 8 dB than when SIR = 11 dB. For α = 0.95 and
BER = 5 × 10−3, the gain in SNR is equal to 4.35 dB
compared to 0.8 dB realized for SIR = 11 dB.

In all studied cases, the BER is remarkably reduced by
the use the proposed NSCMA-DFE. The results confirm the
ability of the NSCMA to identify the Markovian parameter in
a blind DFE. Thus, the NSCMA presents better performance
than CMA especially in severe propagation conditions. The
gap between performances of the two algorithms increases as
the channel time variations become fast.

5 10 15 20
10

−4

10
−3

10
−2

10
−1

SNR (dB)

NSCMA (α = 0.95)
NSCMA (α = 0.9)
CMA (α = 0.9)
CMA (α = 0.95)

Fig. 9. Variations of the BER over the SNR for SIR = 11 dB.
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Fig. 10. Variations of the BER over the SNR for SIR = 8 dB.

All the reported results highlight the good tracking pro-
prieties of the proposed NSCMA. Indeed, it outperforms the
classical CMA and it reduces considerably the BER when it is
used in a blind DFE. Moreover, the performance improvement
is as significant as the channel time variations are fast.

VI. CONCLUSION

A new modified CMA tailored for first order Markovian
time varying radio mobile channels was introduced. The
proposed NSCMA is obtained by modifying the classical
CMA, according to the a priori knowledge of the channel
time variations model. The performance of the NSCMA was
compared with the one of the CMA through a theoretical and
an experimental study. Therefore, it is shown that the NSCMA
exhibits better tracking ability than the CMA. Indeed, several
experimental results, display the ability of the NSCMA to
identify the Markovian parameter of the channel time varying
model and to improve significantly the BER.

APPENDIX

From the recurrence (21), it is easy to deduce the following

‖Vn+1‖2 =
β2 ‖Vn‖2 + (α − β)2 ‖Ξn‖2

+(1 − α2) ‖Ωn+1‖2 + μ2
∥

∥εG
n A∗

n

∥

∥

2

−2μβ�e
(

V H
n A∗

nεG
n

)

+ 2β(α − β)�e
[

V H
n Ξn

]

−2μ(α − β)�e
(

ΞH
n A∗

nεG
n

)

−2μβ
√

1 − α2�e
(

ΩH
n+1A

∗
nεG

n

)

+2β(α − β)
√

1 − α2�e
[

V H
n Ωn+1

]

Since the components of Ωn+1are independent of each
other, and as Ωn+1 is a zero mean vector which is independent
of the input vector An, therefore E

{

ΩH
n+1A

∗
nεG

n

}

= 0 and
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E
{

V H
n Ωn+1

}

= 0. So, one can write that

E
{

‖Vn+1‖2
}

=
β2E

{

‖Vn‖2
}

+ (α − β)2 E
{

‖Ξn‖2
}

+(1 − α2)E
{

‖Ωn+1‖2
}

+μ2 E
{

∥

∥εG
n A∗

n

∥

∥

2
}

︸ ︷︷ ︸

Term1

−2μβ�eE
(

V H
n A∗

nεG
n

)

︸ ︷︷ ︸

Term2

+2β(α − β)�eE
(

V H
n Ξn

)

︸ ︷︷ ︸

Term3

−2μ(α − β)�eE
(

ΞH
n A∗

nεG
n

)

︸ ︷︷ ︸

Term4

.

(25)
• Term1: Under the assumption 3.3 and since the in-

put signal an is assumed independent, one can write that
E

{

∥

∥εG
n A∗

n

∥

∥

2
}

= NPaE
{

∥

∥εG
n

∥

∥

2
}

.

According to (8), we obtain

cn = en + an,

|cn|2 − R2 = |en|2 + |an|2 + ena∗
n + en

∗an − R2,

εG
n = (en + 2an) |en|2 + (2en + an) |an|2

+en (ena∗
n − R2) + (en

∗an − R2) an.
(26)

Under the assumption 3.2, on can write the following:

E
{

�e
{

∥

∥εG
n

∥

∥

2
}}

= T1E
{

|en|2
}

+ T2,

where
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⎪

⎪

⎪
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9E
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− 12R2E
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5E
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⎪

⎪

⎪
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⎪

⎩

E
{

|an|6
}

− 2R2E
{

|an|4
}

+R2
2E
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|an|2
}

(Real input)

E
{

|an|6
}

− 2R2E
{

|an|4
}

+R2
2E

{

|an|2
}

(Complex input E
{

a2
n

}

= 0 )

.

• Term2: From (20), one can write that, E
{

V H
n A∗

nεG
n

}

=
E(e∗nεG

n ), where

�e
{

εG
n en

∗} = |en|4

+ |en|2
(

2 |an|2 + 2en
∗an + ena∗

n − R2

)

+ en
∗an

(

|an|2 + en
∗an − R2

)

.

Assuming that when the adaptive filter reaches the steady
state e2

n is reasonably small to neglect the statistics of order
higher than 2, on can write the following

2E
{�e

{

en
∗εG

n

}}

= T3E
{

|en|2
}

,

where

T3 =

⎧

⎨

⎩

(

6E
{

|an|2
}

− 2R2

)

Pa (Real input)
(

4E
{

|an|2
}

− 2R2

)

Pa (Complex input )
.

• Term3: Combining (4) and (21) one can write the follow-
ing

V H
n+1Ξn+1 = βαV H

n Ξn + α (α − β) ΞH
n Ξn

− μα
(

εG
n A∗

n

)H
Ξn + (1 − α2)ΩH

n+1Ωn+1

+
√

1 − α2

(

βαV H
n + α (α − β) ΞH

n

−μα
(

εG
n A∗

n

)H + αΞH
n

)
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Υ

Ωn+1.

As Υ = 0, we obtain the following:

E
{

V H
n+1Ξn+1

}

= βαE
{

V H
n Ξn

}

+ α (α − β)E
{

ΞH
n Ξn

}

− μαE
{

(

εG
n A∗

n

)H
Ξn

}

+ (1 − α2)E
{

ΩH
n+1Ωn+1

}

.

Consequently,

lim
n−→∞E

{

V H
n+1Ξn+1

}

= βα lim
n−→∞E

{

V H
n Ξn

}

+ (1 − αβ) PΩ

− μα C.

where C = lim
n−→∞E

{

�e
(

(

εG
n A∗

n

)H Ξn

)}

.

Assuming that at the steady state lim
n−→∞E

{

V H
n+1Ξn+1

}

is
finite, we can deduce the following:

lim
n−→∞E

{�e
(

V H
n Ξn

)}

= PΩ − μα

(1 − αβ)
C.

• Term4: From (4) and (21) we show the following:

- Case of real valued input:
E

{

ΞH
n A∗

nεG
n

}

= Pa(3Pa − R2)
︸ ︷︷ ︸

U

E
{

ΞH
n Vn

}

.

- Case Complex Valued input (E
{

a2
n

}

= 0):
E

{

ΞH
n A∗

nεG
n

}

= Pa(2Pa − R2)
︸ ︷︷ ︸

U

E
{

ΞH
n Vn

}

.

From the three above equations we deduce that

lim
n−→∞E

{�e
(

V H
n Ξn

})

= PΩ

1+Z , where Z =
μαU

(1 − αβ)
. By

substituting all the computed terms into (25) one can obtain
the result (23).
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