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Abstract—In this paper, a mathematical model of human immun-
odeficiency virus (HIV) is utilized and an optimization problem is
proposed, with the final goal of implementing an optimal 900-day
structured treatment interruption (STI) protocol. Two type of com-
monly used drugs in highly active antiretroviral therapy (HAART),
reverse transcriptase inhibitors (RTI) and protease inhibitors (PI), are
considered. In order to solving the proposed optimization problem an
adaptive memetic algorithm with population management (AMAPM)
is proposed. The AMAPM uses a distance measure to control the
diversity of population in genotype space and thus preventing the
stagnation and premature convergence. Moreover, the AMAPM uses
diversity parameter in phenotype space to dynamically set the popu-
lation size and the number of crossovers during the search process.
Three crossover operators diversify the population, simultaneously.
The progresses of crossover operators are utilized to set the number
of each crossover per generation. In order to escaping the local optima
and introducing the new search directions toward the global optima,
two local searchers assist the evolutionary process. In contrast to
traditional memetic algorithms, the activation of these local searchers
is not random and depends on both the diversity parameters in
genotype space and phenotype space. The capability of AMAPM in
finding optimal solutions compared with three popular metaheurestics
is introduced.

Keywords—HIV therapy design, memetic algorithms, adaptive
algorithms, nonlinear integer programming.

I. INTRODUCTION

HUMAN Immunodeficiency Virus infects CD4+ T-cells,
which are an important part of the human immune

system, and other target cells. The infected cells produce a
large number of viruses. Medical treatments for HIV have
greatly improved during the last two decades. Highly active
antiretroviral therapy (HAART) allows for the effective sup-
pression of HIV-infected individuals and prolongs the time
before the onset of Acquired Immune Deficiency Syndrome
(AIDS) for years or even decades and increase life expectancy
and quality to the patient but antiretroviral therapy cannot
eradicate HIV from infected patients because of long-lived
infected cells and sites within the body where drugs may not
achieve effective levels [1]–[3]. HAART contain two major
types of anti-HIV drugs, reverse transcriptase inhibitors (RTI)
and protease inhibitors (PI). Reverse transcriptase inhibitors
prevent HIV from infecting cells by blocking the integration
of the HIV viral code into the host cell genome. Protease
inhibitors prevent infected cells from replication of infectious
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virus particles, and can reduce and maintain viral load below
the limit of detection in many patients. Moreover, treatment
with either type of drug can also increase the CD4+ T-cell
count that are target cells for HIV.

Many of the host-pathogen interaction mechanisms during
HIV infection and progression to AIDS are still unknown.
Mathematical modeling of HIV infection is of interest to the
medical community as no adequate animal models exist in
which to test efficacy of drug regimes. These models can test
different assumptions and provide new insights into questions
that are difficult to answer by clinical or experimental studies.
A number of mathematical models have been formulated to
describe various aspects of the interaction of HIV with healthy
cells, see [4]. The basic model of HIV infection is presented
by Perelson et al [5] that contains three state variables healthy
CD4+ T-cells, infected CD4+ T-cells and concentration of
free virus. Another model is presented in [6] that although
maintaining a simple structure, the model offers important
theoretical insights into immune control of the virus based on
treatment strategies. Furthermore, this model is developed to
describe the natural evolution of HIV infection, as qualitatively
described in several clinical studies [7].

Some authors have used mathematical model for HIV infec-
tion in conjunction with control theory to achieve appropriate
goals, by incorporating the effects of therapy on an HIV-
infected individuals. For example, these goals my include:
maximizing the level of healthy CD4+ T-cells and minimizing
the cost of treatment [8]–[12], maximizing immune response
and minimizing both the cost of treatment and viral load
[13], [14], maximizing both the level of healthy CD4+ T-cells
and immune response and minimizing the cost of treatment
[15], Maximizing the level of healthy CD4+ T-cells while
minimizing both the side effects and drug resistance [16] and
maximizing survival time of patient subject to drug cost [17]
and etc.

The papers [8], [15], [17], [19]–[21] consider only RTI
medication while the papers [22], [23] consider only PIs. In
[6], [16], [25]–[27] all effects of a HAART medication are
combined to one control variable in the model. In [7], [9]–
[14], [24], [28]–[33] dynamical multidrug therapies based on
RTIs and PIs are designed.

In the considered control approaches the amount of medica-
tions can be either continuous or on-off-type. This treatment
is also known as structured treatment interruption (STI). STI
has received considerable attentions as it might reduce the
risk of HIV mutating to strains which are resistant to current
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medication regimens. STI approach might also reduce possible
long-term toxicity of the drugs. A concise summary of clinical
STI studies, including protocols and results, is presented in
[33].

Some authors have used heuristic methods for designing
multidrug therapies for HIV infection. For example in [31],
a GA was used to design STI therapies where the cardinality
of the combinatorial optimization problem was very modest
and the algorithm led to satisfactory results in this case.
Nevertheless, for a problems with high dimensional a GA,
would probably stagnate or converge to a suboptimal solution.
In order to overcome these undesired behaviors and to find
the optimal HIV multidrug therapy, computational Intelligence
approaches were proposed in [14], [32]. In [14] an adaptive
evolution algorithm (AEA) with intelligent mutation local
searchers (IMLSs) was proposed for designing STI multidrug
therapies for HIV. Moreover, in [32] the same model was
used and an Adaptive Multimeme Algorithm (AMmA) was
proposed for designing STI antiviral multidrug therapies for
HIV. In both of this works the parameters of algorithm and
activation of local searchers are based on the phenotypical
diversity measure of the population. Motivated by [14], [32],
in this paper a mathematical model of HIV dynamics that
includes the effect of antiretroviral therapy is considered and
a Memetic Algorithm is proposed for designing STI antiviral
multidrug therapies for HIV.

The paper is organized as follows: Section II describes a
differential model for the pathogenesis of HIV and formulates
the problem of designing HIV therapies as an optimization
problem. The AMAPM and its components are described in
Section III, while Section IV is devoted to numerical results
and computational evaluations. Conclusion is presented in
SectionV.

II. HIV MODEL AND OPTIMIZATION PROBLEM

In this paper, the pathogenesis of HIV is modeled with a
system of ordinary differential equations (ODEs) described in
[7]. This model can be viewed as an extension of basic HIV
Models of Perelson et al [5].

x′ = λ − dx − rxv (1)

y′ = rxv − ay − ρyz (2)

w′ = cxyw − qyw − bw (3)

z′ = qyw − hz (4)

v′ = k(1 − εα)y − uv (5)

r′ = r0(1 − εβ) (6)

Most of the terms in the model have straightforward in-
terpretations as following: The first equation represents the
dynamics of the concentration of healthy CD4+ T-cells (x).
The healthy CD4+ T-cells are produced from a source, such as
the thymus, at a constant rate λ, and die at a rate dx. The cells
are infected by the virus at a rate rxv. The second equation
describes the dynamics of the concentration of infected CD4+
T-cells (y). The infected CD4+ T-cells result from the infection

TABLE I
THE PARAMETERS IN THE HIV MODEL

Parameters Value/Unit Description

λ 7 cells
μlday

Healthy CD4+ production

d 7 × 10−3 1

day
Healthy CD4+ clearance

a 0.0999 1

day
Infected CD4+ clearance

ρ 2 μl
cells

Infected CD4+ kill

c 5 × 10−6 μl2

cells2day
CTLp proliferation

q 6 × 10−4 μl
cellsday

CTLe differentiation

b 0.017 l
day

CTLp clearance

h 0.03 l
day

CTLe clearance

k 300 copiesμl
cellsday

Viruse production

u 0.5 1

day
Viruse clearance

r0 10−8 μl
copiesday2

Virulence growth

of healthy CD4+ T-cells and die at a rate ay and killed by
cytotaxic T-lymphocyte effectors CTLe (z) at a rate ρyz. The
population of CTLs is subdivided into precursors or CTLp
(w), and effectors or CTLe (z). Equations (3),(4) describe
the dynamics of these compartments. In accordance with
experimental findings establishment of a lasting CTL response
depends on CD4+ T-cell help, and that HIV impairs T-helper
cell function. Thus, proliferation of the CTLp population is
given by cxyw and is proportional to both virus load (y) and
the number of uninfected T-helper cells (x). CTLp differentia-
tion into effectors occurs at a rate qyw. Finally, CTLe die at a
rate hz. Equation (5) describes the dynamics of the free virus
particles (v). These free virus particles are produced from
infected CD4+ T-cells at a rate ky and are cleared at a rate
uv. Model also contains an index of the intrinsic virulence or
aggressiveness of the virus (r). This index increases linearly in
the case of an untreated HIV-infected individual, with a growth
rate that depends on the constant r0. Finally, equation (6)
describes the dynamic of this index. In model variables εα and
εβ denote the efficacies of protease inhibitors (PI) and reverse
transcriptase inhibitors (RTI), respectively. The effect of PI
drugs is modeled by reducing the proliferation rate of viruses
from infected cells, while the effect of RTI drugs is modeled
by reducing the infection rate, and in this way, blocking the
infection of CD4+ cells by free virus. Hence, in model the
RTI drugs have an effect on virulence because their main role
is halting cellular infection and prevents virus production by
reducing the production rate from infected CD4+ T-cells.

The model has several parameters that must be assigned
for numerical simulations. The descriptions, numerical values
and units of the parameters are summarized in Table I. These
descriptions and values were taken from [24]. We note that
equations (1)-(6) with these parameters, model dynamics of
fast progressive patients (FPP).

We consider the structured treatment interruption. This
means that, at any given time, a maximum dose of a medicine
is administered to a patient or that medicine is not given. For
the schedule to be practical the decision to take medication
is made for one day intervals. Thus, the RTI medicine can
be represented by a binary string α telling whether the RTI
medication is taken on ith day (αi = 1) or not (αi = 0),
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i = 0, ..., T , where T is the duration of the considered
schedule in days. In the same way the PI medication can be
defined using a vector β. With this form of representation the
number of the possible drug administration schedules is 22T .
This type of representation was used in [14], [31]. Another
way of medicine representation is the period representation
which was used in [32] for STI antiviral medication. In
this form of representation, we assume that the maximum
number of on and off RTI medication periods during the
considered time interval [t0, tf ] is denoted by L + 1. Then,
the RTI medicine schedule is represented as an integer vector
α = (α1, α2, ..., αL) where α2k−1, k = 1, 2, ..., gives the
length of the kth time on the RTI medication period in days
and α2k, k = 1, 2, ..., gives the length of the kth time off
the RTI medication period. Actually, the value of variable
αL+1 is determined from the other periods; hence, we do
not need to store it. In the same way the PI medication can
be defined using an integer vector β. The main advantage of
this representation compared to binary representation is a vast
reduction in dimensionality of the possible drug administration
schedules [32], which can result in much faster convergence
in the optimization. Here we use this kind of representation.
In practice, an RTI medication cannot completely block the
integration of the viral code into the target cells and a PI can
only partially prevent the replication of viruses by infected
cells. This means there exist some maximum efficacies εα and
εβ which are less than one for the RTI and PI medications,
respectively. We have chosen to use the values εmax

α = 0.85
and εmax

β = 0.9 in the numerical experiments [24]. Such as
[32], it is assumed that when the medication has been taken
the efficacy of drugs immediately increases to fully efficacious
whereas after discontinuation of the therapy 24 hours required
for the drug to be cleared from the body and this is modeled
as a linear decay to zero efficacy, for both medications. An
example of the PI efficacy is shown in Fig. 1.

An effective HIV medication can lead to a low viral load,
but it cannot completely clear HIV [3]. Therefore, our aims is
to find medication schedules that (possibly) keeps CD4+ cells
concentration above its lower bound x and the concentration
of free virions below its upper bound v , while minimizing
the overall dosage. It is easy to see that the constraint x(t) ≥
x,∀t ∈ [t0, tf ] is equivalent to

∫ tf

t0
|x(t)−x|−x(t)+x|dt = 0

. The same statement is valid for the bounded constraint on
viral load. Therefore, the following objective functional should
be minimized:

J(α, β) =
4∑

i=1

wiJi

where the weight coefficients wi are w1 = 50, w2 = 2,
w3 = 15000 and w4 = 10000 and the objective functions Ji

are

J1 =
∫ tf

t0

|x(t)−x|−x(t)+x|dt, J2 =
∫ tf

t0

|v(t)−v|+v(t)−v|dt

, J3 =
∫ tf

t0

ε2

αdt and J4 =
∫ tf

t0

ε2

βdt. (7)

Fig. 1. The beginning of the PI medication schedule and its efficacy.

In (7), v is the number of free viruses, x is the measure
of CD4+ T-cells, εα is the efficacy of RTI, and εβ is the
efficacy of PI. Thus, J1 and J2 measure respectively the
amount violations of the bounded constraints on CD4+ T-
cells concentration and viral load, over the time interval
[t0, tf ] which are allowed but the amount of such possible
violations is penalized in the objective function so that the
optimizer tries to avoid (or reduce) them. Moreover, J3

and J4 measure the amount of the PI and RTI medications,
respectively, over the same time interval. The desired lover
bound for the level of CD4+ cells and upper bound for the viral
load are set to x = 800 cells

mm3 and v = 500 copies
ml , respectively.

The optimization of the HIV multidrug therapy over the time
interval [t0, tf ] is defined by a constrained nonlinear integer
programming problem:

J(θ) =
4∑

i=1

wiJi(θ) (8)

Subject to the constraints:
L∑

i=1

θi ≤ tf − t0,
2L∑

i=L+1

θi ≤ tf − t0, (9)

and the states (1)-(6) where θ = (α, β). Our numerical studies
in the following are based on a 900 day period, and therapy is
started two months after the infection occurrence. Furthermore
the maximum number, of on and off medication periods is set
to 192, that is, L = 191 and hence, the last periods are off
medication. This numerical problem is difficult in itself from
a numerical point of view; therefore, we resort to heuristic
approaches.

III. THE ADAPTIVE MEMETIC ALGORITHM WITH
DYNAMIC POPULATION MANAGEMENT

This section gives a description of the designed adaptive
memetic algorithm with population management (AMAPM)
to solve the problem (8), (9). The main components of the
proposed algorithm are as follow:

Distance measure: The proposed algorithm uses the popu-
lation management, which controls the diversity of population
of high-quality solutions [34]. For this end a distance measure
d that determines for each pair of solutions their relative
distance (or similarity) in the solution space is required. Then,
by extension, the distance of a solution c to population P is:

dP (c) = min
s∈P

d(c, s).
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Although difficult to prove, it seems natural to conjecture that
a distance measure that more accurately reflects the distance
between two solutions is preferable to one that does not. For
problems of which the solutions are most naturally represented
as a binary string, the Hamming distance seems to be the only
distance measure to use. For problems represented as real-
valued vectors, Euclidean, Manhattan, or Chebychev distance
metrics can be used. Several distance measures for problems
represented as integer vectors have presented in [35]. The
A-distance measure [36], equal to the sum of all absolute
differences between the positions of all items in strings c and
s , is used in our implementation as follows:

d(c, s) =
2L∑
i=1

|ci − si|.

Initialization: Initially, a population P of solutions can
be built randomly or using initial heuristics such as those
presented in [32]. We construct the initial population to have a
sufficient dispersal of initial solutions and a better exploration
of the solution space. Distance measure d is used to diversify
solutions in P , e.g., s is added to P only if dP (s) ≥ 100 .

Parent selection and crossover: At each subsequent gen-
eration, the individuals undergo parent selection using binary
tournament method [37]: two solutions are randomly drawn in
P and the best one is kept as a parent and the same process
is repeated to get another parent. Here, the uniform, the
arithmetic and the heuristic crossover operators [37] diversify
the population. These operators only produce one offspring.
The total number of crossovers in each generation is set to
3Spop and the number of each crossover is set to Spop at
the beginning of the search where, Spop is population size.
The progress or success rates of these operators are assessed
during the search; then, as the search progresses, is made
dynamically. The generated solutions are evaluated before and
after the application of each crossover operator. Depending on
the success of the operator, we calculate an average growth
value which is used to dynamically adjust the number of each
crossover. More specifically: the progress of the crossover
operator C when applied to solutions x and y is 1 if C(x, y)
is better than x and y, 0 if C(x, y) is worse than x and y, and
0.5 otherwise. The average Progress(C(i)) of each crossover
operator C is calculated by summing all the progresses of C
and dividing it by the number of parent pairs to which C
was applied. Then, the number of each crossover is adjusted
using (10) where η is the number of crossover operators and κ
indicates the minimal ratio value permitted for each operator.
That is, κ is a parameter that permits to keep each operator
even if the progress of the operator is too poor.

NumberC(i) = 3[
Progress(C(i))∑η

j=1
Progress(C(j))

×(1 − ηκ)+κ]Spop.

(10)
Population management and survivor selection: For each

offspring s, Population management determines the distance
dP (s) of given solution s to the population and compares this
value to the population diversity parameter δ. If this distance
is not smaller than δ, the solution s is added to population.
Child s is discarded if it does not pass the distance test.

To avoid missing a new best solution, s is also accepted
without performing the distance test if it improves the current
best solution. Since the recombination may generates many
offspring solutions with worse performance than their parents,
an age-based replacement or a generational approach are likely
inefficient. Here, the survivor selection method is used and
the best Spop individuals among both parent and offspring
solutions are selected for the subsequent generation.

Control policy for δ: Several population management
strategies have been described in [34]. The diversity parameter
δ can be considered as a constant value or it can vary by
the algorithm. A high value will increase the diversity of
the population while lower values will decrease it but must
not be too large, otherwise AMAPM spends too much time
in unproductive iterations. In this paper a varying diversity
parameter based on a minimum value δmin = 5 and a step
σ = 5 is considered: δ takes the value δmin in the beginning
of the algorithm and steadily increases by σ and new genetic
materials are introduced in the population and δ is reset to
δmin each time the best solution is improved. This strategy
can be called adaptive because it uses information about the
effectiveness of the search to dynamically control the diversity
of the population.

Local Searchers: In order to support the evolutionary pro-
cess, two local searchers are employed. These local searchers
offer new search directions leading to a basin of attraction
different from starting point and, thus, prevents an undesired
premature convergence.

• Simulated Annealing: The Simulated Annealing (SA)
metaheuristic [37] has been chosen since it offers an
exploratory perspective in the decision space which can
choose a search direction leading to a basin of attraction
different from starting point and assists the evolutionary
framework in finding better solutions which improve the
available genotype while at the same time exploring areas
of the decision space not yet explored. It accepts, with a
certain probability, solutions with worse performance in
order to obtain a global enhancement in a more promis-
ing basin of attraction and, thus, prevents an undesired
premature convergence. The SA starts operating on the
best solution.

• Simple tabu search: The simple tabu search (TS) Al-
gorithm is a deterministic local searcher which starts
operating on the best solution w. At each iteration of
simple TS at most 100 neighborhoods are generated by
incriminating or discriminating one unit to genes of w
and the best neighborhood is accepted. Moves are tabu
if they involve a gene which has been changed recently.
An aspiration criterion allows tabu moves to be accepted
if they lead to the best solution found so far. This is the
basic tabu search, based only on short term memory, as
described in [38].

Simulated annealing is similar to tabu search in that it oc-
casionally allows solutions of inferior cost to be generated.
It differs from tabu search in the manner in which it avoids
cycling. Instead of checking deterministically the preceding
solutions for cycling, it simply randomizes its selection of the



International Journal of Medical, Medicine and Health Sciences

ISSN: 2517-9969

Vol:5, No:7, 2011

268

next solution. In doing so, it not only avoids cycling, but also
provides some theoretical guarantee of escaping from local
minima and eventually finding a global minimum.

Adaptation: In order to design a robust algorithm, the
following index is calculated [14]:

ξ = min{1, τ |Jave − Jbest

Jbest
|}.

where Jbest and Javg are the best, and average of the fitness
function values in the Sf

pop best individuals of the population,
respectively and τ is a normalization factor. The variable
Sf

pop is defined in the next. The index ξ can be seen as a
measurement of the state of the phenotypical convergence of
the algorithm. If ξ ≈ 1 the population has high diversity and
therefore the convergence conditions are far; if ξ ≈ 0 there is
a low phenotypical diversity and means that the convergence
is approaching.

Coordination of the local searchers: We consider two
rules for Activation of local searchers. In proposed algorithm
the local searchers activate when:

• The diversity of population is decreasing.
• The AMAPM spends too much time in unproductive

iterations.

Setting δ = δ
δmin

, the mentioned rules can be incorporated
by considering the conditions ξ ∈ [0.01δ, 0.02δ] for activation
of SA and ξ ∈ [0, 0.015δ] for activation of simple TS. The
condition regarding the lower bound of usability of the SA
(0.01δ) is due to the consideration that if ξ ≤ 0.01δ application
of the SA is usually unsatisfactory since it most likely leads to
a worsening in performance. Note that, the resulted solution
from SA, in our implementation, does not replace the original
one but it is simply inserted in the population. This gives a
chance at enhancing a solution with good performance without
possibly ruining the genotype of the best solution. The SA
has two parameters, which are the budget and the initial
temperature Temp0. Even though these parameters should
be simultaneously set since the success of the local searcher
depends on both, the budget has been fixed to be 500 fitness
evaluations (in order to have a constant computational cost
for the SA) and the initial temperature Temp0 has been
adaptively set Temp0 = |Javg − Jbest|. This means that the
probability of accepting a worse solution depends on the state
of the convergence. In other words, the algorithm does not
accept worse solutions when the convergence has practically
occurred [32]. Moreover, the main idea behind the activation
condition ( ξ ≤ 0.015δ ) of simple TS is due this fact that an
early application of simple TS local searcher can be inefficient
since a high exploitation of solutions having poor fitness values
would not lead to significant improvements of the population
and hence more intensive condition is considered for activation
of it. The considered budget for simple TS has been fixed to
be 2, 000 fitness evaluations. It should be noted that in the
range [0.01δ, 0.015δ] both local searchers are applied to the
best individual of the population. This range is very critical
for the algorithm because the population is tending towards
a convergence but still has not reached such a condition. In
this case, there is a high risk of premature convergence due to

Fig. 2. Adaptive Memetic Algorithm with population management pseu-
docode.

the presence of plateaus and suboptimal basins of attraction
or false minima introduced by noise. Thus, the two local
searchers are supposed to ”compete and cooperate” within the
same generation, merging the ”global” search power of the SA
and the ”local” search power of the simple TS.

Dynamic population size in survivor selection: The pop-
ulation is resized at each generation and the Spop individuals
having the best performance are selected for the subsequent
generation [14], [32]:

Spop = Sf
pop + (1 − ξ)Sv

pop,

where Sf
pop and Sv

pop are the fixed minimum and maximum
sizes of the variable population, respectively. The coefficient
ξ is then used to dynamically set the population size in order
to prevent a premature convergence and stagnation. When the
population is highly diverse, a small number of solutions need
to be exploited. When ξ ≈ 0, the population of individuals is
converging and a larger population size is required to increase
the exploration. Fig. 2 shows the pseudocode of the AMAPM.

IV. NUMERICAL RESULSTS AND COMPARISION
WITH OTHER OPTIMIZATION METHODS

For the AMAPM, 30 simulation experiments have been ex-
ecuted. Each experiment has been stopped after 70,000 fitness
evaluations. At the end of each generation, the best fitness
value has been saved. Analogously, 30 experiments have been
carried out with a Genetic Algorithm (GA), Evolution Strategy
(ES) and the simulated annealing (SA) in order to perform
a comparison of the performance between the AMAPM and
three classical methods.
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TABLE II
PARAMETER SETTING FOR THE AMAPM, THE GA, AND THE ES

PARAMETER AMAPM GA ES

Size of initial population 500 500 500

Population size for subsequent iterations Dynamic between 30 and 100 160 160

Number of crossovers per generation Dynamic between 90 and 300 100 100

Mutation probability 0 0.1 1

Fitness evaluations 70,000 70,000 70,000

100 200 300 400 500 600 700 800 900
0

0.09
0.18
0.27
0.36
0.45
0.54
0.63
0.72
0.81
0.9

Time (day)
(a)

ε β

100 200 300 400 500 600 700 800 900
0

0.085
0.17

0.255
0.34

0.425
0.51

0.595
0.68

0.765
0.85

Time (day)
(b)

ε α

Fig. 3. PI and RTI medication efficacies.

The GA employs a random initial sampling, roulette wheel
selection based on the rank of the solutions, binary tournament
parent selection, two-point crossover and swap mutation [37].

A σ-self adaptive evolution strategy [37] has been se-
lected. Moreover the uniform crossover and Gaussian mutation
(rounding to the nearest integer) has been implemented. As a
standard ES, this ES does not contain any parent selection and,
thus, it considers all populations to be a population of parents.
Finally, a (μ + λ ) strategy has been chosen.

The mutation is selected as perturbation operator in simu-
lated annealing algorithm. For the annealing schedule, we set
an initial temperature 108, and a temperature decreasing factor
of 0.95. Each temperature was tried 100 times, and the total
number of (different) temperatures tested was 700. Table II
shows the parameter settings for the AMAPM, the GA, and
the ES.

Figs. 3(a) and 3(b) show the Protease Inhibitor (PI) and
Reverse Transcriptase Inhibitor (RTI) efficacies, respectively,
for the most effective HIV therapy schedule found by the
AMAPM over the 30 experiments carried out. Fig. 4 shows
the behavior of the state variables x and v of the model under
the best therapy. Fig. 3 shows that the suggested medicine
schedules by the AMAPM have some apparent on and off
periods. The PI-medication is stopped before 190 days and
initializes after 600 days again. Moreover, the RTI-medication
is stopped before 610 days. Actually, the suggested mediation
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Fig. 4. Dynamic behavior of x and v.

by AMAPM requires only 123 days for PI-administration
and 351 days for RTI-administration. The rest periods of
the medical treatment reduces undesired side effects and the
possibility of mutations leading to drug-resistant HIV strains.
Fig. 4 shows that the number of uninfected CD4+ T-cells stays
very high, around the it’s lower bound x, and the viral load
stays very low, around the it’s upper bound v.

Table III gives, for each algorithm under examination, the
values of the objective functions Ji , the fitness Jb obtained
by the most successful experiment (over the 30 sample runs),
the average fitness at the end of the experiments < J >,
the fitness of the least successful experiment Jw, and the
standard deviation σ divided to the related value of < J >.
Concerning the robustness of the algorithms, the value σ

<J> is
very small for all algorithms after 70, 000 fitness evaluations.
This basically means that the four algorithms offer a good
performance in terms of robustness. The results show that,
according the average best fitness value < J >, the AMAPM
outperforms the other methods. Moreover the value of σ

<J> is
smaller in the case of the AMAPM and therefore the proposed
algorithm is probably more robust than the other methods. The
comparison between the AMAPM and the GA shows that,
although the value of < J > for the AMAPM is less than
the obtained value by the GA, this solution does not dominate
the one given by the GA. In fact, the solution given by the
GA offers slightly better performance in terms of the quantity
of PI-medications (J3) that the patient should take but worse
performance than the AMAPM with respect to viral load (J2)
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TABLE III
NUMERICAL RESULTS

METHOD J1 J2 J3 J4 Jw < J > Jb σ
<J>

AMAPM 2.2192 × 104 6.5975 × 104 88.1566 281.9552 5.4830 × 106 5.4269 × 106 5.3837 × 106 0.0044

ES 2.2495 × 104 6.2712 × 104 111.8842 343.6849 5.9918 × 106 5.9213 × 106 5.8442 × 106 0.0061

GA 3.5405 × 104 8.5755 × 104 18.2704 400.1296 6.4873 × 106 6.3922 × 106 6.2171 × 106 0.0124

SA 2.2179 × 104 6.8605 × 104 194.1663 171.2373 6.1664 × 106 6.0514 × 106 5.8710 × 106 0.0126
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Fig. 6. Comparison of the algorithmic performance of the AMAPM with
the GA, the ES, and the SA.

and the level of CD4+ T-Cells (J1). For the considered STI
therapies it is much more important that the therapy keeps
the viral load below the threshold value v and keeps the
CD4+ cells above the threshold value x at all times. In this
sense the fact that the GA proposes a very smaller quantity
of PI-medication than the AMAPM is of minor interest. The
comparison between the AMAPM and the SA leads to the
similar argument.

In order to better explain the behavior of the AMAPM,
the diagram plotting δ and ξ versus fitness evaluations in the
most successful experiment are shown in Fig.5. In the range
25,000 to 28,000 fitness evolutions the value of parameter

ξ is constant, which means that in this range there are
not new genetic materials improving the best individuals of
population due to presence of suboptimal basin of attraction.
Moreover, in this range the value of parameter δ increases
due to unproductive iterations which leads to activation of
SA local searcher. An abrupt increase of ξ and decrease of
δ correspond to the introduction of a new individual into the
population, which has far better performance than the others.
More specifically, the peaks around 28,500 fitness evaluations
are due to successful searches by the SA. We have the same
situation in the range 40,500 to 42,000 fitness evolutions,
while the peaks around 52,000, 56,000, and 65,000 fitness
evaluations are caused by successful searches by the simple
TS. Fig. 6 shows the comparison of the performances. From
this figure and Table III, it is qualitatively clear that the
AMAPM tending to converge to a solution having a better
performance than the other methods. Moreover, it is interesting
to consider the relationship of Fig. 5 and Fig. 6. Although Fig.
5 refers to one experiment while Fig. 6 is based on an average,
it is clear that, at around 28,500 fitness evaluations, there
is slightly steep decrease in the diagram of the algorithmic
performance of the AMAPM. This decrease corresponds to
high oscillations in the trends of δ and ξ. According to our
interpretation, this phenomenon is due to successful runs of
the SA local searcher, which led to the generation of solutions
with better performance than the rest of the population and,
thus, to a temporary increase of the population diversity. In
addition, it can be seen that the AMAPM presents a similar
algorithmic performance compared to the other algorithms for
about 28,500 fitness evaluations and, after a certain point, it
clearly starts to slightly outperform the other methods. The
numbers of uniform, heuristic and arithmetic crossovers in the
most successful experiment are 26,288, 11,953 and 24,042,
respectively.

V. CONCLUSION

This paper proposes an Adaptive memetic algorithm with
population management (AMAPM) for designing HIV mul-
tidrug therapies. The AMAPM is an optimization algorithm
consisting of an evolutionary framework using a population
management strategy to control the diversity of the popula-
tion and having dynamic parameters and two different local
searchers which are adaptively employed in order to explore
the decision space and, in various ways, the available candidate
solutions. The optimal solution given by the AMAPM is very
satisfactory since it keeps the healthy CD4+ cells population at
high level and the viral load at a sufficiently low level during
the treatment interval. In addition, the proposed medication
contains a relatively low number of medication days and,
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therefore, helps to avoid harmful side effects and mutations
of HIV to drug-resistant strains. Numerical comparisons show
that the AMAPM outperforms three other standard methods
for this class of problems.
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