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Abstract—The γ-turns play important roles in protein folding and 

molecular recognition. The prediction and analysis of γ-turn types are 
important for both protein structure predictions and better 
understanding the characteristics of different γ-turn types. This study 
proposed a physicochemical property-based decision tree (PPDT) 
method to interpretably predict γ-turn types. In addition to the good 
prediction performance of PPDT, three simple and human 
interpretable IF-THEN rules are extracted from the decision tree 
constructed by PPDT. The identified informative physicochemical 
properties and concise rules provide a simple way for discriminating 
and understanding γ-turn types. 
 

Keywords—Classification and regression tree (CART), γ-turn, 
Physicochemical properties, Protein secondary structure. 

I. INTRODUCTION 
γ-turn is defined as three consecutive residues with a 
hydrogen bond between the CO and NH groups of 

residues i and 2i +  that largely influences the protein 3D 
structure. There are two types of γ-turns: the classic and inverse 
γ-turns. The classification of the classic and inverse γ-turns is 
determined by the values of dihedral angles. Their main-chain 
atoms are related by mirror symmetry. 

The γ-turns often mediate the reversal of polypeptide chains 
and are important in the protein folding [1] and molecular 
recognition [2]. The major type of γ-turns is the inverse γ-turn 
that is less associated with the reversal of polypeptide chains. 
Compared to inverse γ-turns, classic γ-turns are rarely found 
and are frequently located in the end of loops of beta-hairpin 
[3]. The classic γ-turn gives rise to a 180 degree chain-reversal 
in proteins and is important for globular protein structure 
formation. Based on the hydrogen bonding patterns, the classic 
γ-turns can be further classified into four subclasses [1]. 
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Inverse γ-turns comprise a large proportion of weak hydrogen 
bonds. 

Previous works mainly focus on the prediction of γ-turns. A 
neural network method is firstly developed for γ-turn 
prediction using information of multiple sequence alignments 
and predicted secondary structures [3]. The subsequently 
improved predictions of γ-turns include a Markov Chains 
theory based method [4] and a support vector machine based 
method [5]. 

Recently, the problem of predicting γ-turn types is 
investigated by using a support vector machine based method 
[6] and a two-stage hybrid neural discriminate model [7]. Both 
of them are based on features of binary encoding of amino acids. 
Although high accuracy is obtained by their methods, however, 
as well recognized, the support vector machine and neural 
network based method are the so called black-box methods. It 
means that users are not able to know the decision rules. The 
binary encoding methods are also not human interpretable. 
Furthermore, the used secondary structure information 
calculated from the DSSP (definition of secondary structure of 
proteins) program [8] requires information from  
three-dimensional structures [7].  

Due to the highly unbalanced occurrences of inverse and 
classic γ-turns, it is much difficult to predict γ-turn types. To 
interpretably predict γ-turn types, a physicochemical 
property-based decision tree (PPDT) method based on only 
sequence information is proposed to identify and analyze 
informative physicochemical properties for predicting γ-turn 
types. The proposed PPDT based on an efficient classification 
and regression tree (CART, [9]) is very simple and is able to 
provide human interpretable rules with good performance of 
AUC=0.674 that is comparable with previous studies.  

A total of two informative physicochemical properties are 
identified by PPDT. The usability of the identified informative 
physicochemical properties for the prediction of γ-turn types is 
also demonstrated by using a simple Naïve Bayes classifier. A 
high performance with AUC=0.736 is obtained by applying a 
Naïve Bayes classifier with the identified two physicochemical 
properties to predict γ-turn types. Finally, three simple and 
human interpretable IF-THEN rules are extracted from the 
constructed decision tree. The rules provide a simple way to 
predict γ-turn types and give insights into the physicochemical 
effects on the differentiation of γ-turn types. 
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II. METHODS 

A. Dataset 
The used dataset for following analysis and prediction are 

obtained from previous studies [6], [7]. The IDs of 490 
non-homologous proteins with less than 25% sequence identity 
are extracted and protein structure files are downloaded from 
PDB database. All protein structures were determined by X-ray 
crystallography with resolution better than 1.5Å. The program 
PROMOTIF is utilized to annotate γ-turn types. By removing 
four duplicated PDB IDs provided by the previous study [6] 
and one γ-turn with a modified amino acid, a slightly smaller 
dataset, which contains 1241 γ-turns consisting of 1145 inverse 
γ-turns and 96 classic γ-turns is used for the following analyses.  

B. Physicochemical properties 
Physicochemical properties play important roles in 

biomolecular recognition and protein folding. Being the most 
intuitive feature for biochemical reactions, a huge number of 
published bioinformatics studies use physicochemical 
properties for modeling and analyses [10], [11], [12], [13]. The 
amino acid indices (AAindex) database collects many 
published indices representing physicochemical properties of 
amino acids. For each physicochemical property, there is a set 
of 20 numerical values for amino acids. Currently, 544 
physicochemical properties can be retrieved from the AAindex 
database of version 9.0 [14]. After removing physicochemical 
properties having the value ‘NA’ in the amino acid indices, 531 
physicochemical properties are obtained for the following 
studies.  

Given a peptide sequence of γ-turns, 531 physicochemical 
properties are used to represent each of the three residues. The 
number of total features vector for analysis are 1593 ( 531 3× ). 

C. Physicochemical property-based decision tree method 
(PPDT) 

Decision tree-based methods benefit from their simplicity 
and interpretability is wide used for interpretable analysis of 
various biological problems including the prediction of 
ubiquitylation sites [11] and protein stability [15]. In this study, 
a method named physicochemical property-based decision tree 
(PPDT) method is applied to predict and analyze γ-turn types. 
PPDT based on the famous classification and regression tree 
(CART) [9] to select informative physicochemical properties to 
build decision tree models. The CART is a non-parametric 
method that can deal with problems of limited priori 
information because it does not rely on any particular 
assumptions concerning the dependence type of the dependent 
variable Y on predictors Xi and statistical properties of the data. 
The system flow of PPDT method is shown in Fig. 1. 

The construction of a PPDT tree includes two major steps: 
tree growing and tree pruning. The tree growing step 
recursively partitions dataset into two sub-datasets by utilizing 
a splitting rule based on an impurity measurement of Gini index. 
For a node t with estimated class 
probabilities ( | ), 1,...,p j t j J= , where J is the total number of 

classes, its corresponding Gini index is defined as: 
 21 ( | )

j

p j t− ∑ . (1) 

For each node t, the feature with largest impurity reduction is 
selected to split the dataset at node t. The splitting process 
proceeds until there is no significant purity gain by adding 
more nodes.  

Applying a large tree for prediction can always result in an 
over-fitting problem. The tree pruning step remove nodes to 
achieve lowest misclassification rate of five-fold 
cross-validation. The pruned tree is expected to have better 
generalization ability with less over-fitting problem than a large 
tree. 

D. Performance evaluation 
For comparison with previous methods, the same seven-fold 

cross-validation (7-CV) method is used to evaluate 
performances of PPDT. The procedure for applying 7-CV 
includes two steps as described in the follows. First, the whole 
dataset is randomly divided into seven data subsets with nearly 
equal sizes of inverse and classic γ-turn samples. Second, for 
each fold, six data subsets are combined into a training dataset 
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Fig. 1 System flow of the proposed PPDT method. 
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and the remaining one subset is used as test dataset. For 
convenience of performance representation, inverse and classic 
γ-turns are marked as positive and negative samples. Four 
measurements are calculated as following:  
 

(TP TN)Accuracy 100
N
+

= × , (2) 

TPSensitivity 100
(TP FN)

= ×
+

, (3) 

TNSpecificity 100
(TN FP)

= ×
+

, (4) 

(TP TN) - (FP FN)MCC
(TP FP) (TP FN) (TN FP) (TN FN)

× ×
=

+ × + × + × +
, (5) 

 
where TP, TN, FP, FN and N are numbers of true positives, true 
negatives, false positives, false negatives and total number of 
samples, respectively. 

III. RESULTS 

A. Prediction Performance 
For predicting γ-turn types from peptide sequences, this 

study proposed a physicochemical property-based decision tree 
(PPDT) method, which utilizes the classification and regression 
tree (CART) method [9] to select informative physicochemical 
properties and create a decision tree model. 

To evaluate the prediction performance of PPDT, seven-fold 
cross-validation is applied as following. First, the original 
dataset is randomly divided into seven sub-datasets with nearly 
equal size. Second, for each time of test, one fold is isolated as 
test dataset and the other six folds are used as training dataset 
for deriving a decision tree model. Finally, seven decision tree 
models are applied to predict the corresponding test datasets 
and the overall performance can be calculated. 

A total of 30 runs of seven-fold cross-validations are applied 
to obtain statistically significant results. The highest, average 
and lowest AUC values of the 30 runs are 0.674, 0.668 and 
0.662, respectively. The small value of standard deviation of 
0.0026 shows the robustness of the PPDT methods. 

Because previous studies use threshold-dependent 
performance measurements to evaluate their methods [6], [7], it 

is difficult to compare performances with different specificity 
or sensitivity levels. In order to easily compare PPDT with 
previous method, a threshold-independent ROC curve is 
applied for comparisons. As shown in Fig. 2, PPDT shows 
comparable performances with previous methods [6], [7]. In 
addition to the threshold-independent ROC curve, the 
threshold-dependent measurements of sensitivity, specificity, 
accuracy and MCC is also shown in Table I by selecting a 
specificity threshold nearly equal to 98.14% as reported by 
previous neural-network based method [7]. 

B. Interpretation of tree-based knowledge 
In addition to good prediction performance, the knowledge 

obtained from constructed prediction models is especially 
important for better understanding the determination of γ-turn 
types. The tree-based PPDT method is able to provide 
interpretable decision rules, compared to black-box methods 
such as neural networks and support vector machines.  

A physicochemical property-based decision tree built on the 
whole dataset is shown in Fig. 3. The constructed decision tree 
is based on only two physicochemical properties (shown in 
Table II): AAindex IDs of CHAM820102 and WERD780101 
represent the free energy of solution in water [16] and 
propensity to be buried inside [17], respectively. In order to 
easily interpret the decision tree, a set of three IF-THEN rules 
can be extracted from the obtained decision tree as shown in 

TABLE I 
PERFORMANCES USING SEVEN-FOLD CROSS-VALIDATION 

Methods Sensitivity (%) Specificity (%) Accuracy (%) MCC AUC 

SVM  
(binary encoding) 35.80 67.20 93.40 0.44 NA 

LDA-NN  
(binary encoding) 38.24 98.14 93.80 0.46 NA 

PPDT 40.63  97.64  93.23  0.46  0.674 

Naïve Bayes classifier 
(using PPDT selected properties) 38.54 98.08 93.47 0.46 0.736 

 

 

 
Fig. 2 Performance comparisons of PPDT and SVM and LDA-NN 

methods based on binary encoding 
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Table III. 
The first rule means that given a γ-turn if the free energy of 

solution in water (kcal/mole) of the residue in position i is less 
than 0.5365 then it is an inverse γ-turn. The second rule means 
that given a γ-turn if the free energy of solution in water 
(kcal/mole) of the residue in position i is larger than or equal to 
0.5365 and the propensity to be buried inside of the residue in 
position 2i + is less than 0.69 then it is an inverse γ-turn. The 
third rule means that given a γ-turn if the free energy of solution 
in water (kcal/mole) of the residue in position i is larger than or 
equal to 0.5365 and the propensity to be buried inside of the 
residue in position 2i + is larger than or equal to 0.69 then it is 
a classic γ-turn. 

C. The usability of identified informative physicochemical 
properties 

To demonstrate the usability of identified informative 
physicochemical properties for the prediction of γ-turn types, a 
simple Naïve Bayes classifier using PPDT selected informative 
physicochemical properties is applied to predict γ-turn types.  
The Naïve Bayes classifier (NB) based on the assumption of 
conditional independence is a relatively simple classification 
model [18]. Given a feature vector ( )1X ,..., nx x=  , the NB 
classifier calculates the probability of the given sample belongs 
to a certain class C that maximizes the 
likelihood ( ) ( )1 1

( | ) , , | |n
n ii

P X C P x x C P x C
=

= = ∏K .  

In this study, a modified version of the NB classifier with 
kernel estimator that is available in WEKA [19] is applied to 
predict γ-turn types using the identified two physicochemical 
properties. As shown in Table I, the NB classifiers can predict 
γ-turn types with a high AUC value of 0.736 that is higher than 
the proposed PPDT method. The high performance of NB 

classifier shows the usability of PPDT selected informative 
physicochemical properties. 

To further demonstrate the discrimination ability of the 
informative physicochemical properties, a bubble chart 
representing the distribution of all γ-turns of our dataset in two 
PPDT selected physicochemical properties is shown in Fig. 4. 
By applying the concise tree, a sensitivity of 31.3% with a very 
high specificity level of 99.3% can be obtained for classic 
γ-turns. 

IV. CONCLUSION 
The γ-turns are important protein secondary structures that 

are important in protein folding and molecular recognition. The 
prediction and analysis of γ-turn types can provide better 
understanding of the underlying mechanism. This study 
proposes a physicochemical property-based decision tree 
(PPDT) method to interpretably predict γ-turn types. 

With its simplicity, the PPDT performs so well that is 
comparable with the black-box methods of support vector 

 

Inverse γ-turn
(1120/57)

< 0.5365 >= 0.5365

Inverse γ-turn
(17/9)

Classic γ-turn
(30/8)

< 0.69 >= 0.69

Position: i 
CHAM820102

Position: i + 2
WERD780101

 
Fig. 3 Physicochemical property-based decision tree. 

 
Fig. 4 The distribution of γ-turns in two PPDT selected informative 

physicochemical properties. 

TABLE II 
PHYSICOCHEMICAL PROPERTIES USED BY THE DECISION TREE TRAINED ON 

WHOLE DATASET 

Position AAindex ID Description Reference

i CHAM820102 Free energy of solution in water, 
kcal/mole [16] 

i+2 WERD780101 Propensity to be buried inside [17] 

 

TABLE III 
PHYSICOCHEMICAL PROPERTIES USED BY DECISION TREES TRAINED ON 

SEVEN-FOLD CROSS-VALIDATION PROCEDURES 

Position AAindex ID Description Reference

i CHAM820102 Free energy of solution in water, 
kcal/mole 

[16] 

i CHAM830103 The number of atoms in the side chain 
labeled 1+1 

[20] 

i GEIM800104 Alpha-helix indices for 
alpha/beta-proteins 

[21] 

i PRAM900104 Relative frequency in reverse-turn [22] 

i ONEK900101 Delta G values for the peptides 
extrapolated to 0 M urea 

[23] 

i+1 GOLD730101 Hydrophobicity factor [24] 

i+2 MAXF760102 Normalized frequency of extended 
structure 

[25] 
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machines and neural networks. In addition to the high 
performance of PPDT for predicting γ-turn types, the 
knowledge obtained from PPDT can be extracted and 
represented as simple IF-THEN rules. Finally, we use a simple 
Naïve Bayes classifier to demonstrate the usability of PPDT 
identified informative physicochemical properties for 
discriminating γ-turn types. 
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