
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:8, 2008

2619

Abstract—Recently, a lot of attention has been devoted to

advanced techniques of system modeling. PNN(polynomial neural

network) is a GMDH-type algorithm (Group Method of Data

Handling) which is one of the useful method for modeling nonlinear

systems but PNN performance depends strongly on the number of

input variables and the order of polynomial which are determined by

trial and error. In this paper, we introduce GPNN (genetic

polynomial neural network) to improve the performance of PNN.

GPNN determines the number of input variables and the order of all

neurons with GA (genetic algorithm). We use GA to search between

all possible values for the number of input variables and the order of

polynomial. GPNN performance is obtained by two nonlinear

systems. the quadratic equation and the time series Dow Jones stock

index are two case studies for obtaining the GPNN performance.

Keywords—GMDH, GPNN, GA, PNN.

I. INTRODUCTION

ECENTLY, a lot of attention has been directed to

advanced techniques of system modeling. The panoply of

the existing methodologies and detailed algorithms is

confronted with nonlinear systems, high dimensionality of the

problems, a quest for high accuracy and generalization

capabilities of the ensuing models. Nonlinear models can

address some of these issues but they require a vast amount of

data. When the complexity of the system to be modeled

increases, both experimental data and some prior domain

knowledge (conveyed by the model developer) are of

paramount importance to complete an efficient design

procedure. One of the first approaches along systematic

design of nonlinear relationships comes under the name of a

Group Method of Data Handling (GMDH). GMDH [1]-[3]

was developed in the late 1960s by Ivahnenko as a vehicle for

identifying nonlinear relations between input and output

variables. The GMDH algorithm generates an optimal

structure of the model through successive generations of

Partial Descriptions of data (PDs) being regarded as quadratic

regression polynomials with two input variables. While

providing with a systematic design procedure, GMDH has

some drawbacks [2]-[4]. So PNN (polynomial neural network)

is introduced.

S.Farzi is with Department of Computer Engineering, Islamic Azad

University – branch of Kermanshah, Iran (corresponding author to provide

phone: +988318247902; fax: +988317243065;

e-mail: saeedfarzi@ gmail.com).

 PNN is a GMDH-Type algorithm, which is one of useful

approximated techniques. PNN is neural network whose

neurons are called PD(partial description).The output of each

PD is obtained by using several types of high order

polynomials such as linear, quadratic, cubic of the input

variables[1][3][7][10]. Although the PNN is structured by a

systematic design procedure, it has some drawbacks to be

solved. PNN performance depends on the number of input

variables and the type or order of each PD. These parameters

must be determined by trial and error method, which has a

heavy computational load and low efficiency.

 In this paper, GPNN (genetic polynomial neural network)

has been introduced which uses genetic algorithm (GA) to

alleviate the above mentioned drawbacks. The GA is used to

determine the number of input variables in each PD and to

determine the appropriate type of polynomials in each PD.

 This paper is organized as follows. The PNN algorithm and

its generic structure is described in Sec.II Genetic Partial

Description (GPD) is described in Sec.III. GPNN (Genetic

Polynomial Neural Network) is described in Sec.IV. A suite of

experimental studies is covered in Sec.V. Concluding remarks

are included in Sec.VI.

II.THE PNN ALGORITHM AND ITS GENERIC

STRUCTURE

 In this section, we elaborate on algorithmic details of the

optimal identification method related to two types of the PNN

structures.

A. . PNN algorithm

 The PNN algorithm is based on the GMDH method and

utilizes a class of polynomials such as linear, modified

quadratic, cubic, etc. By choosing the most significant input

variables and polynomial order among these various types of

forms available, we can obtain the best of the extracted partial

descriptions according to both selecting nodes of each layer

and generating additional layers until the best performance is

reached. Such methodology leads to an optimal PNN

structure. Let us recall that the input–output data are given in

the form

),,...,,(),(21 iiNiiii yxxxyX , i=1; 2; 3; . . . ; n (1)

 The input–output relationship of the above data by PNN

algorithm can be described in the following manner:

),...,,(21 Nxxxfy (2)

The estimated output ŷ reads as

...),...,,(021

i j k

kjikji

i j

jiij

i

iin xxxcccxxcxccxxxfy (3)

A New Approach to Polynomial Neural

Networks based on Genetic Algorithm

S. Farzi

R

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:8, 2008

2620

Where ck’s denote the coefficients of the model. The

framework of the design procedure of the PNNs comes as a

sequence of the following steps[8].

 Step1: Determine system’s input variables

 Here, we define the input variables as xi; i=1; 2; . . . ; N

related to output variable y. If required, the normalization of

input data is also completed.

 Step 2: Form a training and testing data

 The input–output data set),,...,,(),(21 iiNiiii yxxxyX ,

i=1; 2; 3; . . . ; n is divided into two parts, that is a training and

testing data set. Denote their sizes by ntr and nte respectively.

Obviously we have n=ntr+nte. The training data set is used to

construct a PNN model (including an estimation of the

coefficients of the PD of nodes situated in each layer of the

PNN). Next, the testing data set is used to evaluate the

estimated PNN model [8].

 Step 3: Choose a structure of the PNN

 The structure of PNN is selected based on the number of

input variables and the order of PD in each layer. Two kinds

of PNN structures, namely a basic PNN and a modified PNN

structure are distinguished. Each of them comes with two

cases. Table 1 summarizes all the options available [8]. More

specifically, the main features of these architectures are as

follows:

TABLE 1 A TAXONOMY OF VARIOUS PNN STRUCTURES

Layer No. of

input

var

Order of

polynomial

PNN

First

layer

p P p=q Basic PNN

Case1 P=Q

Case2 P Q

Second to

fifth layer

q Q p q modified PNN

Case1 P=Q

Case2 P Q

p,q=2,3,4 P,Q=1,2,3

Fig. 1 Basic PNN case 1

 Step 4: Determine the number of input variables and the

order of the polynomial forming a partial description (PD) of

data

 We determine the regression polynomial structure of a PD

related to PNN structure; for details refer to Table 2. In

particular, we select the input variables of a node from N input

variables x1; x2; . . . ; xN. The total number of PDs located at

the current layer differs according to the number of the

selected input variables from the nodes of the preceding layer.

This results in k = N!/(N! – r!)r! nodes, where r is the number

of the chosen input variables. The choice of the input

variables and the order of a PD itself helps select the best

model with respect to the characteristics of the data, model

design strategy, nonlinearity and predictive capability [8].

Step 5: Estimate the coefficients of the PD

The vector of coefficients Ci is derived by minimizing the

mean squared error between yi and iŷ .

TABLE II REGRESSION POLYNOMIAL STRUCTURE

No. of input:3No. of input:2No. of input:1Order

trilinear
1Bilinearlinear1

triQuadratic-1
triQuadratic-2

BiQuadratic-12

BiQuadratic-23
quadratic2

tricubic-1
tricubic-2

Bicubic-14

Bicubic-2
cubic3

2)ˆ(
1 trn

i

ii

tr

yy
n

EPI (4)

Using the training data subset, this gives rise to the set of

linear equations

iiCXY (5)

Apparently, the coefficients of the PD of the processing nodes

in each layer are derived in the form

,)(1 YXXXC
T

ii

T

ii (6)

Where

T

inkiii

T

n

tr

tr

XXXXXi

yyyyY

]......[

]...[

21

321

T

iniii

Tm

kin

m

ki

m

kikinkiki

T

ki

cccC

xxxxxxX

]...[

].........[

10

2121

 (7)

with the following notations: i the node number, k the data

number, ntr the number of the training data subset, n the

number of the selected input variables, m the maximum order,

and n0 the number of estimated coefficients. This procedure is

implemented repeatedly for all nodes of the layer and also for

all layers of PNN starting from the input layer and moving to

the output layer.

 Step 6: Select PDs with the best predictive capability

1 Bilinear pd =c0+c1x1+c2x2
2 BiQuadratic-1 pd= c0+c1x1+c2x2+c3x1

2+c4x2
2+c5x1x2

3 Biquadratic-2 pd = c0+c1x1+c2x2+ c3x1x2
4 Bicubic-1 pd=
c0+c1x1+c2x2+c3x3+c4x1

2+c5x2
2+c6x3

2+c7x1x2+c8x1x3+c9x2x3+c10x1
3+c11x2

3+c1

2x3
3+c13x1

2x2+c14x1x2
2+c15x1

2x3+c16x1x3
2+c17x2

2x3+c18x2x3
2

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:8, 2008

2621

 Each PD is estimated and evaluated using both the training

and testing data sets. Then we compare these values and

choose several PDs, which give the best predictive

performance for the output variable. Usually we use a

predetermined number W of PDs.

 Step 7: Check the stopping criterion

 The stopping condition indicates that an optimal PNN model

has been accomplished at the previous layer, and the modeling

can be terminated. This condition reads as PIj>PI* where PIj is

a minimal identification error of the current layer whereas PI*

denotes a minimal identification error that occurred at the

previous layer.

 Step 8: Determine new input variables for the next layer

 If PIj (the minimum value in the current layer) has not been

satisfied (so the stopping criterion is not satisfied), the model

has to be expanded. The outputs of the preserved PDs serve as

new inputs to the next layer.

III. GENETIC PARTIAL DESCRIPTION (GPD)

 As mentioned in Sec.2, there are two parameters (the order

of polynomial and the number of input variables in each PD)

which affect the performance of network. PNN performance

depends strongly on the number of input variables and type or

order in each PD. These parameters must be chosen in

advance before the architecture of PNN is constructed. In

most cases, those parameters are determined by the trial and

error method, which has a heavy computational load and low

efficiency. If we can determine those parameters properly, the

performance of network will be increased.

 In this paper, GPNN (genetic polynomial neural network)

has been introduced. GPNN has been included by nodes that

called GPD. Each GPD uses genetic algorithm to make these

determinations. In our method, each GPD is represented by

binary chromosome that is illustrated in Fig.2.

Fig. 2 Structure of binary chromosome

TABLE III ORDER OF GPD

The order of Code

1 00

2 01

2 10

3 11

 The chromosome is made of n+2 bits. Two bits are used to

show the order of GPD according to Tables 3 and n bits are

the number of entire input variables candidates in the current

layer. The input candidate is represented by a 1 bit if it is

chosen as an input variable to the GPD and by a 0 bit it is not

chosen. For example, chromosome 010110 presents a GPD

with order=2 (quadratic) and X2, X3 are two input variables. In

addition, type of GPD is determinate by Table 2.

Fig. 3 GPD (genetic partial description)

A. Glearning algorithm

 The Glearing algorithm determines the order and the number

of input variables in each GPD. It uses GA to search between

possible values to determine design parameters. First, we are

going to explain fitness function and selection operator, which

are important factors of GA, then we explain Glearning

algorithm.

1) Fitness function

 The important consideration following the representation is

choice of fitness function. The genotype representation

encodes the problem into a string, whereas the fitness function

measures the system performance. For predication and

estimation of our system, we define a fitness function as

EPI
functionfitness

1
_ (8)

Where EPI is mean squared errors calculated by testing data

set.

EPI=

testi

ii

test

yy
N

2)ˆ(
1 (9)

2) Selection operator

 Simple reproduction allocates offspring strings using a

Roulette wheel with slots sized according to fitness. This is a

way of choosing members from the population of

chromosome in a way that is proportional to their fitness.

Parents are selected according to their fitness. The better the

fitness of the chromosome, the greater the chance it will be

selected.

3) Other parameters

 We use two points crossover operator with cross over rate

(pc5) =.85 and mutation rate (p6
m) =1/ (n+2) where n+2 is the

number of genes.

4) Glearning algorithm

 Glearning algorithm uses GA to learn and select w GPDs

for current layer. The Glearning algorithm is organized in nine

steps. Step1: Determine the number of members of initial

population (Npop). Step2: Determine the number of generation

(Ngen). Step3: create a population of random genes with Npop

chromosomes and set number_of_generation=0. Step4:

evaluate population (Eq.3). Step 5: select two chromosomes as

parents by Roulette wheel selection operator. Step6: Childs

(new members) are reproduced by two points cross over

5Cross Over rate
6 Mutation rate

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:8, 2008

2622

operator. Step 7: apply mutation and add new Childs to new

generation. Step 8: if the number of members is less than Npop,

you will go to the Step 5. Step 9: if number_of_generation

=Ngen, the algorithm will be finished and w chromosomes will

be selected from current generation. Otherwise, you go Step 4

and set number_of_generation= number_of_generation+1.

The Glearning algorithm is shown in Fig.4.

IV. GPNN (GENETIC POLYNOMIAL NEURAL

NETWORK)

 GPNN is made by GPNN algorithm that is shown in Fig.5.

GPNN algorithm is organized in five steps. Step1: Determine

the number of members of initial population(Npop). Step2:

Determine the number of generationes(Ngen). Step3: Form

train set and test set(splite data into the parts (test set and train

set). Step3: determine the number of GPDs for new

layer(w).Step4: run Glearing algorithms with Npop and Ngenthat

are determined in step1 and step2(W GPDs have been learned

by Glearning algorithm and new layer is made of these

GPDs). Step 5: if the best EPI of new layer is less than the

best EPI of pervious layer(if

(newlayer.best_GPD.EPI<previouselayer_best_GPD.EPI), the

new layer will be added to the network and their outpus are

selected as inputs to next layer and you will go to the step 4.

Otherwise, the algorithm will be finished and output of the

best GPD of pervious layer is selected as output of network.

Fig. 4 The Glearning Algorithm

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:8, 2008

2623

Fig. 5:The GPNN algorithm

V.EXPREMENTAL STUDIES

 In this section, we illustrate the performance of the

network and elaborate on it is development by

experimenting with data coming from quadratic equation

and daily values of the Dow Jones industrial index.

A. The quadratic Equation

 In this section, the performance of GPNN for Eq.10 is

obtained. First, the design parameters of the GPNN are

examined. Next, the GPNN will be compared with a

conventional PNN.

431211 253.210125.2538.5368.2 xxxxxxy (10)

Our model is shown in Fig.6.

Fig. 6: Proposed Model for Eq.10

a) The number of members of initial population (Npop)

and the number of generations (Ngen) are two important

design parameters, which affect the GPNN performance.

The performance index (PI) and extended performance

index (EPI) are used in the computer simulation will be

the same as given by Eq.4 and Eq.9, respectively. The

design parameters of The GPNN are shown in Table.4 and

Table 5.

TABLE IV THE NUMBER OF MEMBERS OF INITIAL POPULATION AND PI AND

EPI AND TIME

Npop 10 20 30 40 50

Ngen 6 6 6 6 6

W 10 20 30 40 50

EPI 7.9

9

4.48E-24 4.03E-24 1.46E-23 1.36E-23

PI 7.9

9

3.76E-25 2.49E-25 7.74E-26 7.74E-26

No. of

layers

1 3 3 1 1

Time(min) 0.5 1.8 3.36 2.05 2.67

Table.4 shows the GPNN with 20 or more than 20

chromosomes (Npop) where the values of PI and EPI is

better than others. In addition, Table.5 shows the GPNN

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:8, 2008

2624

with Npop =20 and Ngen >6 where the values of PI and EPI is

better than others. Fig.7 depicted structure of the best

GPNN.

TABLE V THE NUMBER OF GENERATIONS AND PI AND EPI, TIME

Npop 20 20 20 20

Ngen 6 10 15 20

W 20 30 40 50

EPI 3.487E-24 1.369E-23 1.369E-23 3.216E-24

PI 3.764E-25 7.746E-26 7.746E-26 1.309E-25

No. of layers 3 1 1 3

Time(min) 1.8 1.06 1.9 2.83

Fig. 7 structure of the best GPNN

 We use all possible values for two parameters (Npop,

Ngen). Eventually, if Npop is between 20, 50, and Ngen is

under 10, we can construct the best GPNN with less time

complexity and high performance (Fig. 8).

The GPNN Performance

Npop or Ngen

N
et

w
or

k
Pe

rf
or

m
an

ce

Fig. 8 The GPNN performance

b) Comparison of the GPNN with the PNN.

 Table.6 provides a comparison of the GPNN with the

PNN. The comparison based on the same performance

index for training (PI) and testing (EPI) datasets and the

number of layers(network complexity) and time

complexity. We use the brute force method to determine

design parameters of the PNN such as the number of input

variables and the order of polynomial PD. On other hands,

we design all PNNs by all available values for the design

parameters then we choose the best of them (lowest EPI).

Table.6 shows the GPNN with EPI=3.216E-24, time

complexity=2.83(min) is better than the best PNN with

EPI=1.369E-23 and time complexity=13.1(min). The

structure of the best PNN is shown in Fig.9.

TABLE VI COMPARISON OF THE GPNN WITH THE PNN

Method EPI PI No. of

layers

Time(min)

Brute

Force PNN

1.369E-23 7.746E-26 1 13.1

GPNN 3.216E-24 1.309E-25 3 2.83

Fig. 9 Structure of the best PNN

B. The Dow Jones series

 This time series comprises 2050 Daily closing values of

the Dow Jones industrial index (www.finance.yahoo.com)

from Jan 1, 1900 to Jan 1, 1960. The dataset is split into the

two parts. The first part is used as the training set (from Jan

1, 1900 to Jan 1, 1950) and the remaining part of the

dataset is used as the testing set (from Jan 1, 1950 to Jan 1,

1960). It is time series system, which predicates the Dow

Jones values by values of four days ago. This system is

shown in Fig.10.

Fig. 10 The forecasting system

 Where Y(t) equals the value of the Dow Jones index of

today. Y(t-1) equals the value of the Dow Jones index of

yesterday. Y(t+1) equals the value of the Dow Jones index

of tomorrow. The GPNN and The brute force PNN model

this system. Fig.11 shows the output of GPNN follows the

actual output very well. Fig.12 shows the error for testing

and training data daily. Table.7 shows the GPNN with

EPI=5.216E—20 time=9.13 (min) is better than the best

PNN with EPI=6.8323 time=50.1(min).

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:8, 2008

2625

Fig. 11 The GPNN output-actual output

Fig. 12 Error of GPNN

TABLE VII COMPARISON OF THE GPNN WITH THE PNN

Method EPI PI No. of

layers

Time(min)

Brute Force

PNN

6.8323 5.123 2 50.1

GPNN 5.216E--20 9.309E-21 3 9.13

Eventually, these results indicate that the time complexity

and approximation of GPNN is better than the PNN.

VI. CONCLUSION

 In this study, we have introduced a new design

methodology of polynomial neural network, which calls

GPNN. The experimental method was superior to the

conventional PNN model in term of modeling performance

and time complexity. And the architecture of the model was

not fully predetermined, but can be generated during the

identification process. GA achieves the flexibility of the

model for the optimal choice of inputs and order of the

polynomial. In this study, we used testing data for the

selection of the most predictive GPDs. This means that,

somewhat, the testing data is used in the course of evolved

PNN model architecture building. To get more valid

generalization ability, determination of number of members

of initial population and determination of number of

generation and data separating such as training, testing are

needed.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:8, 2008

2626

REFERENCES

[1] A.G. Ivahnenko, Polynomial theory of complex systems, IEEE

Trans. Syst., Man Cybern.SMC-1,1971,pp.364–378.

[2] S.J. Farlow, The GMDH algorithm, in: S.J. Farlow (Ed.), Self-

organizing Methods in Modeling: GMDH Type Algorithms,

Marcel Dekker, New York, 1984, pp. 1–24.

[3] S.-K. Oh, D.-W. Kim, and B.-J. Park, “A study on the optimal

design of polynomial neural networks structure,” The Trans. of

the Korean Institute of Electrical Engineers,2001, vol. 49d, no. 3,

pp.365-396.

[4] G. Ivahnenko, “The group method of data handling: a rival of

method of stochastic approximation,” Soviet Automatic Control,

1968, vol.13, no. 3, pp. 43-55.

[5] D. E. Goldberg, “Genetic Algorithms in Search, Optimization &

Machine Learning”, Addison Wesley, 1989.

[6] B.-J. Park, S.-K. Oh, and W. Pedrycz, “The hybrid multi-layer

inference architecture and algorithm of FPNN based on FNN and

PNN,” Joint 9th IFSA World Congress, 2001, pp. 1361-1366.

[7] S.-K. Oh, T.-C. Ahn, and W. Pedrycz, “A study on the self-

organizing polynomial neural net works,” Joint 9th IFSA World

Congress, , 2001, pp.1690-1695.

[8] S.K. Oh, W.pedrycz, and B.J. Park, “polynomial neural networks

architecture: Analysis and design,” comput.Electr. Eng., ,2003,

vol.29, no.6, pp.703-725.

[9] Oh S-K, Pedrycz W, Ahn T-C. “Self-organizing neural networks

with fuzzy polynomial neurons”. Appl Soft Comput 2002.

[10] Oh S-K, Pedrycz W. “The design of self-organizing polynomial

neural networks”. Inf Sci 2002, pp.237–258.

[11] Oh S-K, Pedrycz W. “Fuzzy polynomial neuron-based self-

organizing neural networks”. Int J Gen Syst 2003, pp.237–250.

[12] Oh S-K, Pedrycz W. “Self-organizing polynomial neural

networks based on PNs or FPNs: analysis and design. Fuzzy

Sets” Syst, 2004, pp.:163–198.

[13] Hayashi, H. Tanaka, “The Fuzzy GMDH algorithm by possibility

models and its application,” Fuzzy Sets and Systems 36, 1990,

pp.245–258.

[14] S.-K. Oh, D.-W. Kim and B.-J. Park, “A study on the optimal

design of polynomial neural networks structure,” The Trans. of

the Korean Institute of Electrical Engineers, 2000 (in

Korean),vol. 49d, no. 3, pp. 145-156.

[15] G. Ivahnenko, “The group method of data handling: a rival of

method of stochastic approximation,” Soviet Automatic Control,

1968, vol.13, no. 3, pp. 43-55.

[16] D. E. Goldberg, Genetic Algorithms in Search, Optimization &

Machine Learning, Addison -Wesley, 1989.

[17] M. Bishop, Neural Networks for Pattern Recognition, Oxford

Univ. Press, 1995.

[18] B.-J. Park, W. Pedrycz, and S.-K. Oh “Fuzzy polynomial neural

networks: hybrid architectures of fuzzy modeling,” IEEE Trans.

on Fuzzy Systems, October 2002, vol. 10, no. 5, pp. 607-621.

