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Abstract—Recently, a lot of attention has been devoted to 

advanced techniques of system modeling. PNN(polynomial neural 

network) is a GMDH-type algorithm (Group Method of Data 

Handling) which is one of the useful method for modeling nonlinear 

systems but PNN performance depends strongly on the number of 

input variables and the order of polynomial which are determined by 

trial and error. In this paper, we introduce GPNN (genetic 

polynomial neural network) to improve the performance of PNN. 

GPNN determines the number of input variables and the order of all 

neurons with GA (genetic algorithm). We use GA to search between 

all possible values for the number of input variables and the order of 

polynomial. GPNN performance is obtained by two nonlinear 

systems. the quadratic equation and the time series Dow Jones stock 

index are two case studies for obtaining the  GPNN performance. 

Keywords—GMDH, GPNN, GA, PNN.

I. INTRODUCTION

ECENTLY, a lot of attention has been directed to 

advanced techniques of system modeling. The panoply of 

the existing methodologies and detailed algorithms is 

confronted with nonlinear systems, high dimensionality of the 

problems, a quest for high accuracy and generalization 

capabilities of the ensuing models. Nonlinear models can 

address some of these issues but they require a vast amount of 

data. When the complexity of the system to be modeled 

increases, both experimental data and some prior domain 

knowledge (conveyed by the model developer) are of 

paramount importance to complete an efficient design 

procedure. One of the first approaches along systematic 

design of nonlinear relationships comes under the name of a 

Group Method of Data Handling (GMDH). GMDH [1]-[3] 

was developed in the late 1960s by Ivahnenko as a vehicle for 

identifying nonlinear relations between input and output 

variables. The GMDH algorithm generates an optimal 

structure of the model through successive generations of 

Partial Descriptions of data (PDs) being regarded as quadratic 

regression polynomials with two input variables. While 

providing with a systematic design procedure, GMDH has 

some drawbacks [2]-[4]. So PNN (polynomial neural network) 

is introduced. 
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    PNN is a GMDH-Type algorithm, which is one of useful 

approximated techniques. PNN is neural network whose 

neurons are called PD(partial description).The output of each 

PD is obtained by using several types of high order 

polynomials such as linear, quadratic, cubic of the input 

variables[1][3][7][10]. Although the PNN is structured by a 

systematic design procedure, it has some drawbacks to be 

solved. PNN performance depends on the number of input 

variables and the type or order of each PD. These parameters 

must be determined by trial and error method, which has a 

heavy computational load and low efficiency. 

   In this paper, GPNN (genetic polynomial neural network) 

has been introduced which uses genetic algorithm (GA) to 

alleviate the above mentioned drawbacks. The GA is used to 

determine the number of input variables in each PD and to 

determine the appropriate type of polynomials in each PD.  

   This paper is organized as follows. The PNN algorithm and 

its generic structure is described in Sec.II Genetic Partial 

Description (GPD) is described in Sec.III. GPNN (Genetic 

Polynomial Neural Network) is described in Sec.IV. A suite of 

experimental studies is covered in Sec.V. Concluding remarks 

are included in Sec.VI.

II.THE PNN ALGORITHM AND ITS GENERIC

STRUCTURE

   In this section, we elaborate on algorithmic details of the 

optimal identification method related to two types of the PNN 

structures.

A. .  PNN algorithm 

   The PNN algorithm is based on the GMDH method and 

utilizes a class of polynomials such as linear, modified 

quadratic, cubic, etc. By choosing the most significant input 

variables and polynomial order among these various types of 

forms available, we can obtain the best of the extracted partial 

descriptions according to both selecting nodes of each layer 

and generating additional layers until the best performance is 

reached. Such methodology leads to an optimal PNN 

structure. Let us recall that the input–output data are given in 

the form 

),,...,,(),( 21 iiNiiii yxxxyX , i=1; 2; 3; . . . ; n                       (1) 

   The input–output relationship of the above data by PNN 

algorithm can be described in the following manner: 

),...,,( 21 Nxxxfy                                                         (2) 

The estimated output ŷ reads as 
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Where ck’s denote the coefficients of the model. The 

framework of the design procedure of the PNNs comes as a 

sequence of the following steps[8]. 

   Step1: Determine system’s input variables 

   Here, we define the input variables as xi; i=1; 2; . . . ; N 

related to output variable y. If required, the normalization of 

input data is also completed. 

   Step 2: Form a training and testing data  

  The input–output data set ),,...,,(),( 21 iiNiiii yxxxyX ,

i=1; 2; 3; . . . ; n is divided into two parts, that is a training and 

testing data set. Denote their sizes by ntr and nte respectively. 

Obviously we have n=ntr+nte. The training data set is used to 

construct a PNN model (including an estimation of the 

coefficients of the PD of nodes situated in each layer of the 

PNN). Next, the testing data set is used to evaluate the 

estimated PNN model [8]. 

   Step 3: Choose a structure of the PNN 

  The structure of PNN is selected based on the number of 

input variables and the order of PD in each layer. Two kinds 

of PNN structures, namely a basic PNN and a modified PNN 

structure are distinguished. Each of them comes with two 

cases. Table 1 summarizes all the options available [8]. More 

specifically, the main features of these architectures are as 

follows: 

TABLE 1 A TAXONOMY OF VARIOUS PNN STRUCTURES

Layer No. of 

input

var

Order of 

polynomial  

PNN

First

layer

p P p=q  Basic PNN 

Case1 P=Q 

Case2 P Q

Second to 

fifth layer 

q Q p  q  modified PNN 

Case1 P=Q 

Case2 P Q

p,q=2,3,4    P,Q=1,2,3

Fig. 1 Basic PNN case 1 

   Step 4: Determine the number of input variables and the 

order of the polynomial forming a partial description (PD) of 

data 

   We determine the regression polynomial structure of a PD 

related to PNN structure; for details refer to Table 2. In 

particular, we select the input variables of a node from N input 

variables x1; x2; . . . ; xN. The total number of PDs located at 

the current layer differs according to the number of the 

selected input variables from the nodes of the preceding layer. 

This results in k = N!/(N! – r!)r! nodes, where r is the number 

of the chosen input variables. The choice of the input 

variables and the order of a PD itself helps select the best 

model with respect to the characteristics of the data, model 

design strategy, nonlinearity and predictive capability [8].  

Step 5: Estimate the coefficients of the PD  

The vector of coefficients Ci is derived by minimizing the 

mean squared error between yi and iŷ .

TABLE II REGRESSION POLYNOMIAL STRUCTURE

No. of input:3No. of input:2No. of input:1Order

trilinear
1Bilinearlinear1

triQuadratic-1
triQuadratic-2

BiQuadratic-12

BiQuadratic-23
quadratic2

tricubic-1
tricubic-2

Bicubic-14

Bicubic-2
cubic3

2)ˆ(
1 trn

i

ii

tr

yy
n

EPI                                                   (4) 

Using the training data subset, this gives rise to the set of 

linear equations 

iiCXY                                                                             (5) 

Apparently, the coefficients of the PD of the processing nodes 

in each layer are derived in the form 
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with the following notations: i the node number, k the data 

number, ntr the number of the training data subset, n the 

number of the selected input variables, m the maximum order, 

and n0 the number of estimated coefficients. This procedure is 

implemented repeatedly for all nodes of the layer and also for 

all layers of PNN starting from the input layer and moving to 

the output layer. 

   Step 6: Select PDs with the best predictive capability 

1 Bilinear pd =c0+c1x1+c2x2
2 BiQuadratic-1 pd= c0+c1x1+c2x2+c3x1

2+c4x2
2+c5x1x2

3 Biquadratic-2 pd = c0+c1x1+c2x2+ c3x1x2
4 Bicubic-1 pd= 
c0+c1x1+c2x2+c3x3+c4x1

2+c5x2
2+c6x3

2+c7x1x2+c8x1x3+c9x2x3+c10x1
3+c11x2

3+c1

2x3
3+c13x1

2x2+c14x1x2
2+c15x1

2x3+c16x1x3
2+c17x2

2x3+c18x2x3
2
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  Each PD is estimated and evaluated using both the training 

and testing data sets. Then we compare these values and 

choose several PDs, which give the best predictive 

performance for the output variable. Usually we use a 

predetermined number W of PDs. 

   Step 7: Check the stopping criterion 

  The stopping condition indicates that an optimal PNN model 

has been accomplished at the previous layer, and the modeling 

can be terminated. This condition reads as PIj>PI* where PIj is 

a minimal identification error of the current layer whereas PI*

denotes a minimal identification error that occurred at the 

previous layer. 

   Step 8: Determine new input variables for the next layer 

  If PIj (the minimum value in the current layer) has not been 

satisfied (so the stopping criterion is not satisfied), the model 

has to be expanded. The outputs of the preserved PDs serve as 

new inputs to the next layer. 

III. GENETIC PARTIAL DESCRIPTION (GPD)

     As mentioned in Sec.2, there are two parameters (the order 

of polynomial and the number of input variables in each PD) 

which affect the performance of network. PNN performance 

depends strongly on the number of input variables and type or 

order in each PD. These parameters must be chosen in 

advance before the architecture of PNN is constructed. In 

most cases, those parameters are determined by the trial and 

error method, which has a heavy computational load and low 

efficiency. If we can determine those parameters properly, the 

performance of network will be increased. 

   In this paper, GPNN (genetic polynomial neural network) 

has been introduced. GPNN has been included by nodes that 

called GPD. Each GPD uses genetic algorithm to make these 

determinations. In our method, each GPD is represented by 

binary chromosome that is illustrated in Fig.2. 

Fig. 2 Structure of binary chromosome 

TABLE III ORDER OF GPD 

The order of Code

1 00

2 01

2 10

3 11

   The chromosome is made of n+2 bits. Two bits are used to 

show the order of GPD according to Tables 3 and n bits are 

the number of entire input variables candidates in the current 

layer. The input candidate is represented by a 1 bit if it is 

chosen as an input variable to the GPD and by a 0 bit it is not 

chosen. For example, chromosome 010110 presents a GPD 

with order=2 (quadratic) and X2, X3 are two input variables. In 

addition, type of GPD is determinate by Table 2. 

Fig. 3 GPD (genetic partial description) 

A. Glearning algorithm 

 The Glearing algorithm determines the order and the number 

of input variables in each GPD. It uses GA to search between 

possible values to determine design parameters. First, we are 

going to explain fitness function and selection operator, which 

are important factors of GA, then we explain Glearning 

algorithm. 

1) Fitness function

     The important consideration following the representation is 

choice of fitness function. The genotype representation 

encodes the problem into a string, whereas the fitness function 

measures the system performance. For predication and 

estimation of our system, we define a fitness function as  

EPI
functionfitness

1
_                                (8) 

Where EPI is mean squared errors calculated by testing data 

set.

EPI=

testi

ii

test

yy
N

2)ˆ(
1                                    (9) 

2) Selection operator 

     Simple reproduction allocates offspring strings using a 

Roulette wheel with slots sized according to fitness. This is a 

way of choosing members from the population of 

chromosome in a way that is proportional to their fitness.  

Parents are selected according to their fitness. The better the 

fitness of the chromosome, the greater the chance it will be 

selected.

3) Other parameters

     We use two points crossover operator with cross over rate 

(pc5) =.85 and mutation rate (p6
m) =1/ (n+2) where n+2 is the 

number of genes. 

4) Glearning algorithm 

     Glearning algorithm uses GA to learn and select w GPDs 

for current layer. The Glearning algorithm is organized in nine 

steps. Step1: Determine the number of members of initial 

population (Npop). Step2: Determine the number of generation 

(Ngen). Step3: create a population of random genes with Npop

chromosomes and set number_of_generation=0. Step4:

evaluate population (Eq.3). Step 5: select two chromosomes as 

parents by Roulette wheel selection operator. Step6: Childs 

(new members) are reproduced by two points cross over 

5Cross Over rate 
6 Mutation rate 
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operator. Step 7: apply mutation and add new Childs to new 

generation. Step 8: if the number of members is less than Npop,

you will go to the Step 5. Step 9: if number_of_generation 

=Ngen, the algorithm will be finished and w chromosomes will 

be selected from current generation. Otherwise, you go Step 4

and set number_of_generation= number_of_generation+1. 

The Glearning algorithm is shown in Fig.4. 

IV. GPNN ( GENETIC POLYNOMIAL NEURAL

NETWORK)

   GPNN is made by GPNN algorithm that is shown in Fig.5. 

GPNN algorithm is organized in five steps. Step1: Determine 

the number of members of  initial population(Npop). Step2: 

Determine the number of generationes(Ngen). Step3: Form 

train set and test set( splite data into the parts (test set and train 

set). Step3: determine the number of GPDs for new 

layer(w).Step4: run Glearing algorithms with Npop and Ngenthat

are determined in step1 and step2( W GPDs have been learned 

by Glearning algorithm and new layer is made of these 

GPDs). Step 5: if the best EPI of new layer is less than the 

best EPI of pervious layer(if 

(newlayer.best_GPD.EPI<previouselayer_best_GPD.EPI), the 

new layer will be added to the network and their outpus are 

selected as inputs to next layer and you will go to the step 4. 

Otherwise, the algorithm will be finished and output of the 

best GPD of pervious layer  is selected as output of network. 

Fig. 4 The Glearning Algorithm 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:8, 2008

2623

Fig. 5:The GPNN algorithm 

V.EXPREMENTAL STUDIES

   In this section, we illustrate the performance of the 

network and elaborate on it is development by 

experimenting with data coming from quadratic equation 

and daily values of the Dow Jones industrial index. 

A. The quadratic Equation 

    In this section, the performance of GPNN for Eq.10 is 

obtained. First, the design parameters of the GPNN are 

examined. Next, the GPNN will be compared with a 

conventional PNN.

431211 253.210125.2538.5368.2 xxxxxxy  (10) 

Our model is shown in Fig.6. 

Fig. 6: Proposed Model for Eq.10

a) The number of members of initial population (Npop)

and the number of generations (Ngen) are two important 

design parameters, which affect the GPNN performance. 

The performance index (PI) and extended performance 

index (EPI) are used in the computer simulation will be 

the same as given by Eq.4 and Eq.9, respectively. The 

design parameters of The GPNN are shown in Table.4 and 

Table 5.

TABLE IV THE NUMBER OF MEMBERS OF INITIAL POPULATION AND PI AND 

EPI AND TIME

Npop 10 20 30 40 50

Ngen 6 6 6 6 6

W 10 20 30 40 50

EPI 7.9

9

4.48E-24 4.03E-24 1.46E-23 1.36E-23 

PI 7.9

9

3.76E-25 2.49E-25 7.74E-26 7.74E-26 

No. of 

layers

1 3 3 1 1

Time(min) 0.5 1.8 3.36 2.05 2.67

Table.4 shows the GPNN with 20 or more than 20 

chromosomes (Npop) where the values of PI and EPI is 

better than others. In addition, Table.5 shows the GPNN 
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with Npop =20 and Ngen >6 where the values of PI and EPI is 

better than others. Fig.7 depicted structure of the best 

GPNN.

TABLE V THE NUMBER OF GENERATIONS AND PI AND EPI, TIME

Npop 20 20 20 20

Ngen 6 10 15 20

W 20 30 40 50 

EPI 3.487E-24 1.369E-23 1.369E-23 3.216E-24 

PI 3.764E-25 7.746E-26 7.746E-26 1.309E-25 

No. of layers 3 1 1 3 

Time(min) 1.8 1.06 1.9 2.83 

Fig. 7 structure of the best GPNN 

   We use all possible values for two parameters (Npop,

Ngen). Eventually, if Npop is between 20, 50, and Ngen is 

under 10, we can construct the best GPNN with less time 

complexity and high performance (Fig. 8). 

The GPNN  Performance

Npop or Ngen

N
et

w
or

k 
Pe

rf
or

m
an

ce

Fig. 8 The GPNN performance

b) Comparison of the GPNN with the PNN. 

    Table.6 provides a comparison of the GPNN with the 

PNN. The comparison based on the same performance 

index for training (PI) and testing (EPI) datasets and the 

number of layers(network complexity) and time 

complexity. We use the brute force method to determine 

design parameters of the PNN such as the number of input 

variables and the order of polynomial PD. On other hands, 

we design all PNNs by all available values for the design 

parameters then we choose the best of them (lowest EPI). 

Table.6 shows the GPNN with EPI=3.216E-24, time 

complexity=2.83(min) is better than the best PNN with 

EPI=1.369E-23 and time complexity=13.1(min). The 

structure of the best PNN is shown in Fig.9. 

TABLE VI COMPARISON OF THE GPNN WITH THE PNN

Method EPI PI No. of 

layers

Time(min)

Brute

Force PNN

1.369E-23 7.746E-26 1 13.1

GPNN 3.216E-24 1.309E-25 3 2.83

Fig. 9 Structure of the best PNN 

B. The Dow Jones series 

    This time series comprises 2050 Daily closing values of 

the Dow Jones industrial index (www.finance.yahoo.com) 

from Jan 1, 1900 to Jan 1, 1960. The dataset is split into the 

two parts. The first part is used as the training set (from Jan 

1, 1900 to Jan 1, 1950) and the remaining part of the 

dataset is used as the testing set (from Jan 1, 1950 to Jan 1, 

1960). It is time series system, which predicates the Dow 

Jones values by values of four days ago. This system is 

shown in Fig.10.

Fig. 10 The forecasting system  

   Where Y(t) equals the value of the Dow Jones index of 

today. Y(t-1) equals the value of the Dow Jones index of 

yesterday. Y(t+1) equals the value of the Dow Jones index 

of tomorrow. The GPNN and The brute force PNN model 

this system. Fig.11 shows the output of GPNN follows the 

actual output very well. Fig.12 shows the error for testing 

and training data daily. Table.7 shows the GPNN with 

EPI=5.216E—20 time=9.13 (min) is better than the best 

PNN with EPI=6.8323 time=50.1(min). 
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Fig. 11 The GPNN output-actual output 

Fig. 12 Error of GPNN

TABLE VII COMPARISON OF THE GPNN WITH THE PNN

Method EPI PI No. of 

layers

Time(min)

Brute Force 

PNN

6.8323 5.123 2 50.1

GPNN 5.216E--20 9.309E-21 3 9.13

Eventually, these results indicate that the time complexity 

and approximation of GPNN is better than the PNN. 

VI. CONCLUSION

   In this study, we have introduced a new design 

methodology of polynomial neural network, which calls 

GPNN. The experimental method was superior to the 

conventional PNN model in term of modeling performance 

and time complexity. And the architecture of the model was 

not fully predetermined, but can be generated during the 

identification process. GA achieves the flexibility of the 

model for the optimal choice of inputs and order of the 

polynomial. In this study, we used testing data for the 

selection of the most predictive GPDs. This means that, 

somewhat, the testing data is used in the course of evolved 

PNN model architecture building. To get more valid 

generalization ability, determination of number of members 

of initial population and determination of number of 

generation and data separating such as training, testing are 

needed.



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:8, 2008

2626

REFERENCES

[1]    A.G. Ivahnenko, Polynomial theory of complex systems, IEEE 

Trans. Syst., Man Cybern.SMC-1,1971,pp.364–378. 

[2]   S.J. Farlow, The GMDH algorithm, in: S.J. Farlow (Ed.), Self-

organizing Methods in Modeling: GMDH Type Algorithms, 

Marcel Dekker, New York, 1984, pp. 1–24. 

[3]   S.-K. Oh, D.-W. Kim, and B.-J. Park, “A study on the optimal 

design of polynomial neural networks structure,” The Trans. of 

the Korean Institute of Electrical Engineers,2001, vol. 49d, no. 3, 

pp.365-396. 

[4]   G. Ivahnenko, “The group method of data handling: a rival of 

method of stochastic approximation,” Soviet Automatic Control, 

1968, vol.13, no. 3, pp. 43-55. 

[5]   D. E. Goldberg, “Genetic Algorithms in Search, Optimization & 

Machine Learning”, Addison Wesley, 1989. 

[6]   B.-J. Park, S.-K. Oh, and W. Pedrycz, “The hybrid multi-layer 

inference architecture and algorithm of FPNN based on FNN and 

PNN,” Joint 9th IFSA World Congress, 2001, pp. 1361-1366. 

[7]   S.-K. Oh, T.-C. Ahn, and W. Pedrycz, “A study on the self-

organizing polynomial neural net works,” Joint 9th IFSA World 

Congress, , 2001, pp.1690-1695. 

[8]   S.K. Oh, W.pedrycz, and B.J. Park, “polynomial neural networks 

architecture: Analysis and design,” comput.Electr. Eng., ,2003, 

vol.29, no.6, pp.703-725. 

[9]   Oh S-K, Pedrycz W, Ahn T-C. “Self-organizing neural networks 

with fuzzy polynomial neurons”. Appl Soft Comput 2002. 

[10]  Oh S-K, Pedrycz W. “The design of self-organizing polynomial 

neural networks”. Inf Sci 2002, pp.237–258. 

[11]  Oh S-K, Pedrycz W. “Fuzzy polynomial neuron-based self-

organizing neural networks”. Int J Gen Syst 2003, pp.237–250. 

[12]  Oh S-K, Pedrycz W. “Self-organizing polynomial neural 

networks based on PNs or FPNs: analysis and design. Fuzzy 

Sets” Syst, 2004, pp.:163–198. 

[13]  Hayashi, H. Tanaka, “The Fuzzy GMDH algorithm by possibility 

models and its application,” Fuzzy Sets and Systems 36, 1990, 

pp.245–258.

[14]  S.-K. Oh, D.-W. Kim and B.-J. Park, “A study on the optimal 

design of polynomial neural networks  structure,” The Trans. of 

the Korean Institute of Electrical Engineers, 2000 (in 

Korean),vol. 49d, no. 3, pp. 145-156. 

[15]  G. Ivahnenko, “The group method of data handling: a rival of 

method of stochastic approximation,” Soviet Automatic Control, 

1968, vol.13, no. 3, pp. 43-55. 

[16]  D. E. Goldberg, Genetic Algorithms in Search, Optimization & 

Machine Learning, Addison -Wesley, 1989. 

[17]  M. Bishop, Neural Networks for Pattern Recognition, Oxford 

Univ. Press, 1995. 

[18]  B.-J. Park, W. Pedrycz, and S.-K. Oh “Fuzzy polynomial neural 

networks: hybrid architectures of fuzzy modeling,” IEEE Trans. 

on Fuzzy Systems, October 2002, vol. 10, no. 5, pp. 607-621. 


