
International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:2, No:5, 2008

622

Abstract—This paper discusses the applicability of the Data

Distribution Service (DDS) for the development of automated and

modular manufacturing systems which require a flexible and robust

communication infrastructure. DDS is an emergent standard for data-

centric publish/subscribe middleware systems that provides an

infrastructure for platform-independent many-to-many

communication. It particularly addresses the needs of real-time

systems that require deterministic data transfer, have low memory

footprints and high robustness requirements. After an overview of the

standard, several aspects of DDS are related to current challenges for

the development of modern manufacturing systems with distributed

architectures. Finally, an example application is presented based on a

modular active fixturing system to illustrate the described aspects.

Keywords—Flexible Manufacturing, Publish/Subscribe, Plug &

Produce.

I. INTRODUCTION

URING the past decades, the manufacturing sector has

faced challenges, such as product customisation, shorter

product life cycles and increased quality requirements due to

the fierce competition. To address these problems and to meet

the reconfiguration requirements, a trend has developed

towards modularisation and automation of manufacturing

systems. This, however, leads to an increased information

exchange between subsystems which can have very different

requirements for the data exchange. In particular,

communication is not only taking place horizontally among the

components on the shop floor. Production systems also need to

be integrated in vertical direction with other enterprise

subsystems, such as administrative or warehousing systems. As

a result, flexible and open communication infrastructures are

required that allow for the integration of a large number of

different processes like assembly modules, fixturing systems,

Human Machine Interfaces (HMI) and other parts of the

factory.

To address these challenges, distributed automation

concepts have been subject to extensive research effort.

Nakatani et al. [1] have developed a distributed data

M. Ryll is a Research Postgraduate at the Precision Manufacturing

Centre, School of Mechanical, Materials and Manufacturing Engineering,

University of Nottingham, NG7 2RD UK (phone: +44(0)1158466083; fax:

+44(0)1159513800; e-mail: epxmr3@ nottingham.ac.uk).

S. Ratchev, is Professor at the School of Mechanical, Materials and

Manufacturing Engineering and Head of the Precision Manufacturing Centre,

University of Nottingham, Nottingham, NG7 2RD UK (e-mail:

svetan.ratchev@ nottingham.ac.uk).

acquisition and device control system for experiment

instruments that is based on a modular structure and

communication via a client/server architecture. Mitschang [2]

has presented an approach for a shared information space that

facilitates collaboration and data exchange in a heterogeneous

application environment over multiple communication

protocols. The problem of fault-tolerance and robustness of

manufacturing systems has been addressed by Campelo et al.

[3] with a distributed control architecture which ensure

sautomatic recovery when components fail. Other examples

for fault-tolerant, distributed architectures with real-time

characteristics include the DACAPO system [4], [5] and

DELTA-4 [6]. To alleviate the complexity of achieving

flexible and deterministic communication, middleware

technologies are evolving as an additional layer between the

application and the operating system. In this context, Delamer

et al. [7]-[9] have described a message-oriented framework for

production systems that enables data exchange among

machines and control software applications through the

publish/subscribe paradigm. In this system, messages and

events are defined in XML-format and distributed through

clusters of message broker systems. Thus, the concept allows

robust communication between an arbitrary number of

processes. However, message-oriented communication

requires additional processing time in each node for the

interpretation of message. Further, the concept of message

brokers introduces centralised entities which are potential

performance bottlenecks and failure points.

Recently the Object Management Group (OMG) has

released the Data Distribution Service (DDS) [10] as a

platform-independent standard for data centric

publish/subscribe middleware systems. The standard ensures

deterministic information exchange and allows the managing

of many aspects of the communication behaviour to meet

application requirements. As opposed to message-oriented

approaches, DDS does not exchange data in the form of

messages. In DDS data is formally defined in a platform-

independent way which is the basis for the automatic

generation of communication source code for specific target

platforms. This way, the standard realises communication

significantly faster.

This paper provides an overview on the DDS standard and

its applicability for automated manufacturing systems. In the

next section, an architectural overview of the middleware is

provided. This is followed by a discussion of relevant features

Application of the Data Distribution Service for

Flexible Manufacturing Automation

Marco Ryll, and Svetan Ratchev

D

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:2, No:5, 2008

623

that have the potential to support the development of robust,

yet flexible manufacturing systems. Finally, the development

of a software-based prototype application is presented to

illustrate some of the aspects of the DDS middleware. This is

based on a modular active fixturing system.

II. OVERVIEW ON THE DATA DISTRIBUTION SERVICE

DDS provides easy-to-use communication services which

allow participants to share data through topics. The latter form

a so-called “global data space” that is accessible to all

interested applications [10]. Processes that want to send data

declare their intent to become “publishers” for a topic.

Similarly, applications can declare their intent to become

“subscribers” for a topic if they require data from it.

Underneath, the middleware automatically detects new

participants in the system and establishes connections between

the publishers and subscribers for a matching topic. Fig. 1

illustrates the global data space with three topics and five

participants. The arrow directions indicate if an application is

a publisher or a subscriber for a certain topic. Specifically, an

ingoing arrow marks the application as a subscriber while an

outgoing arrow declares it as a publisher.

Topic 1

Topic 2

Topic 3
Application

Application Application

Application

Application

Global Data Space

Fig. 1 Overview of the publish/subscribe concept

As a result of the publish/subscribe concept, communication

is decoupled through the topics and flexible many-to-many

communication between a large number of participants is

supported. Moreover, the interfaces offered by DDS hide all

details of the communication from the application source code

of the participants, thereby significantly reducing their

complexity. More specifically, utilising ready-made services

saves development time and is less error-prone than

developing proprietary communication infrastructures.

A. The Data Centric Publish/Subscribe Model

Data exchange with DDS is realised according to the class

structure defined in the Data Centric Publish Subscribe model

(DCPS). This model describes the interfaces and relations of

all entities that participate in the communication which is

shown in Fig. 2. Although, fundamental knowledge of these

classes and their relationships is important to understand DDS,

it should be noted that they are automatically generated for

each application based on the data type definitions. The

applications must instantiate these classes and use the provided

methods in order to achieve communication.

The core of the model is the class Entity. It is configurable

with Quality-of-Service policies and can be attached with

listener objects to be notified about events. Due to the

inheritance relationship these characteristics are passed on to

all other classes of the model, each of them defining a

specialised set of QoSPolicies to fine-tune data transfer.

The class Topic represents a data flow that is defined by an

unique identifier and a data type. More specifically, it connects

the publishing and the subscribing ends of the communication.

The former consists of the Publisher class that is internally

used by the middleware to send out data. It is associated with

multiple instances of the class DataWriter which provides a

data type specific access for the application to trigger the

publisher. The subscribing side of the communication is

similarly structured. Internally, data is received and made

available by Subscriber objects. These can be accessed by the

application through data type specific DataReader objects.

Fig. 2 Simplified Class diagram of the DCPS model (adopted from

[10])

B. The Quality-of-Service Concept

The term Quality-of-Service refers to a general concept used

to specify and control the behaviour of the communication

service. The concept offers the advantage that the application

developer only needs to indicate ‘what’ is required rather than

‘how’ this behaviour is achieved [10]. In particular, QoS

provides the ability to manage the use of resources like

network bandwidth or memory as well as reliability, timeliness

and persistence of the data transfer.

The QoS model defined for DDS is a set of classes which

are derived from QosPolicy and therefore can be attached to

all objects that are involved in the communication. Each of

these policies associates a name with a value and controls a

specific aspect of the behaviour of the service. The

specification defines separate semantics for the publishing and

the subscribing side of each QoS parameter. To ensure correct

communication, the QoS policies at the publisher side must be

compatible with those at the subscribing end. To address this

issue, the middleware automatically verifies if the QoS settings

for corresponding publishers and subscribers match according

to the subscriber-requested, publisher-offered pattern.

According to this pattern, communication is only established if

the offered communication properties of the publisher meet the

requested behaviour of the subscriber. The complete

specification can be found in [10].

The utilisation of QoS settings particularly addresses the

needs of embedded real-time applications because it provides

predictability and resource control. At the same time the

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:2, No:5, 2008

624

concept preserves the flexibility inherent to the

publish/subscribe model. Additionally, a number of challenges

that exist for the development of flexible manufacturing

systems can be solved with that concept which is demonstrated

in section IV.

III. ADDRESSED AUTOMATION CHALLENGES

DDS is an application-neutral middleware standard. It has

been predominantly adopted for distributed communication in

the defence & aerospace sector and for traffic control systems.

Although, a few industrial automation systems have been

implemented with DDS, it appears that the standard has not yet

gained much significance for the automation of manufacturing

systems. The reasons for this are manifold. On the one hand,

the standard is still comparatively young and the high

investment risks of manufacturing systems often force

suppliers and end-users to use well-proven traditional

technologies. On the other hand, there is still a lack of a

support ecosystem that facilitates enhancing de facto standard

control systems like PLCs with DDS-based communication

without deep programming knowledge. However, as

manufacturing systems are gradually moving towards utilising

modular concepts and data distribution via Ethernet, DDS

becomes an increasingly interesting technology for this sector.

The reason for this is that DDS offers off-the-shelf features

that have the potential to solve a number of challenges of

distributed plug & produce manufacturing systems. The

following sections discuss these challenges and show how they

are addressed by the Data Distribution Service.

A. Impedance Mismatch

This refers to the problems with the integration of

applications that have different requirements for the data

exchange, such as data volume, data rates or timing constraints

[11]. In a complex distributed system, some applications might

produce data at much higher rates than others are able to

consume. An example of this is the integration of

administrative and business applications with the field-devices

of the shop floor. Also Human Machine Interfaces often

monitor processes which produce data at a very high frequency

whereas only a subset of the data needs to be displayed. It

would be fatal if the HMI was notified about every change of

the sensor data, since it requires sufficient processing time for

its graphical user interface.

With traditional approaches like client/server-based

architectures this is a major problem because of the tight

coupling between the data producer and those applications

consuming the information. DDS overcomes this problem with

minor programming efforts with its QoS concept. The

subscriber objects can be configured with the

TIME_BASED_FILTER QoS to precisely specify the

minimum separation between received data samples. This way,

the subscribing application can fully control how often it is

updated with new data samples, regardless of how fast changes

occur.

Furthermore, there is a trade-off between delivery reliability

and delivery timing [12]. For some applications fast data

transfer is decisive whereas for others the reliability is more

important. For instance, a data channel transmitting a safety-

critical command sequence must ensure that all commands are

received in the right order, even if this imposes delays. This

means, that the communication infrastructure must ensure

resending of lost messages. On the other hand, for a controller

processing time-critical sensor input it is more important to be

updated with the most-recent sensor information and it is

acceptable to ignore a few lost signals in between. DDS

addresses this trade-off with the QoS policy RELIABILITY

which can be attached to DataWriter and DataReader-objects.

The policy has two possible values, RELIABLE and

BEST_EFFORT. The first value makes sure that no data gets

lost during the communication, while the second value can be

used for connections that can ignore lost packages. Thus, each

communication channel can be individually configured

according to the trade-off decision without any further

programming effort.

B. Plug & Produce

In order to react to changing product or process

requirements it must be possible to dynamically add or remove

modules into the production system. For instance, a modular

fixturing system as described in section IV must be extendible

with further fixture modules to reconfigure for a different

workpiece. Similarly, it should be possible to plug and unplug

HMI applications to and from a production system without

affecting the overall process. This results in dynamically

changing network topologies where the appearance and

disappearance of modules need to be discovered.

DDS addresses this aspect with the automatic discovery of

participants. New publishers and subscribers for a topic can

appear at any time and the middleware provides mechanisms

to notify the applications about their discovery. Similarly,

applications are informed when participants are removed.

Consequently, this simplifies the development of the

distributed communication infrastructure of the manufacturing

system.

Secondly, for plug & produce systems it is critical to

provide late-joining modules with information that has been

shared before they joined the system. For example, a late-

joining module needs to be provided with information to

interpret data coming from other subsystems or with the latest

state information. As the example described in section IV

shows, DDS provides a simple, yet effective mechanism to

automatically redistribute data samples to late-joining

applications by means of the QoS concept.

C. Platform-Independence

The subsystems comprising a production system are often

developed by independent suppliers. This results in

heterogeneous application landscapes with processes that

utilise different hardware architectures, operating systems and

programming languages. Not only does this impose problems

of integrating these components to smoothly work together.

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:2, No:5, 2008

625

Also, each component might be subject to incremental changes

or upgrades.

The DDS standard itself is defined by a Platform

Independent Model (PIM). Secondly, data to be exchanged

with DDS is also defined in a platform-independent way, using

a subset of the Interface Definition Language (IDL) standard

[13]. Consequently, it can theoretically support any

combination of processor architecture, programming language

and operating system. Available DDS middleware solutions

allow seamless communication between the programming

languages C, C++ and Java and many operating systems such

as VxWorks, Windows, Lynx and Unix derivates. Moreover,

using DDS makes all these details transparent for the

application source code. In other words, no additional

programming effort is required to establish data exchange

between different platforms or to migrate subsystems from one

platform to another. Hence, DDS can significantly reduce the

difficulties of the system integration task for the automation of

future manufacturing systems.

Finally, the data-centric approach of DDS connects

individual applications only by means of the data model and

decouples information exchange by means of topics. For these

reasons DDS reduces dependencies between processes

compared to traditional object-oriented or client/server

approaches. While the latter lead to tightly-coupled

applications that are connected by their behaviour in the form

of method interfaces, DDS establishes interactions by means

of the most constant part of a system which is the data model.

This supports the incremental and independent development of

individual subsystems as long as these changes are only

concerned with the behaviour of the participants.

IV. EXAMPLE

This section presents the development of a software-based

prototype for a modular active fixturing system. Fixtures are

devices that are used to support, locate and hold a workpiece

into a desired orientation in space during manufacturing.

Hence, they are essential in guaranteeing the quality of the

final product in machining and assembly processes [14]. The

prototype was developed using the commercially available

DDS implementation RTI DDS 4.1e from Real-Time

Innovations, Inc and demonstrates several of the previously

discussed aspects.

A. Basic Concept of the Modular Active Fixture

The proposed fixturing system utilises sensor feedback to

dynamically adapt clamping forces during the manufacturing

process. Fig. 3 presents the conceptual design principle of this

system. The fixture comprises an arbitrary number of fixture

modules which are mounted on a rail frame. The latter allow

flexible positioning and movement of the fixture modules

when the fixture needs to be reconfigured for another

workpiece. Each fixture module has a linear actuator that acts

as the locating and clamping pin against the workpiece.

Additionally, it incorporates sensors to feedback displacement,

force and temperature.

Workpiece

Fixture Module

Fig. 3 Conceptual Design of the fixturing system [15]

From a software point-of-view, a distributed approach is

proposed where each fixture module has its own local software

program. These programs need to interact with each other and

a global coordinating software, called fixture control, which

realises the overall fixturing strategy. Additionally, the

infrastructure shall be open to allow communication with other

subsystems like HMIs, the machine control and others.

B. Overview of the Software-Based Prototype

On the basis of this concept, three software programs have

been developed using the programming language C++, namely

FixtureModule.exe, FixtureControl.exe and HMI.exe. They are

used to demonstrate the basic communication taking place in

the described fixturing system and to illustrate the previously

described aspects of DDS like automatic discovery, impedance

mismatch etc.

The FixtureModule program stands for the local software

running on each module. It is provided with a unique

numerical identifier (module-ID) by means of a command line

parameter. Furthermore, each module is configured with

information about its internal device structure which in this

prototype is fictional only. In a fully functional prototype, each

module software would be responsible for accessing the sensor

devices and transforming the raw sensor signals into

meaningful information (e.g. Force in Newton). Similarly, it

would have to realise the logic to generate the signals for its

actuator in order to achieve a certain desired state, i.e.

displacement or reaction force. In this prototype, however, the

module software simulates the existence of internal sensors

and actuators by instantiating software objects for them. The

objects representing the sensor devices continuously produce

random data. On the other hand, the software-object that

represents the actuator changes its internal positional

information in order to imitate an actuation. In order to allow

other systems to communicate with the module software in a

meaningful way, it is required that the module’s capabilities

are published when the module is launched. For instance, other

systems need to be able to verify if the fixture module

measures force in Millinewton (mN) or Newton (N) etc. After

this, it continuously publishes its current sensor states and

expects desired states for its actuator.

The fixture control program (FixtureControl.exe)

coordinates the global behaviour of the overall fixturing

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:2, No:5, 2008

626

system. For this, it needs to discover all fixture modules on the

platform and to retrieve their capability information before it

can communicate with them in a meaningful way. During the

manufacturing process, it interacts with the fixture modules by

continuously receiving their sensor states and issuing desired

states for their actuators.

Fig. 4 Overview on the example application

As the third program, a simple Human Machine Interface

(HMI.exe) has been developed for demonstration purposes.

Similar to the fixture control it needs to dynamically discover

the fixture modules and their capabilities. It is constantly

updated with the sensor states of all modules and displays

them on the graphical user interface. However, unlike the

fixture control, it does not send any information to the

modules. This paper concentrates on the design of the

distributed data transfer with DDS. For this reason, no further

details about the application logic of these three programs are

reported.

C. Further Requirements

In order to illustrate how DDS addresses the challenges

discussed in section III, a number of additional requirements

for the overall system have been defined as follows:

1. Fixture modules must transmit additional

information to allow interpretation of their data to

other systems. This information should be issued at

the initial start-up of each fixture module.

Subsystems that are launched at a later time must

be automatically provided with this information. In

other words, no particular start sequence should be

imposed for the fixturing system.

2. To illustrate the impedance mismatch it is defined

that HMI applications shall be updated with force

sensor readings only every 1000ms, regardless of

how fast the modules publish this information. In a

similar way, HMIs shall receive only one

temperature sample every 4000ms.

3. Although all fixture modules have a temperature

sensor, it is defined that the fixture control and the

HMI applications only receive temperature

readings from one fixture module at a time. If this

most-trusted module fails to deliver a sample

within 6000ms, temperature data shall

automatically be received from another module.

D. Design of the Data Model

The first step of the data-centric application development is

the definition of the data structures to be exchanged between

the processes. In this context, there is a trade-off between

efficient data transfer and flexible interpretation of data. On

one hand, it shall be allowed to add fixture modules with

varying capabilities, i.e. different hardware characteristics and

representations of data. This makes it necessary that each

module informs other systems about its capabilities which

define how data has to be interpreted. On the other hand, it is

not efficient to publish this meta-information with every sensor

update. For this reason, it is proposed to separate actual state

data from meta-information to interpret it. Therefore, two data

structures are created for each capability of a fixture module.

The first data structure is used for the transmission of the

sensor readings or desired states for actuator devices during

the manufacturing process. It is a very simple data structure

that only consists of a field for the numeric module-ID and the

data itself. Below an example is provided for the data structure

for force sensor readings. Each attribute is defined with a data

type, followed by a name.

struct Force {

long module_id;
double value;

};

Since this structure does not contain any information on

how to use the data, an additional data structure is defined for

each capability. It contains attributes describing the

characteristics of the relevant capability like measuring range,

resolution etc. In this prototype the meta-information only

contains the measuring range for capabilities that result from

the existence of sensor devices. This is further defined by

attributes for the minimum and maximum measuring value, as

well as the measuring unit. For the latter unique numerical

constants have been defined. The following listing provides

the data definitions for the capability that results from the

existence of a force sensor. Similar structures have been

defined for the other capabilities.

struct MeasuringRange {
 double min;
 double max;
 long unit;

};

struct SenseReactionForceCapability{
 MeasuringRange measuringRange;

};

Instead of publishing each of these data types separately,

they are further aggregated in a single record which finally

provides a complete representation of the module

functionalities. This structure is shown below and contains the

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:2, No:5, 2008

627

numerical identifier of the fixture module and has attributes for

each capability.

struct FixtureModuleCapabilityDef{

 long id;
 SenseTipPositionCapability
 senseTipPositionCapability;
 AdjustTipPositionCapability

 adjustTipPositionCapability;
 SenseBodyPositionCapability
 senseBodyPositionCapability;
 AdjustBodyPositionCapability

 adjustBodyPositionCapability;
 SenseReactionForceCapability

 senseReactionForceCapability;
 AdjustClampingForceCapability

 adjustClampingForceCapability;
 SenseTemperatureCapability

 senseTemperatureCapability;

};

During the initialisation routine of a fixture module, this

data structure is instantiated and published as one sample. All

other subsystems are thereafter able to communicate with this

module in a meaningful way. This separation approach reduces

network load and processing time during the manufacturing

process. The reason for this is that at this time only simple data

structures are exchanged through the network.

All data type definitions were saved in the file testbed.idl

and with the following command all required classes for the

data exchange with DDS are generated in the programming

language C++. The three applications of the prototype must

create objects of these classes and use their interfaces to

achieve communication.

rtiddsgen –language C++ testbed.idl

E. Design of the Topic Structure

For the prototype five individual data topics have been

defined. Each of them is bound to one data type which is

illustrated in Fig. 5.

FixtureModuleFixtureModule

HMI

Current

TipPosition

(TipPosition)

Current

Temperature

(Temperature)

Current

Reaction

Force

(Force)

Module

Capability

Description
(Fixture

Module

Capability

Def)

FixtureModule

FixtureControl

Desired

TipPosition

(TipPosition)

Fig. 5 Topic structure of the prototype

In the centre of the picture, the data topics are displayed

with their unique identifier. Additionally, the data type that is

exchanged through this topic is provided in brackets. Similar

to Fig. 1, the arrow directions indicate whether an application

is a publisher or subscriber with respect to a certain topic.

Thus, the three applications play different roles for each topic.

For example, the fixture module programs publish data into

the topics “Module Capability Description”, “Current Tip

Position”, “Current Temperature” and “Current Reaction

Force” while the FixtureControl-program and the HMI are

subscribers for these topics. Since the fixture control

application is a publisher for the topic “Desired Tip Position”,

interaction is established between the modules and the fixture

control.

F. Selection of Quality-of-Service Parameters

The next step is to configure the communication to meet the

previously defined requirements. For this, QoS parameters

need to be attached to the data writers and data readers which

realise the information exchange.

The first requirement is a result from the separation of data

structures as described in section IV.D and the strategy that

each module publishes its capabilities only once during its

initialisation routine. This means, a mechanism must be

provided that allows late-joining processes to receive the

capability information. In traditional, particularly client/server-

based systems, the problem of redistributing historical data is

often solved by periodical broadcasts or by explicit requesting

the required information in a synchronous message sequence.

Both approaches jeopardise timing-determinism and add

complexity to the application logic of the modules. With minor

programming effort, DDS can entirely take responsibility for

the automatic redistribution of data whenever a new subscriber

for this data topic is discovered. Hence, the development of

the module software is significantly simplified.

For the realisation of this strategy, the data writers and data

readers for the module capability descriptions need to be

attached with the QoS settings as shown in Fig. 6.

Fig. 6 QoS settings for Requirement I

For the publishing side, the QoS parameter HISTORY

specifies if and how many published data samples are

maintained for late-joining subscribers. With its attribute depth

set to 1 and the DURABILITY.kind parameter defined as

TRANSIENT_LOCAL, it is assured that the last published

sample is stored locally. Finally, this strategy is only

applicable for reliable data transfer which is specified by the

value of the RELIABILITY parameter.

The second requirement aims at illustrating the impedance

mismatch that can occur when applications with different

communication requirements are integrated. For the HMI-

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:2, No:5, 2008

628

application it is critical not to be flooded with too much data

because otherwise it would not have sufficient resources to

handle its graphical user interface. Hence, a mechanism must

be implemented to limit the number of samples. As described

in section III, DDS provides a simple, yet effective means for

this requirement. In the source code of the HMI application,

the data reader objects for the force and temperature readings

are attached with the TIME_BASED_FILTER parameter as

illustrated in Fig. 7.

Fig. 7 QoS settings for requirement II

Finally, the third requirement demonstrates how robust

systems can be implemented with DDS that are able to

seamlessly switch from one data source to another, in case of

failures. In production systems critical data is often delivered

by redundant hardware. During normal operation, only data

from a most-trusted data source is considered. However, if this

source fails to deliver data for specified period, other

applications must smoothly fail over to a backup. Again, the

implementation of this feature in a manual way is a complex

task and would further complicate the application source code

of the fixture modules. Particularly for system architectures

which rely on concepts like the client/server mechanisms or

point-to-point communication, this is hard to realise due to the

tight couplings these approaches induce.

Using DDS, the challenge is addressed with the QoS

parameters OWNERSHIP and DEADLINE. As illustrated in

Fig. 8 all data writer and data reader objects that access the

topic for the temperature values are defined as “exclusive”.

This indicates that temperature readings can only be updated

by one data writer.

Fig. 8 QoS settings for requirement III

The selection of the most-trusted data writer is controlled by

the setting of the OWNERSHIP_STRENGTH policy. For this

reason, each temperature data writer is configured with the

numeric ID of its fixture module. The middleware ensures that

only the data writer with the highest strength is allowed to

update the temperature readings. Finally, the DEADLINE

parameter specifies the longest acceptable time span before

subscribers automatically take temperature samples from the

fixture module with next-higher ID. This way, fault-tolerant

distributed applications can easily be developed with the

ability to dynamically react to failures in the system.

G. Tests

To verify that the three applications can communicate over

DDS according to the requirements, a number of qualitative

test scenarios have been carried out. In particular, it was tested

if the fixture modules and their capabilities are automatically

recognised by other subsystems, regardless of the point in time

when the latter are started.

In the first test the fixture control and one instance of the

HMI are started. As expected, both applications attach their

publisher and subscriber objects to the relevant data topics as

described in section IV.E and remain idle, since no fixture

modules have been started, yet. Then, three instances of the

fixture module program are launched. Each program is started

with a different identifier. Consequently, both the fixture

control and the HMI discover the three modules, receive their

capabilities and start receiving sensor states from each of

them. Fig. 9 shows a screenshot of the HMI-application after

all programs have been started. All discovered fixture modules

are displayed in the list on the left side of the user interface

while the current sensor data of the selected module are

constantly updated on the right side. The picture also indicates

that the HMI has correctly received the capability descriptions.

The selected module (1) was configured to issue force

readings as values in Newton (N). Obviously, the HMI

received this information and is therefore correctly displaying

the received measuring unit.

Thirdly, it is obvious that the displayed temperature values

stem from the module with the highest ID (3). During the test,

this module program was aborted. Subsequently, it

disappeared from the list in the HMI and after 6 seconds

temperature values were taken from the module with the next-

higher ID (2).

Fig. 9 Screenshot of the HMI during the test

In the second test it is verified if late-joining applications

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:2, No:5, 2008

629

can be provided with module capability descriptions. For this,

the three fixture modules are started first and after a while the

fixture control and one HMI is started. This means, that the

former have published their capabilities before the latter

processes have joined. The test proved that launching the

programs in reverse order does not influence the overall

functionality of the fixturing system. Like in the first test, the

HMI was able to interpret the incoming sensor data from each

fixture module. This demonstrates that the proposed system

has a great level of flexibility and does not impose a specific

sequence for its initialisation.

The final test illustrates the flexibility of the approach and

shows how the DDS infrastructure of the fixturing system

forms an open and scalable environment. In addition to the

fixture control and the three fixture modules programs, another

three instances of the HMI.exe are started. As expected,

plugging in further HMIs did not influence the functionality of

the modules or the fixture control. The reason for this is the

decoupling of the communication through the data topics. In

other words, the modules are not aware of the existence of the

HMIs. It is acknowledged that a real manufacturing system

hardly requires three HMIs. However, in this test scenario they

stand for any kind of peripheral applications that might need to

be connected with the fixturing system.

V. CONCLUSION

This paper has presented key aspects of the Data

Distribution Service and has put them in context with flexible

manufacturing. In particular, features like the Quality-of-

Service concept, the automatic discovery of network topology

changes and the redistribution of data to late-joining

applications have been discussed against the background of

typical challenges of distributed automation systems. These

aspects are illustrated in a software-based prototype

application that is based on a modular active fixturing system.

The individual design steps for achieving communication with

DDS have been described for this prototype and qualitative

tests have been carried out. Future research will focus on

extending the data structures and the development of a

physical prototype for the proposed system.

ACKNOWLEDGMENT

The reported research is conducted as part of the ongoing

European Commission FP6 funded integrated project (FP6-

2004-NMP-NI-4) - AFFIX “Aligning, Holding and Fixing

Flexible and Difficult to Handle Components”. The financial

support of the EU and the contributions by the project

consortium members are gratefully acknowledged. The authors

are also grateful to Real-Time Innovations, Inc. for their

support of the research with a software grant for the RTI Data

Distribution Service middleware.

REFERENCES

[1] T. Nakatani, K. Nakajima, S. Torii and B. Wataru Higemoto, "Prototype

of network distributed control system for MLF/J-PARC", Physica B,

2006, vol. 385-386, pp. 1327-1329.

[2] B. Mitschang, "Data propagation as an enabling technology for

collaboration and cooperative information systems ", Computers in

Industry, 2003, vol. 52, pp. 59-69.

[3] J.C. Campelo, et al., "Distributed industrial control systems: A fault-

tolerant architecture", Microprocessors and microsystems, 1999, vol.

23, pp. 103-112.

[4] B. Rostamzadeh, H. Lonn, J. Snedsbol and J. Torin, "DACAPO: A

distributed computer architecture for safety-critical control

applications", in IEEE International Symposium on Intelligent Vehicles,

Detroit, USA, 1995.

[5] B. Rostamzadeh and J. Torin, "Design principles of fail-operation/fail-

silent modular node in DACAPO", in Proceedings of the ICEE, Tehran,

Iran, 1995.

[6] J. Arlat, et al., "Experimental evaluation of the fault tolerance of an

atomic multicast system", IEEE Transactions on reliability, 1990, vol.

39, no. 4.

[7] I.M. Delamer and J.L. Martinez Lastra, "Evolutionary multi-objective

optimization of QoS-aware publish/subscribe middleware in electronics

production", Engineering Applications of Artificial Intelligence, 2006,

vol. 19, pp. 593-697.

[8] I.M. Delamer and J.L. Martinez Lastra, "Quality of service for CAMX

middleware", International Journal of Computer Integrated

Manufacturing, 2006, vol. 19, no. 8, pp. 784-804.

[9] I.M. Delamer, J.L. Martinez Lastra and R. Tuokko, "Design of QoS-

aware framework for industrial CAMX systems", in Proceedings of the

Second IEEE International Conference on Industrial Informatics INDIN

2004, Berlin, Germany, 2004.

[10] Object Management Group, "Data Distribution Service for real-time

systems, version 1.2", 2007, Available from: www.omg.org, June 2007.

[11] J. Joshi, "Data-oriented architecture", Real-Time Innovations, Inc.,

unpublished, 2007, Available from: www.rti.com.

[12] Real-Time Innovations, Inc., "Can ethernet be real time?" Real-Time

Innovations, Inc., unpublished, 2006, Available from: www.rti.com.

[13] Object Management Group, "Common Object Request Broker

Architecture: Core specification, version 3.0.3", 2004, Available from:

www.omg.org, August 2007.

[14] M. Ryll, T.N. Papastathis and S. Ratchev, "Towards an intelligent

fixturing system with rapid reconfiguration and part positioning",

Journal of Materials Processing Technology, 2007, to be published,

corrected Proof.

[15] T.N. Papastathis, M. Ryll and S. Ratchev, "Rapid reconfiguration and

part repositioning with an intelligent fixturing system", in ASME

International Conference on Manufacturing Science & Engineering

(MSEC2007), Atlanta, Georgia, 2007.

