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Abstract—This paper is mainly concerned with the application of 

a novel technique of data interpretation for classifying measurements 
of plasma columns in Tokamak reactors for nuclear fusion 
applications. The proposed method exploits several concepts derived 
from soft computing theory. In particular, Artificial Neural Networks 
and Multi-Class Support Vector Machines have been exploited to 
classify magnetic variables useful to determine shape and position of 
the plasma with a reduced computational complexity.  The proposed 
technique is used to analyze simulated databases of plasma equilibria 
based on ITER geometry configuration. As well as demonstrating the 
successful recovery of scalar equilibrium parameters, we show that 
the technique can yield practical advantages compared with earlier 
methods.  

 
Keywords—Tokamak, Classification, Artificial Neural Network, 

Support Vector Machines. 

I. INTRODUCTION   

OKAMAK [1] are experimental devices aiming to 
demonstrate the technical feasibility and practical 

relevance of controlled thermonuclear fusion via magnetic 
confinement. A critical issue both for design and operation of 
a Tokamak machine is the real control of the plasma ring in 
the chamber during the discharge [2]. For this reason, one 
needs a fast identification tool of the plasma position and 
shape starting from a set of measurements, usually given by 
magnetic probes and loops located in the proximity of the 
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chamber wall. The task is difficult, especially if the plasma 
cross-section is non-circular, since there are more parameters 
to be estimated in order to completely characterize the 
equilibrium. The problem becomes even more difficult if the 
kind of Magneto-Hydro-Dynamic (MHD) equilibrium of the 
plasma changes during the discharge. This is the case, for 
example, of a plasma which passes from a Limiter 
configuration (where the plasma boundary is defined by the 
outermost magnetic flux line before touching any metallic 
wall) to an X-point configuration (where the plasma boundary 
is defined by the flux line where a null point and consequently 
a field bifurcation occurs) [3]. During this transition, some 
geometric parameters meet an abrupt discontinuity in the 
mapping first derivative that is traditional approaches use 
piecewise linear approximation aiming to separate the 
problem in more parts each competing to a particular plasma 
category. The identification problem can be formulated as the 
search of a suitable mapping between the set of available 
measurements (sampled by means of sensors located around 
the chamber contour) and the selected set of shaping 
parameters. The problem is the determination of a description 
of the plasma column evolving in the vacuum chamber of a 
Tokamak reactor, in terms of its position, shape and current 
profile parameters. Because of the non-linearity of the 
governing PDE for MHD equilibrium, the full equilibrium 
identification procedure is normally a computationally 
intensive task involving the iterative fitting of the raw data to 
trial equilibrium. For typically available processors, the 
required computational time is in the order of one second. 
Techniques which are able to fit this need have been proposed 
in the past, based on statistical approaches (Functional 
Parametrization, FP) or Artificial Neural Networks (ANN’s). 

In the recent years, the neural computing approach has 
emerged as a successful framework for fast analysis of multi-
channel data in plasma   shape recognition [4], [5], [6]. A 
different viewpoint of the identification approach is 
concerning about the possibility of selecting, among a pool of 
candidates, the optimal set of sensors in order to achieve the 
best accuracy of the identification step. For present 
experimental reactors, the selection of the most important 
sensors, aims to reduce the computational complexity for real 
time applications. For future reactors, the determination of the 
most important sensors can be used in the design phase.  In 
this paper, we focus our attention on ITER configuration (Fig. 
1) in which dislocation of outer, inner and divertor sensors 
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take place around the vacuum vessel (Fig. 2). In order to 
reduce the computational complexity, we propose a novel 
approach, based on soft computing approach and designed by 
the MatLab® Toolboxes, to classify magnetic measurements 
(inner, outer and divertor probes). In particular, special ANNs 
have been exploited for our purpose. To improve the 
procedure, due to the fact that the inner sensors are 
inaccessible, an alternative approach is proposed by means a 
sort of equivalence between outer measurements and inner-
divertor ones.  That equivalence can be necessary because it is 
possible to replace a set of sensors that do not work by 
another equivalent one. Finally, Multi-Support Vector 
Machines (M-SVMs) have been taken into account to reduce 
the global error of the procedure.   

The paper is organized as follows. Section II reports an 
overview of the exploited numerical database. After a short 
description on  ANNs and M-SVM reported in section III, we 
describe the proposed approach for classifying magnetic 
measurements by means of ANNs (sections IV). Sections V 
and VI show the procedures to drive to the improvement of 
the results by means of ANNs and M-SVMs respectively. 
Finally, some conclusions are drawn. 

Fig. 1 Pictorial representation of ITER machine 
 

II. THE ITER NUMERICAL DATABASE: AN OVERVIEW 
The magnetic diagnostic system provides the main 

electromagnetic parameters of the plasma and includes sets of 
full and differential loops and tangential and normal pick-up 
coils on different poloidal contours given by the structural 
elements of the machine including the divertor cassette. Using 
the ITER  coil and vessel geometry (Fig. 2), including the 6 
dominant passive current eigenmodes, a database of  4848 
lower single null equilibria (lower X-point) has been 
generated by the Plasma Data Analysis Group (PDAG), 
Physics Department, University College Cork, Association 
EURATOM-DCU.  

The equilibria were generated using a Database Generation 
and Analysis Package (DGAP) which has been developed by 
PDAG. The core equilibrium calculation in DGAP is 
performed by the Garching Equilibrium Code (GEC). The 
magnetic parameters of database built with B-tangential and 
B-normal signals simulated of gaussian noise (average=zero, 
standard deviation=magnitude of the simulated measurement 
noise) of 10 mTesla [7], are referred to lower X-point plasma 
which  Plasma Current (IPLA) is 15 MAmpere, the toroidal 
field (Bo), referred to 6.2 meters from the centre of torus, is 
5.3 Tesla. The magnetic measurements, deriving from the 
sensors located along the contour of the chamber, are 
subdivided as follows: 

• 24 B_ Tangential signals on the Vacuum Vessel 
Inner Skin Contour; 

• 24 B_ Normal Signals on the vacuum vessel Inner 
Skin Contour; 

• 6 B_ tangential signals below the Divertor Contour; 
• 6 B_ normal Signals below the Divertor Contour; 
• 120 B_ tangential Signals on the Vacuum Vessel 

Outer Skin Contour; 
• 120 B_ normal signals  on the Vacuum Vessel Outer 

Skin Contour. 

 
Fig. 2 The cross-section of the ITER Configuration with tentative 

location of the outer (star), inner (circles) and divertor (bold 
circles) sensors around the vacuum vessel 

 
Our analysis considers three different configurations of inputs 
(Fig. 3). In particular: 
1) first configuration:  inner + divertor (60 parameters) 

• 24 B_ Tangential signals on the Vacuum Vessel 
Inner Skin Contour; 

• 24 B_ Normal Signals on the vacuum vessel Inner 
Skin Contour; 

• 6 B_ tangential signals below the Divertor Contour; 
• 6 B_ normal Signals below the Divertor Contour; 

2) second configuration:  Outer skin contour (240 
parameters) 

• 120 B_ tangential Signals on the Vacuum Vessel 
Outer Skin Contour; 
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• 120 B_ normal signals on the Vacuum Vessel Outer 
Skin Contour. 

3) third configuration:  all the magnetic signals (300 
parameters).  

Starting from third configuration, by means of the proposed 
approach, a classification of measurements is carried out. 
Finally, exploiting first and second configurations, the 
equivalence between outer measurements and inner-divertor 
ones is showed.  

Fig. 3 Pictorial representation of  the exploited database 

III. SOFT COMPUTING APPROACH FOR CLASSIFYING 
MAGNETIC MEASUREMENTS IN TOKAMAK REACTORS 

A. The Artificial Neural Network Approach 
Artificial Neural Network (ANN) implements a non linear 

function mapping one multidimensional space, { }x , into 
another one, { }z  [8]. This function has a predefined structure 
but contains several parameters which are going to be 
determined during the training phase which consists in the 
evaluation of the parameters which minimize the differences 
between the target output  t  and the network output, z . 
Among several possible structures of the network, we use a, 
so called, feed-forward multilayer perceptron model.  
This kind of network is known to approximate arbitrarily any 
continuous multi dimensional mapping [9].  

The hth-component of the output vector (h=1,…,nz), can be 
written as  

)(
1

∑
=

=
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j
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Where: 
iy  is the ith-component of the output of the first layer;  

nx , ny and nz are the dimension of the input vector, the 
number of the hidden neurons and the dimension of the 
network output respectively; 
F is a non-linear function. Typically, it can be a sigmoidal 
function: 

( ) 1)exp(1 −−+ a                             (3) 

But other functions can be take into account [8]. In each layer, 
the input variable to the specific layer is transformed first 
linearly, by means of a matrix (WX and WY for the first and 
the second layer respectively) and then by a non- linear 
function. The values of the (nx*ny+ny*nz) unknown elements 
of the matrixes WX and WY are found by minimizing an error 
function of the type: 
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in which the sum is extended to the whole training set. A slow 
but reliable method to minimize the above equation is known 
as back-propagation algorithm [6] and consist of evaluating 
the derivatives of E with respect to the elements of the WX 
and WY matrixes and correct the unknown parameters using 
gradient descendent in the following way: 
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where δ is an appropriate learning rate parameter and n is the 
iteration number. Regarding our classification problem, we 
exploit Multi-Layer Perceptron (MLP) as reported in Section 
IV.  

B. The Multi Support Vector Machines Approach  
Support Vector Machine (SVM) was initially designed for 

binary (two class) problems where a support vector classifier 
attempts to locate a hyper-plane that maximizes the distance 
from the members of each class to the optimal hyper-plane. 
Assume that the training data with k number of samples is 
represented by {xi, yi}, i = 1, …, k, where x∈ nℜ  is an n-
dimensional vector and y∈{-1, +1} is the class label. These 
training patterns are linearly separable if a vector w 
(determining the orientation of a discriminating plane) and a 
scalar b (determine offset of the discriminating plane from 
origin) can be defined so that inequalities (6) and (7) are 
satisfied. 

11* =≥+ ii yifbxw             (6) 

11* −=−≤+ ii yifbxw             (7) 
The aim is to find a hyper-plane which divides the data so that 
all the points with the same label lie on the same side of the 
hyper-plane. This amounts to finding w and b so that: 

Nibxwy ii ,...10)*( =≥+         (8) 
If a hyperplane satisfying (8), the two classes are linearly 
separable. In this case, it is always possible to rescale w and b 
so that: 

1)*(min
1

≥+
<<

bxwy iiki
       (9) 

That is, the distance from the closest point to the hyper-plane 
is 1/||w|| . Then (8) can be written as: 

1)*( ≥+ bxwy ii
                        (10) 

The hyper-plane for which the distance to the closest point is 
maximal is called the Optimal Separating Hyper-plane 
(OSH). If the data are not linearly separable, a slack variable 

kii ,...1=ξ  can be introduced with 0≥iξ  [10] such that (10) 
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can be written as: 
01)*( ≥+−+ iii bxwy ξ           (11) 

and the solution to find a generalized OSH, also called a soft 
margin hyper-plane, can be obtained using the conditions:  
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01)*( ≥+−+ iii bxwy ξ        (13) 
and 0≥iξ       i = 1,…,k       (14) 

The first term in (12) is same as in the linearly as in the not 
linearly separable case, and controls the learning capacity, 
while the second term controls the number of misclassified 
points. The parameter C is chosen by the user. Larger values 
of C imply the assignment of a higher penalty to errors. When 
it is not possible to have a hyper-plane defined by linear 
equations on the training data, the techniques described above 
for linearly separable data can be extended to allow for non-
linear decision surfaces. A technique introduced in [11], maps 
input data into a high dimensional feature space through some 
nonlinear mapping. The transformation to a higher 
dimensional space spreads the data out in a way that facilitates 
the finding of linear hyper-planes. In this case, a φ function, 
called kernel function, is used to map x  in the feature space 

)(xφ , in order to early find the OSH. A number of kernel 
functions are used for support vector classifier [10], [11]. 
When dealing with several classes, an appropriate multi-class 
method is needed. In this study, One-against-all and one-
against-one methods are presented.  
 

1.  One-Against-All and One-Against-One 
The earliest used implementation for SVM multi-class 

classification is probably the one-against-all method [10], 
[11]. It constructs k SVM models where k is the number of 
classes.. The ith SVM is trained with all of the examples in the 
ith class with positive labels, and all other examples with 
negative labels. Thus given l training data (x1, y1),….,(xl, yl), 
where xi∈Rn, i=1,…..,l and yi ∈{1,…,k} is the class of xi, the 
ith SVM solves the following problem: 
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where the training data xi are mapped to a higher dimensional 
space by the function Φ and C is the penalty parameter. 
Minimizing iTi ωω )(5.0  means that we would like to 
maximize iω/2 , the margin between two groups of data. 

When data are not linear separable, there is a penalty term 

∑
=

l

j

i
jC

1

ξ  which can reduce the number of training errors. The 

basic concept behind SVMs is to search for a balance between 
the regularization term iTi ωω )(5.0  and the training errors. 
There are k decision functions to resolve: 

11 )()( bxT +φω  
                                …                                   (16) 

  kTk bx +)()( φω  
We say x is in the class which has the largest value of the 
decision function  

class of ≡x argmaxi=1,...k ))()(( i
j

Ti bx +φω        (17) 

Practically we solve the dual problem of (18) whose number 
of variables is the same as the number of data in (18). Hence k 
l-variable quadratic programming problems are solved. 
Another major method is called the one-against-one method 
[10], [11]. This method constructs k(k-1)/2 classifiers where 
each one is trained on data from two classes. For training data 
from the ith and the jth classes, we solve the following binary 
classification problem: 
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There are different methods for doing the future testing after 
all k(k-1)/2 classifiers are constructed. After some tests, we 
decide to use the following voting strategy: if sign 

))()(( ij
t

Tij bx +φω  says x is in the ith class, then the vote for 
the ith class is added by one. Otherwise, the jth is increased by 
one. Then we predict x is in the class with the largest vote. 
The voting approach described above is also called the “Max 
Wins” strategy. In case that two classes have identical votes, 
thought it may not be a good strategy, now we simply select 
the one with the smaller index. Practically we solve the dual 
of (14) whose number of variables is the same as the number 
of data in two classes. Hence if in average each class ha l/k 
data points, we have to solve k(k-1)/2 quadratic programming 
problems where each of them has about 2l/k variables. 

IV. MULTI-LAYER  PERCEPTRON TO CLASSIFY MAGNETIC 
MEASUREMENTS IN TOKAMAK REACTOR 

Multi-Layer Perceptron (MLP) is useful for classification 
problem [7] optimizing the solution by means of back-
propagation algorithm. The goodness of the achieved results 
can be evaluated, for example, computing the Root Means 
Square Error (RMSE).  The approach is designed according 
the following procedure:  

1. Training phase: the set of input variables is 
represented by a reduced sub-set extracted from third 
configuration (see section II) that takes into account 
300 variables and 800 cases; 

2. Validation and testing phases: two databases 
(300x800) extracted from third configuration. 

3. The classification is carried out by means of a 
codification: reported in Table I. Each type of 
measurement is associated to a sequence of zero and 
unity (output of procedure). 
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The MLP configuration, visualized in Fig. 4, has given the 
better performance. Its characteristics are reported in the 
following lines: 

• Input layer of 800 neurons; 
• Output layer of 3 neurons (array of zero and unity 
as reported in Table I);  
• 2 hidden layer of  35 and 45 neurons respectively; 
• Non-linear function is sigmoid; 

• Learning rate lr= 0.01; 
• Minimum gradient min_grad=  10-22; 
• Epochs= 500; 
• Goal= 10-10; 

The goodness of the results are tested by means of three 
different database: 

• Database A (so-called A Class): obtained by means 
of a random permutation of the input vector exploited 
in training phase; 

• Database B (so-called B Class): adding some new 
variables to Database A;   

• Database C (so-called C Class): a new Database has 
been taken into account.  

 

Fig. 4 Classification of magnetic measurements: the exploited MLP network 
 

  
Table II reports a summary of obtained results in terms 

of RMSE in which, for each class, the left side is referred to 
tangential variables,  whereas the right side to normal 
variables. In particular, the classification of Inner and 
Divertor sensors is more difficult because their location 
inside the vacuum vessel is next to the plasma contour.   
 

 
 

Fig. 5 reports, for A Class, the obtained output (red 
points) and wanted ones. Notwithstanding the low value of 
convergence, the reliability of the nets is very poor. In 
addition, from any dataset, the classifier is not able to 
extract information concerning the kind of inner and 
divertor sensors. In this way, our attention is addressed to 
an alternative approach.  

 

0 50 100 150 200 250 300
0

1

2

3

4

5

6

7

Wanted Output
Obtained Output

Fig. 5 Classification of magnetic measurements for A Class A:  
wanted values and obtained values 

V.  AN ALTERNATIVE APPROACH FOR CLASSIFYING 
MAGNETIC MEASUREMENTS IN TOKAMAK REACTORS 

In plasma physics, outer variable is very important to 
control the position of plasma inside the vacuum vessel 
whereas inner and divertor variables are found in the 
inaccessible location. In this section of the paper, we 
propose a NN approach to stored outer variables as inner or 
divertor ones (normal and tangential).  This procedure is 
also suggested from the fact that, in ITER machine, outer 
sensors are not physically accessible. First step of the 
alternative approach consists to select only the outer 

TABLE II 
 MLP APPROACH:  SUMMARY OF OBTAINED RESULTS  

 A CLASS B CLASS C CLASS 
# Errors 100/300 133/300 134/300 

In 0 0 0 0 0 0 

Div 0 0 0 0 0 0 

# 
va

ri
ab

le
s 

co
rr

ec
tly

 
cl

as
si

fy
  

Out 106 94 88 79 84 82 

% error 33.3 44.3 44.6 

TABLE I 
MLP APPROACH: CODIFICATION OF  OUTPUT 

Inner Tangential [0 0 0] Inner Normal [0 0 1] 

Divertor Tangential [0 1 0] Divertor Normal [1 0 0] 
Outer Tangential [0 1 1] Outer Normal [1 1 1] 
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parameters reducing the size of database from 300 to 248 
variables. Then, we associate outer sensors (normal and 
tangential) to inner-divertor ones that present similar 
behavior. This association has been carried out by means of 
the exploitation of a special  MLP net and computing the 
Root Means Square (RMS) on each possible couple of 
variables (tangential inner- tangential outer, tangential 
divertor-tangential outer, normal inner-normal outer, 
normal divertor-normal outer); if RMS is a minimum value, 
then that outer variables can be stored as  inner/divertor 
variable. Once the transformation takes place, we exploit 
the procedure described above.  

The MLP configuration, visualized in Fig. 6, has given 
the better performance. Its characteristics are reported in the 
following lines: 

• Input layer of 800 neurons; 
• Output layer of 3 neurons (array of zero and      
unity);  
• 2 hidden layer of  35 and 45 neurons 
respectively; 
• Non-linear function is sigmoid; 

Table III reports a summary of obtained results in terms 

of RMSE in which, for each class, the left side is referred to 
tangential variables,  whereas the right side to normal 
variables. In this case, by means of the alternative 
approach, the classification error is lower and, in addition, 
it is possible classify Inner and Divertor probes.  
 

 
 

Fig. 6 ANN for classifying magnetic measurements by means of the alternative approach
 

Fig. 7 shows, for A Class, the obtained output (red points) 
and wanted ones. In this case, the reliability of the network is 
improved. 

0 50 100 150 200 240
0

1

2

3

4

5

6

7

Wanted Output
Obtained Output

Fig. 7 Classification of magnetic measurements by means of 
alternative approach (A Class):  

visualization of the obtained results 

VI.  MULTI-SUPPORT VECTOR MACHINE TO CLASSIFY 
MAGNETIC MEASUREMENTS IN TOKAMAK REACTOR 

In the previous sections, an ANN has been trained to 
classify magnetic probes in ITER configuration: its low 
performance has addressed us to conceive a novel method, 
based on a sort of equivalence among sensors, that reduces the 
global error. In this section, M-SVMs are exploited to 
improve the obtained results. As reported in section IV, we 
distinguish three phases: a) training, testing phases, where we 
exploit the third configuration of database (see Section II); 
b) classification phase, in which A, B and C Classes have 
been used. 

Table IV visualize the exploited codification for that case 
(output of the procedure).   

The characteristics of the proposed M-SVM are reported in 
the following lines: 

• polynomial kernel  
0,)(),( >+−= γγ Degree

jiji CxxxxK            (16) 

which has given the best performance with the 
lowest computational load; 

• γ , C: coefficients of the polynomial kernel; 
• degree of the polynomial kernel; 
• number of samples for pattern training; 
• the labels of codifications; 

TABLE III 
ALTERNATIVE APPROACH: SUMMARY OF OBTAINED RESULTS 

 A CLASS B CLASS C CLASS 
# Errors 48/240 53/240 65/240 

In 15 17 14 17 13 16 
Div 6 4 6 4 6 3 

# 
of

 
va

ri
ab

le
s 

co
rr

ec
tly

 
cl

as
si

fy
  

Out 64 86 60 86 52 85 
% error 20 22 27 
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• the value of the penalty function (slack variables); 
• number of Support Vectors (nSVs) for each class L 

(L=1,…6); 
In Table V, the parameters of classifier, referred to this 

approach, take place, where the associations between 
codification of each class and nSV are showed.    
 

 
 

 
 

In Table VI we report the results achieved by means of the 
M-SVM system described above concerning the classification 
of magnetic measurements in ITER configuration. Obviously, 
the classification by means of M-SVMs produces the best 
results with respect to ANN and alternative approach ones 
because the learning procedure generates an optimal number 
of Support Vector through automatic extraction from database 
(Fig. 8). 

 

Fig. 8 Comparison of the achieved  results in terms of percentage error. 
The alternative approach (squared point) performs better than the 

approach where no  pre-processing takes place (circled point). M-SVM 
is the better method for this applications 

VII.   CONCLUSION 
In this paper, we have proposed the use of ANNs and M-

SVMs for classifying of magnetic measurement for ITER 
configuration in Tokamak Reactors. The study case is derived 
from the database which was made available through the the 
Plasma Data Analysis Group (PDAG), Physics Department, 
University College Cork, Association EURATOM-DCU. In 
particular, special MLP have been eused for that purpose. The 
improvement of the procedure has been carried out by means 
of a sort of equivalent between outer measurements and inner-
divertor ones replacing set of sensors that could not work by 
another equivalent one. Finally, the exploitation of M-SVMs 
allows us to reduce the global error of the designed procedure.   
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