
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3325

Abstract—This paper describes the study of cryptographic hash

functions, one of the most important classes of primitives used in
recent techniques in cryptography. The main aim is the development
of recent crypt analysis hash function. We present different
approaches to defining security properties more formally and present
basic attack on hash function. We recall Merkle-Damgard security
properties of iterated hash function. The Main aim of this paper is the
development of recent techniques applicable to crypt Analysis hash
function, mainly from SHA family. Recent proposed attacks an MD5
& SHA motivate a new hash function design. It is designed not only
to have higher security but also to be faster than SHA-256. The
performance of the new hash function is at least 30% better than that
of SHA-256 in software. And it is secure against any known
cryptographic attacks on hash functions.

Keywords—Crypt Analysis, cryptographic.

I. INTRODUCTION
OR cryptographic hash function, the following properties
are required:
– Preimage resistance: it is computationally infeasible

to find any input which hashes to any pre-specified
output.

– Second preimage resistance: it is computationally
infeasible to find any second input which has the same
output as any specified input.

– Collision resistance: it is computationally infeasible to
find a collision, i.e. two distinct inputs that hash to the
same result.

For an ideal hash function with an m-bit output, finding a

preimage or a second preimage requires about 2m operations
and the fastest way to find a collision is a birthday attack
which needs approximately 2m/2 operations. Most dedicated
hash functions which have iterative process use the Merkle-
Damgard construction [6, 10] in order to hash inputs of
arbitrary length. They work as follows. Let HASH be a hash
function. The message X is padded to a multiple of the block
length and subsequently divided into t blocks X1,···, Xt. Then
HASH can be described as follows:
CV0= IV; CVi = COMP (CVi−1,

 Xi), 1 ≤ i ≤ t; HASH (X) =
CVt,

A. Arul Lawrence Selvakumar is with Department of Computer Science
and Engineering, Oxford college of Engineering, Bangalore, India (e-mail:
aarul72@hotmail.com).

C. Suresh Ganandhas is with Department of Computer Science and
Engineering, VelMultitech SRS Engineering College, Chennai, India (e-mail:
sureshc_me@yahooo.com).

where COMP is the compression function of HASH, CVi is
the chaining variable between stage i and stage i + 1, and IV
denotes the initial value. The most popular method of
designing compression functions of dedicated hash functions
is a serial successive iteration of a small step function, as like
round functions of block ciphers.

Many hash functions such as MD4 [12], MD5 [13],
HAVAL [19], SHA-family [11], etc., follow that idea. Attacks
on hash functions have been focused on vanishing the
difference of intermediate values caused by the difference of
messages. On the other hand, a hash function has been
considered secure if it is computationally hard to vanish such
difference in its compression function. Usually, the lower the
probability of the differential characteristic is, the harder the
attack is.

Therefore a step function is regarded as a good candidate if
it causes a good avalanche effect in the serial structure. A
function which has a good diffusion property can not be so
light in general. However, most step functions have been
developed to be light for efficiency. This may be why MD4-
type hash functions including SHA-1 are vulnerable to Wang
et al.’s collision-finding attack [15–18].

RIPEMD-family [9] has somewhat different approach for
designing a secure hash function. The attacker who tries to
break members of RIPEMD-family should aim simultaneously
at two ways where the message difference passes. This design
strategy is still successful because so far there is not any
effective attack on RIPEMD-family except the first proposal
of RIPEMD. However, RIPEMD-family have heavier
compression functions than hash functions with serial
structure. For example, the first proposal of RIPEMD consists
of two lines of MD4. Total number of steps is twice as many
as that of MD4. Also, the number of steps of RIPEMD-160 is
almost twice as many as that of SHA-0.

In this paper, we propose a new dedicated hash function
FORK-256. According to the above observation, we
determined the design goals as follows.
– It should have a 256-bit output because the security of

2128operations is recommended for symmetric key
cryptography as the computing power increases.

– Its structure should be resistant against known attacks
including Wang et al.’s attack [1–5, 7, 8, 14–18].

- The performance should be as competitive as that of SHA-
256.

Evaluation on Recent committed Crypt Analysis
Hash Function

A. Arul Lawrence Selvakumar, and C. Suresh Ganandhas

F

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3326

II. DESCRIPTION OF FORK-256
In this section, we will describe FORK-256. These are basic

notations used in FORK-256.

 : Addition mod 232

⊕ : XOR (exclusive OR)
A<<<s: s-bit left rotation for a 32-bit string A

A. Input Block Length and Padding
An input message is processed by 512-bit block. FORK-

256 pads a message by appending a single bit 1 next to the
least significant bit of the message, followed by zero or more
bits 0’s until the length of the message is 448 modulo 512, and
then appends to the message the 64-bit original message
length modulo 264.

B. Structure of Fork-256
Fig. 1 depicts the outline of the compression function of

FORK-256. The name ‘FORK’ was originated from the
figure. The compression function of FORK-256 hashes a 512-
bit string to a 256-bit string. It consists of four parallel branch
functions, BRANCH1, BRANCH2, BRANCH3, and
BRANCH4. Let CVi = (A, B, C, D, E, F, G, H) be the chaining
variable of the compression function. It is initialized to
IV0which is:

A=6a09e667x B=bb67ae85x C=3c6ef372x D=a54ff53ax
E=510e527fx F=9b05688cx G=1f83d9abx H=5be0cd19x

Each successive 512-bit message block M is divided into
sixteen 32-bit words M0, M1,…,M15 and the following
computation is performed to update CVi to CVi+1

:

CVi+1 = CVi {[BRANCH1 (CVi, Σ1 (M))
BRANCH2(CVi,Σ2(M))] ⊕ [BRANCH3 (CVi, Σ3(M))
BRANCH4(CVi,Σ4(M))]},

Where Σj(M) = (Mσj (0)…, Mσj (15)) is the re-ordering of
message words for j = 1, 2, 3, 4, given by Table I.

C. Branch Functions: BRANCH j
Each BRANCHj is computed as follows:

1) The chaining variable CVi is copied to initial
variables Vj,0 for j-th branch.

2) At k-th step of each BRANCHj(0 ≤ k ≤ 7), the step
function STEP j,k is computed as follows:

Vj,k+1 = STEPj,k(Vj,k, Mσj(2k) , Mσj(2k+1), αj,k, βj,k)

Where αj,k and βj,k are constants.

Fig. 1 Outline of the FORK-256 compression function

Fig. 2 Step function of FORK-256, STEPj, k

Input Order of Message Words: This table shows the input order of
message words M0~ M15applied to BRANCHj (1≤j≤4)
functions.

TABLE I

ORDERING RULE OF MESSAGE WORDS
 T 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
σ 1(t) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
σ2(t) 14 15 11 9 8 10 3 4 2 13 0 5 6 7 12 1
σ3(t) 7 6 10 14 13 2 9 2 11 4 15 8 5 0 1 3
σ4(t) 5 12 1 8 15 0 13 11 3 10 9 2 7 14 4 6

Constants: The compression function of FORK-256 uses
sixteen constants given by the following table:

δ0 = 428a2f98x δ1 = 71374491x
δ2 = b5c0fbcfx δ3 = e9b5dba5x
δ4 = 3956c25bx δ5 = 59f111f1x
δ6 = 923f82a4x δ7 = ab1c5ed5x
δ8 = d807aa98x δ9 = 12835b01x
δ10 = 243185bex δ11 = 550c7dc3x
δ12 = 72be5d74x δ13 = 80deb1fex
δ14 = 9dbc06a7x δ15 = c19bf174x

These constants are applied to each BRANCH j according to the

ordering rule of them as follows:

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3327

 Step
k α1,k β1,k α2,k β2,k α3,k β3,k α4,k β4,k

0 δ 0 Δ1 δ15 Δ14 δ1 δ0 δ14 δ15
1 δ2 δ3 δ13 δ12 δ3 δ2 δ12 δ13
2 δ4 δ5 δ11 δ10 δ5 δ4 δ10 δ11
3 δ6 δ7 δ9 δ8 δ7 δ6 δ8 δ9
4 δ8 δ9 δ7 δ6 δ9 δ8 δ6 δ7
5 δ10 δ11 δ5 δ4 δ11 δ10 δ4 δ5
6 δ12 δ13 δ3 δ2 δ13 δ12 δ2 δ3
7 δ14 δ15 δ1 δ0 δ15 δ14 δ0 δ1

Step Functions: STEP j,k The input register Vj,k of STEPj,,k is
divided into eight 32-bit words:
Vj,k= (Aj,k, Bj,k, Cj,k, Dj,k, Ej,k, Fj,k, Gj,k, Hj,k)
STEPj,k takes Vj,k, Mσj(2k),

 Mσj(2k+1), αj,k and βj,k as inputs, and then
provides the output as follows (See Fig 2):
Aj,k+1 =Hj,k g(Ej,k Mσj(2k+1))<<<21 ⊕ f(Ej,k Mσj(2k+1) βj,k)<<<17

Bj, k+1 = Aj,k Mσj(2k) α j,k,
Cj,k+1 = Bj,k f (Aj,k Mσj(2k)) ⊕ g(Aj,kMσj (2k) αj,k),
Dj,k+1 =Cj,k f(Aj,kMσj(2k))<<<5 ⊕ g(Aj,k Mσj(2k) αj,k)<<<9,

Ej,k+1=Dj,k f(Aj,kMσj(2k))<<<17 ⊕ g(Aj,kMσj(2k) αj,k)<<<21,

Fj,k+1=Ej,k Mσj (2k+1) βj,k,
Gj,k+1=Fj,k g(Ej,k Mσj(2k+1)) ⊕ f(Ej,k Mσj(2k+1) βj,k),
Hj,k+1=Gj,kg g(Ej,k Mσj(2k+1))<<<9 ⊕ f(Ej,k Mσj(2k+1)
 βj,k)<<<5,

Where f and g are nonlinear functions as follows:
f (x) = x (x<<<7 ⊕ x<<<22),
g(x) = x ⊕ (x<<<13 x<<<27).

III. DESIGN STRATEGY
A. Motivation for our Proposal
In Wang et al.’s attacks on MD4, MD5, HAVAL, and

RIPEMD [15, 16] and SHA-0/1 [17, 18] brought the big
impact on the field of symmetric key cryptography including
hash function. However, RIPEMD-128/160 is the algorithms
which are still secure against their attacks. No attacks on them
are found so far.

They were designed to have two parallel lines, which is

different from MD4, MD5 and SHA-family. This makes an
attacker take into account two lines simultaneously. However,
since each line needs almost same operation of MD5 and SHA
algorithms, its efficiency was degenerated almost half of them.
This motivates our design. We use four lines instead of two.
In order to overcome disadvantage of RIPEMD algorithms,
we manage to reduce operations for step functions of each
line. The message reordering of each branch is deliberately
designed to be resistant against Wang et al.’s attack and
differential attacks. The function f and g in each step are
chosen to have good avalanche effects.

B. Design Principle
Structure FORK-256 consists of 4 Branches. In the

security aspect, we can give the security against known

attacks with the different message-ordering in branches. For
example, RIPEMD, which consists of 2 branches, was fully
attacked by Wang et al. because RIPEMD has same message-
ordering in 2 branches. On the other hand, in case of
RIPEMD-128/160, there is no attack result because RIPEMD-
128/160 have different message-ordering in branches. In the
implementation aspect, FORK-256 can be implemented
efficiently be cause the message-ordering is simpler than the
message expansion such as that of SHA-256.

Constants: Each BRANCHi uses 16 different constants αi,j

and βi,j for j = 0,···,7. By using constants we pursue the goal to
disturb the attacker who tries to find a good differential
characteristic with a relatively high probability. So, we prefer
the constants which represent the first thirty-two bits of the
fractional parts of the cube roots of the first sixteen four prime
numbers.

Nonlinear Functions: Nonlinear functions f and g output one
word with one input word. Almost dedicated hash functions
use boolean functions which output one word with three
words at least. The boolean functions make it easy to control
the output one word by adjusting the input several words. The
attacks on MD4, MD5, HAVAL, RIPEMD and SHA-0/1 are
based on this weakness of Boolean functions. In addition, the
output words of f and g functions are used to update other
chaining variables. In almost dedicated hash functions output
words of boolean functions are used to update only one
chaining variable. This weakness is also used to analyze above
hash functions.

Shift Rotations in Nonlinear Functions: If the addition is
changed into the bitwise x or operation in f and g, nonlinear
functions are generalized as

x ⊕ (x<<<s1 ⊕ x<<<s2)
We consider all 465 (=31C2) cases for s1and s2 and want to
define shift rotations satisfying the following 7 conditions.
HW(x) denotes the Hamming Weight of x.
– The branch number of f and g is four.
– If HW (input word) = 2, then HW (output word) ≥ 4.
– If HW (input word) = 3, then HW (output word) ≥ 3.
– If HW (input word) = 4, then HW (output word) ≥ 4.
– If HW (output word) = 1, then HW (input word) ≥ 17.
– If HW (output word) = 2, then HW (input word) ≥ 14.
– The interval of shift rotations are greater than or equal to 4.

By above all conditions, we have defined f and g functions.
Ordering of Message Words We adopt the message word
ordering instead of the message word extension. If an attacker
constructs an intended differential characteristics for one
branch function, the ordering of message words will cause
unintended differential patterns in the other branch functions.
This is the core part of the security in the compression
function. When we define the ordering of message words,
following four conditions are considered.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3328

 Balance of upper (step 0~3) and lower (step 4~7)
parts: Each value is applied twice to upper and lower
parts, respectively.

 Balance of left and right parts: Each value is applied
twice to left and right parts, respectively.

 Balance of sums of input orders Each word is applied
four times and is indexed by 0~15.

 Total sum of indexes is 480. Therefore, the average
of sum of indexes applied to each word is 30.

 We search the ordering so that the sum of indexes
Corresponding to each word is 25~35.

 Conditions which do not have same differential
Patterns in all branches

 Specific differential pattern used at a branch may be
applied to other branches.

 Therefore, except the case of giving a same
difference to all words, we try to find an ordering
such that there is no same differential patterns in all
branches.

Shift Rotations and Rank: In the step function, 5 and 17, the
values of shift rotation, are fixed. Then we search all the case
and find candidate values (corresponding to 9 and 21) so that
the rank of the linearly-changed step function is maximized.
The maximum of the rank is 252.

Finally we select 9 and 21 among candidate values so that
differences generated from the outputs of f and g functions do
not overlap when a message word inputted at a step function
has a one-bit difference.

IV. SECURITY ANALYSIS OF FORK-256
A. Collision-Finding Attack
Assume that an attacker inserts the message difference. Let

∆I be the output difference of i-th branch BRANCHi. Then the
attacker expects the following event for finding collisions:

(∆1 ∆2) ⊕ (∆3 ∆4) = 0.
For this, he can take several strategies:
1. The attacker constructs a differential characteristic with a

high probability for a branch function, say BRANCH1,
and then expects that the operation of the output
differences in the other branches, ∆3 ∆4 ∆2 is equal to
∆1.

2. The attacker constructs two distinct differential
characteristics, and expects that ∆1= −∆2 and ∆3= −∆4.

3. The attacker inserts the message difference which yields
same message difference pattern in four branches, and
expects that same differential character istic occurs
simultaneously in four branches. Then the output
difference of the compression function vanishes if the
hamming weight of the output difference of each branch
is small. This is because the final output is generated with
using ⊕ and by turns.

Let us see the first strategy. If we assume that the outputs of
each branch function are random, the probability of the event
is almost close to 2−256. It is also difficult for the attacker to

mount any attack following the second strategy because he
should find such differential pattern of the message words.

Third strategy is relatively easy for the attacker to perform.
For example, if he inserts the same difference to all the
message words, then the same message difference pattern
occurs in every branches. However, the message word
reordering was designed so that the third strategy is satisfied
only if the attacker inserts the same difference to all the
message words. Under the assumption that every step is
independent, we can compute the upper bound of the
probability that such kind of differential characteristic occurs,
which frustrates the attacker.

B. Attacks Using Inner Collision Patterns
When the attacker inserts the differences to the message

words, the event that the difference of the intermediate value
becomes zero often occurs. It is called inner collision. We call
a differential characteristic which causes an inner collision
with a probability, inner collision pattern. Note that an inner
collision is not a real collision, but the notion of inner
collision pattern is important in cryptanalysis of hash function
because it can be repeatedly used to yield a real collision with
a high probability. The main idea of attacks on SHA-0 and
SHA-1 is also the repetition of an inner collision pattern.

So, in hash functions with a serial structure it is related to
the resistance against collision-finding attack how many times
an inner collision can be repeated. Let us focus on only one
branch function, say BRANCH1. We can construct 5-step
inner collision pattern easily. Let ∆A, ∆B,…,∆H denote the
differences of A1,k,B1,k,…,H1,k, respectively. ∆ML and ∆MR

denote the differences of Mσ1 (2k) and Mσ1 (2k+1),
respectively. We found 5-step inner collision patterns of
FORK-256 with the probability 2−40 as listed in Table II and
III. If we apply these patterns to BRANCH1, the output
difference ∆1will be zero with the probability 2−40.

As mentioned in the previous subsection, however, it is
hard to use the pattern for the attack on FORK-256 because
the following events seldom occurs: either that the
computation of the output differences of the other branches is
zero or that the other branches have the same differential
pattern in the message words as BRANCH1.

TABLE II

CASE 1: 5-STEP INNER COLLISION PATTERN OF FORK-256:
THE NUMBERS IN THE ENTRIES OF THE TABLE DENOTES THE BITS IN WHICH

THE DIFFERENCE IS 1
Step ΔA ΔB ΔC ΔD Δ E ΔF ΔG ΔH ΔML ΔMR Prob.

0 31

1 31 6,12
1,26

3,4
8,11

21,26

1,6
15,16

1,6
15,16
20,23

2-16

2 31 6,12
21,26

3,4
8,11

21,26
2-10

3 31 6,12
21,26 2-4

4 31 1

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3329

TABLE III
CASE 2: 5-STEP INNER COLLISION PATTERN OF FORK-256: THE NUMBERS IN
THE ENTRIES OF THE TABLE DENOTES THE BITS IN WHICH THE DIFFERENCE IS

1
 Step ΔA ΔB ΔC ΔD ΔE ΔF ΔG ΔH ΔML ΔMR Prob

0 31 2-10

1
1,6

15,16
20,23

 31 6,12
21,26

3,4
8,11
21,26

1,6
15,16
20,23

 2-16

2
3,4

8,11
21,26

 31 6,12
21,26

3,4
8,11

21.26
 2-10

3 6,12
21,26 31 6,12

21,26 2-4

4 31 31 1

V. EFFICIENCY AND PERFORMANCE
In this section we compare the total number of operations

and the performance of FORK-256 and SHA-256. The total
number of operations is compared in the Table IV,
Implementations were written in C language. We denote the
simulation environment as CPU/OS/Compiler. The
performance is compared in the following environments:

TABLE IV
NUMBER OF OPERATIONS USED IN FORK-256 AND SHA-256

Operation Fork – 256 SHA-256

Addition (+) 472 600
Bitwise operation

(⊕ , ∨ ∧)
328 1024

Shift (<<,>>) 96
Shift rotation
(<<<, >>>)

512 576

– P3/WinXP/VC
– P4/WinXP/VC

Where the notations are as follows:

P3: Pentium III, 801 MHz, 192MB RAM
P4: Pentium IV, 2.0 GHz, 768MB RAM

WinXP : Microsoft Windows XP Professional ver 2002
VC : Microsoft Visual C++ Ver 6.0

TABLE V
PERFORMANCE OF FORK-256 AND SHA-256 ON SEVERAL ENVIRONMENTS

FORK - 256 SHA - 256
Environment Mbps

Cycle/Byte Mbps Cycle/Byte

P3/WinXP/V
C 192.1 31.413 132.46 44.581

P4/WinXp/V
C 521.1 28.755 318.72 46.372

These implementations of FORK-256 are not optimized, so

we expect performance can be improved for the optimized
version.

VI. CONCLUSION
In this paper we have proposed a recent committed crypt

analysis 256-bit hash function FORK 256, which is designed

to be not only secure but also fast than SHA-256. The main
features are the followings;
– Four branches are used in parallel, where as SHA-256

uses four serial rounds. This means that FORK-256 can
be implemented in hardware and it is difficult to analyze
all branches simultaneously.

– Unlike other dedicated hash functions, FORK-256
doesn’t use Boolean functions but uses other nonlinear
functions which output one word with one input word.

– Especially, FORK-256 updates several words with using
one word.

These properties make it difficult to analyze FORK-256 with
known attack methods including Wang et al.’s attack.

It is believed that FORK-256 is secure against any known
attacks on hash functions. However, the extensive analysis of
our new hash function is required and also we believe that
Fork-512 is highly secured attack are developed latter. We
believe that new FORK 512 hash function is launched in
future with high security measures.

REFERENCES
[1] E. Biham and R. Chen, “Near-Collisions of SHA-0,” Advances in

Cryptology CRYPTO 2004, LNCS 3152, Springer-Verlag, pp. 290–305,
2004.

[2] E. Biham, R. Chen, A. Joux, P. Carribault, C. Lemuet and W. Jalby,
“Collisions of SHA-0 and Reduced SHA-1,” Advances in Cryptology –
EUROCRYPT 2005, LNCS 3494, Springer-Verlag, pp. 36–57, 2005.

[3] B. den Boer and A. Bosselaers, “An Attack on the Last Two Rounds of
MD4,” Advances in Cryptology – CRYPTO’91, LNCS 576, Springer-
Verlag, pp. 194–203, 1992.

[4] B. den Boer and A. Bosselaers, “Collisions for the Compression
Function of MD5,” Advances in Cryptology – CRYPTO’93, LNCS 765,
Springer-Verlag, pp. 293–304, 1994.

[5] F. Chabaud and A. Joux, “Differential Collisions in SHA-0,” Advances
in Cryptol ogy – CRYPTO’98, LNCS 1462, Springer-Verlag, pp. 56–71,
1998.

[6] I. Damg˚ard, “A Design Priciple for Hash Functions,” Advances in
Cryptology CRYPTO’89, LNCS 435, Springer-Verlag, pp. 416–427,
1989.

[7] H. Dobbertin, “RIPEMD with Two-Round Compress Function is Not
Collision- Free,” Journal of Cryptology 10:1, pp. 51–70, 1997.

[8] H. Dobbertin, “Cryptanalysis of MD4,” Journal of Cryptology 11:4, pp.
253–271, 1998.

[9] H. Dobbertin, A. Bosselaers and B. Preneel, “RIPEMD-160, a
strengthened version of RIPEMD,” FSE’96, LNCS 1039, Springer-
Verlag, pp. 71–82, 1996.

[10] R. C. Merkle, “One way hash functions and DES,” Advances in
Cryptology CRYPTO’89, LNCS 435, Springer-Verlag, pages 428–446,
1989.

[11] NIST/NSA, “FIPS 180-2: Secure Hash Standard (SHS)”, August 2002
(change notice: February 2004).

[12] R. L. Rivest, “The MD4 Message Digest Algorithm,” Advances in
Cryptology CRYPTO’90, LNCS 537, Springer-Verlag, pp. 303–311,
1991.

[13] R. L. Rivest, “The MD5 Message-Digest Algorithm,” IETF Request for
Comments, RFC 1321, April 1992.

[14] B. Van Rompay, A. Biryukov, B. Preneel and J. Vandewalle,
“Cryptanalysis of 3- pass HAVAL,” Advances in Cryptology –
ASIACRYPT 2003, LNCS 2894, Springer- Verlag, pp. 228–245, 2003.

[15] X. Wang, X. Lai, D. Feng, H. Chen and X. Yu, “Cryptanalysis of the
Hash Func tions MD4 and RIPEMD,” Advances in Cryptology –
EUROCRYPT 2005, LNCS 3494, Springer-Verlag, pp. 1–18, 2005.

[16] X. Wang and H. Yu, “How to Break MD5 and Other Hash Functions,”
Advances in Cryptology – EUROCRYPT 2005, LNCS 3494, Springer-
Verlag, pp. 19–35, 2005.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3330

[17] X. Wang, H. Yu and Y. L. Yin, “Efficient Collision Search Attacks on
SHA-0,” Advances in Cryptology – CRYPTO 2005, LNCS 3621,
Springer-Verlag, pp. 1–16, 2005.

[18] X. Wang, Y. L. Yin and H. Yu, “Finding Collisions in the Full SHA-1,”
Advances in Cryptology – CRYPTO 2005, LNCS 3621, Springer-
Verlag, pp. 17-36, 2005.

[19] Y. Zheng, J. Pieprzyk and J. Seberry, “HAVAL – A One-Way Hashing
Algorithm with Variable Length of Output,” Advances in Cryptology –
AUSCRYPT’92, LNCS 718, Springer-Verlag, pp. 83–104, 1993.

