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Abstract—This paper describes the study of cryptographic hash 

functions, one of the most important classes of primitives used in 
recent techniques in cryptography. The main aim is the development 
of recent crypt analysis hash function. We present different 
approaches to defining security properties more formally and present 
basic attack on hash function. We recall Merkle-Damgard security 
properties of iterated hash function. The Main aim of this paper is the 
development of recent techniques applicable to crypt Analysis hash 
function, mainly from SHA family. Recent proposed attacks an MD5 
& SHA motivate a new hash function design. It is designed not only 
to have higher security but also to be faster than SHA-256. The 
performance of the new hash function is at least 30% better than that 
of SHA-256 in software. And it is secure against any known 
cryptographic attacks on hash functions. 
 

Keywords—Crypt Analysis, cryptographic.  

I. INTRODUCTION 
OR cryptographic hash function, the following properties 
are required: 
– Preimage resistance: it is computationally infeasible 

to find any input which hashes to any pre-specified 
output. 

– Second preimage resistance: it is computationally 
infeasible to find any second input which has the same 
output as any specified input. 

– Collision resistance: it is computationally infeasible to 
find a collision, i.e. two distinct inputs that hash to the 
same result. 

 
For an ideal hash function with an m-bit output, finding a 

preimage or a second preimage requires about 2m operations 
and the fastest way to find a collision is a birthday attack 
which needs approximately 2m/2 operations. Most dedicated 
hash functions which have iterative process use the Merkle-
Damgard construction [6, 10] in order to hash inputs of 
arbitrary length. They work as follows. Let HASH be a hash 
function. The message X is padded to a multiple of the block 
length and subsequently divided into t blocks X1,···, Xt. Then 
HASH can be described as follows: 
CV0= IV; CVi = COMP (CVi−1,

 Xi), 1 ≤ i ≤ t;   HASH (X) = 
CVt,  
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where COMP is the compression function of HASH, CVi is 
the chaining variable between stage i and stage i + 1, and IV 
denotes the initial value. The most popular method of 
designing compression functions of dedicated hash functions 
is a serial successive iteration of a small step function, as like 
round functions of block ciphers.  

Many hash functions such as MD4 [12], MD5 [13], 
HAVAL [19], SHA-family [11], etc., follow that idea. Attacks 
on hash functions have been focused on vanishing the 
difference of intermediate values caused by the difference of 
messages. On the other hand, a hash function has been 
considered secure if it is computationally hard to vanish such 
difference in its compression function. Usually, the lower the 
probability of the differential characteristic is, the harder the 
attack is. 

Therefore a step function is regarded as a good candidate if 
it causes a good avalanche effect in the serial structure. A 
function which has a good diffusion property can not be so 
light in general. However, most step functions have been 
developed to be light for efficiency. This may be why MD4-
type hash functions including SHA-1 are vulnerable to Wang 
et al.’s collision-finding attack [15–18].  

RIPEMD-family [9] has somewhat different approach for 
designing a secure hash function. The attacker who tries to 
break members of RIPEMD-family should aim simultaneously 
at two ways where the message difference passes. This design 
strategy is still successful because so far there is not any 
effective attack on RIPEMD-family except the first proposal 
of RIPEMD. However, RIPEMD-family have heavier 
compression functions than hash functions with serial 
structure. For example, the first proposal of RIPEMD consists 
of two lines of MD4. Total number of steps is twice as many 
as that of MD4. Also, the number of steps of RIPEMD-160 is 
almost twice as many as that of SHA-0. 

In this paper, we propose a new dedicated hash function 
FORK-256. According to the above observation, we 
determined the design goals as follows.  
– It should have a 256-bit output because the security of 

2128operations is recommended for symmetric key 
cryptography as the computing power increases. 

– Its structure should be resistant against known attacks 
including Wang et al.’s attack [1–5, 7, 8, 14–18]. 

- The performance should be as competitive as that of SHA-
256. 

Evaluation on Recent committed Crypt Analysis 
Hash Function 
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II. DESCRIPTION OF FORK-256 
In this section, we will describe FORK-256. These are basic 

notations used in FORK-256. 
 

   : Addition mod 232 

⊕   : XOR (exclusive OR) 
A<<<s:  s-bit left rotation for a 32-bit string A 
 

A. Input Block Length and Padding 
An input message is processed by 512-bit block. FORK-

256 pads a message by appending a single bit 1 next to the 
least significant bit of the message, followed by zero or more 
bits 0’s until the length of the message is 448 modulo 512, and 
then appends to the message the 64-bit original message 
length modulo 264. 

B. Structure of Fork-256 
Fig. 1 depicts the outline of the compression function of 

FORK-256. The name ‘FORK’ was originated from the 
figure. The compression function of FORK-256 hashes a 512-
bit string to a 256-bit string. It consists of four parallel branch 
functions, BRANCH1, BRANCH2, BRANCH3, and 
BRANCH4. Let CVi = (A, B, C, D, E, F, G, H) be the chaining 
variable of the compression function. It is initialized to 
IV0which is: 
 
A=6a09e667x  B=bb67ae85x   C=3c6ef372x      D=a54ff53ax 
E=510e527fx   F=9b05688cx     G=1f83d9abx   H=5be0cd19x 
 
Each successive 512-bit message block M is divided into 
sixteen 32-bit words M0, M1,…,M15 and the following 
computation is performed to update CVi   to CVi+1

: 

 

CVi+1 = CVi  {[BRANCH1 (CVi, Σ1 (M))  
BRANCH2(CVi,Σ2(M ))] ⊕ [BRANCH3 (CVi, Σ3(M ))  
BRANCH4(CVi,Σ4(M ))]}, 
 
Where Σj(M ) = (Mσj (0)…, Mσj  (15)) is the re-ordering of 
message words for j = 1, 2, 3, 4, given by Table I. 
 

C. Branch Functions: BRANCH j 
Each BRANCHj is computed as follows: 
 

1) The chaining variable CVi is copied to initial 
variables Vj,0   for j-th branch. 

2) At k-th step of each BRANCHj(0 ≤ k ≤ 7), the step 
function STEP j,k is computed as follows: 

 
Vj,k+1 = STEPj,k(Vj,k, Mσj(2k) , Mσj(2k+1), αj,k, βj,k)  

Where αj,k and βj,k are constants. 
 
 

 
Fig. 1 Outline of the FORK-256 compression function 

 

 

Fig. 2 Step function of FORK-256, STEPj, k 
 
Input Order of Message Words: This table shows the input order of 
message words M0~ M15applied to BRANCHj (1≤j≤4) 
functions. 

 
TABLE I 

ORDERING RULE OF MESSAGE WORDS 
 T 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
σ 1(t) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
σ2(t) 14 15 11 9 8 10 3 4 2 13 0 5 6 7 12 1 
σ3(t) 7 6 10 14 13 2 9 2 11 4 15 8 5 0 1 3 
σ4(t) 5 12 1 8 15 0 13 11 3 10 9 2 7 14 4 6 

 
Constants: The compression function of FORK-256 uses 
sixteen constants given by the following table: 
        

δ0   = 428a2f98x δ1  = 71374491x  
δ2   = b5c0fbcfx δ3  = e9b5dba5x 
δ4   = 3956c25bx δ5  = 59f111f1x 
δ6   = 923f82a4x δ7  = ab1c5ed5x 
δ8   = d807aa98x δ9  = 12835b01x 
δ10 = 243185bex δ11 = 550c7dc3x 
δ12 = 72be5d74x δ13 = 80deb1fex 
δ14 = 9dbc06a7x δ15 = c19bf174x 

 
These constants are applied to each BRANCH j according to the 

ordering rule of them as follows: 
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 Step 
k   α1,k β1,k α2,k β2,k α3,k β3,k α4,k β4,k 

0 δ 0 Δ1 δ15 Δ14 δ1 δ0 δ14  δ15 
1 δ2 δ3 δ13 δ12 δ3 δ2 δ12  δ13 
2 δ4 δ5 δ11 δ10 δ5 δ4 δ10  δ11 
3 δ6 δ7 δ9 δ8 δ7 δ6 δ8  δ9 
4 δ8 δ9 δ7 δ6 δ9 δ8 δ6  δ7 
5 δ10 δ11 δ5 δ4 δ11 δ10 δ4  δ5 
6 δ12 δ13 δ3 δ2 δ13 δ12 δ2 δ3 
7 δ14 δ15 δ1 δ0 δ15 δ14 δ0 δ1 

 
Step Functions: STEP j,k  The input register Vj,k of STEPj,,k is 
divided into eight 32-bit words: 
Vj,k= (Aj,k, Bj,k, Cj,k, Dj,k, Ej,k, Fj,k, Gj,k, Hj,k) 
STEPj,k takes Vj,k, Mσj(2k),

 Mσj(2k+1), αj,k and βj,k as inputs, and then 
provides  the output as follows (See Fig 2): 
Aj,k+1 =Hj,k g(Ej,k Mσj(2k+1))<<<21 ⊕ f(Ej,k Mσj(2k+1) βj,k)<<<17 

Bj, k+1  = Aj,k  Mσj(2k)  α j,k, 
Cj,k+1 = Bj,k  f (Aj,k  Mσj(2k)) ⊕ g(Aj,kMσj (2k) αj,k), 
Dj,k+1 =Cj,k f(Aj,kMσj(2k))<<<5 ⊕ g(Aj,k Mσj(2k) αj,k)<<<9,

 

Ej,k+1=Dj,k f(Aj,kMσj(2k))<<<17 ⊕ g(Aj,kMσj(2k) αj,k)<<<21, 

Fj,k+1=Ej,k  Mσj (2k+1)  βj,k, 
Gj,k+1=Fj,k g(Ej,k Mσj(2k+1)) ⊕ f(Ej,k Mσj(2k+1) βj,k), 
Hj,k+1=Gj,kg g(Ej,k Mσj(2k+1))<<<9 ⊕ f(Ej,k Mσj(2k+1)  
 βj,k)<<<5, 

Where f and g are nonlinear functions as follows: 
f (x) = x   (x<<<7 ⊕  x<<<22), 
g(x) = x ⊕  (x<<<13  x<<<27). 

III. DESIGN STRATEGY 
A.  Motivation for our Proposal 
In Wang et al.’s attacks on MD4, MD5, HAVAL, and 

RIPEMD [15, 16] and SHA-0/1 [17, 18] brought the big 
impact on the field of symmetric key cryptography including 
hash function. However, RIPEMD-128/160 is the algorithms 
which are still secure against their attacks. No attacks on them 
are found so far. 

 
They were designed to have two parallel lines, which is 

different from MD4, MD5 and SHA-family. This makes an 
attacker take into account two lines simultaneously. However, 
since each line needs almost same operation of MD5 and SHA 
algorithms, its efficiency was degenerated almost half of them. 
This motivates our design. We use four lines instead of two. 
In order to overcome disadvantage of RIPEMD algorithms, 
we manage to reduce operations for step functions of each 
line. The message reordering of each branch is deliberately 
designed to be resistant against Wang et al.’s attack and 
differential attacks. The function f and g in each step are 
chosen to have good avalanche effects. 

 
B.  Design Principle 
Structure FORK-256 consists of 4 Branches. In the 

security aspect, we can give the security against known 

attacks with the different message-ordering in branches. For 
example, RIPEMD, which consists of 2 branches, was fully 
attacked by Wang et al. because RIPEMD has same message-
ordering in 2 branches. On the other hand, in case of 
RIPEMD-128/160, there is no attack result because RIPEMD-
128/160 have different message-ordering in branches. In the 
implementation aspect, FORK-256 can be implemented 
efficiently be cause the message-ordering is simpler than the 
message expansion such as that of SHA-256. 
 
Constants: Each BRANCHi uses 16 different constants αi,j   

and βi,j for j = 0,···,7. By using constants we pursue the goal to 
disturb the attacker who tries to find a good differential 
characteristic with a relatively high probability. So, we prefer 
the constants which represent the first thirty-two bits of the 
fractional parts of the cube roots of the first sixteen four prime 
numbers. 
 
Nonlinear Functions: Nonlinear functions f and g output one 
word with one input word. Almost dedicated hash functions 
use boolean functions which output one word with three 
words at least. The boolean functions make it easy to control 
the output one word by adjusting the input several words. The 
attacks on MD4, MD5, HAVAL, RIPEMD and SHA-0/1 are 
based on this weakness of Boolean functions. In addition, the 
output words of f and g functions are used to update other 
chaining variables. In almost dedicated hash functions output 
words of boolean functions are used to update only one 
chaining variable. This weakness is also used to analyze above 
hash functions. 
 
Shift Rotations in Nonlinear Functions: If the addition is 
changed into the bitwise x or operation in f and g, nonlinear 
functions are generalized as 

x ⊕ (x<<<s1 ⊕ x<<<s2 ) 
We consider all 465 (=31C2) cases for s1and s2 and want to 
define shift rotations satisfying the following 7 conditions. 
HW(x) denotes the Hamming Weight of x. 
– The branch number of f and g is four. 
– If HW (input word)   = 2, then HW (output word) ≥  4. 
– If HW (input word)   = 3, then HW (output word) ≥  3. 
– If HW (input word)   = 4, then HW (output word) ≥  4. 
– If HW (output word) = 1, then HW (input word)   ≥ 17. 
– If HW (output word) = 2, then HW (input word)   ≥ 14. 
– The interval of shift rotations are greater than or equal to 4. 
 

By above all conditions, we have defined f and g functions. 
Ordering of Message Words We adopt the message word 
ordering instead of the message word extension. If an attacker 
constructs an intended differential characteristics for one 
branch function, the ordering of message words will cause 
unintended differential patterns in the other branch functions. 
This is the core part of the security in the compression 
function. When we define the ordering of message words, 
following four conditions are considered. 
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 Balance of upper (step 0~3) and lower (step 4~7) 
parts: Each value is applied twice to upper and lower 
parts, respectively. 

 Balance of left and right parts: Each value is applied 
twice to left and right parts, respectively. 

 Balance of sums of input orders Each word is applied 
four times and is indexed by 0~15. 

 Total sum of indexes is 480. Therefore, the average 
of sum of indexes applied to each word is 30. 

 We search the ordering so that the sum of indexes 
Corresponding to each word is 25~35. 

 Conditions which do not have same differential 
Patterns in all branches 

 Specific differential pattern used at a branch may be    
applied to other branches. 

 Therefore, except the case of giving a same 
difference to all words, we try to find an ordering 
such that there is no same differential patterns in all 
branches. 

 
Shift Rotations and Rank: In the step function, 5 and 17, the 
values of shift rotation, are fixed. Then we search all the case 
and find candidate values (corresponding to 9 and 21) so that 
the rank of the linearly-changed step function is maximized. 
The maximum of the rank is 252.  

Finally we select 9 and 21 among candidate values so that 
differences generated from the outputs of f and g functions do 
not overlap when a message word inputted at a step function 
has a one-bit difference. 

IV. SECURITY ANALYSIS OF FORK-256 
A.  Collision-Finding Attack 
Assume that an attacker inserts the message difference. Let 

∆I be the output difference of i-th branch BRANCHi. Then the 
attacker expects the following event for finding collisions: 

(∆1   ∆2) ⊕  (∆3  ∆4) = 0. 
For this, he can take several strategies: 
1. The attacker constructs a differential characteristic with a 

high probability for a branch function, say BRANCH1, 
and then expects that the operation of the output 
differences in the other branches, ∆3  ∆4  ∆2 is equal to 
∆1. 

2. The attacker constructs two distinct differential 
characteristics, and expects that ∆1= −∆2 and ∆3= −∆4. 

3. The attacker inserts the message difference which yields 
same message difference pattern in four branches, and 
expects that same differential character istic occurs 
simultaneously in four branches. Then the output 
difference of the compression function vanishes if the 
hamming weight of the output difference of each branch 
is small. This is because the final output is generated with 
using ⊕ and  by turns. 

Let us see the first strategy. If we assume that the outputs of 
each branch function are random, the probability of the event 
is almost close to 2−256. It is also difficult for the attacker to 

mount any attack following the second strategy because he 
should find such differential pattern of the message words.  

Third strategy is relatively easy for the attacker to perform. 
For example, if he inserts the same difference to all the 
message words, then the same message difference pattern 
occurs in every branches. However, the message word 
reordering was designed so that the third strategy is satisfied 
only if the attacker inserts the same difference to all the 
message words. Under the assumption that every step is 
independent, we can compute the upper bound of the 
probability that such kind of differential characteristic occurs, 
which frustrates the attacker. 

 
B.  Attacks Using Inner Collision Patterns 
When the attacker inserts the differences to the message 

words, the event that the difference of the intermediate value 
becomes zero often occurs. It is called inner collision. We call 
a differential characteristic which causes an inner collision 
with a probability, inner collision pattern. Note that an inner 
collision is not a real collision, but the notion of inner 
collision pattern is important in cryptanalysis of hash function 
because it can be repeatedly used to yield a real collision with 
a high probability. The main idea of attacks on SHA-0 and 
SHA-1 is also the repetition of an inner collision pattern. 

So, in hash functions with a serial structure it is related to 
the resistance against collision-finding attack how many times 
an inner collision can be repeated. Let us focus on only one 
branch function, say BRANCH1. We can construct 5-step 
inner collision pattern easily. Let ∆A, ∆B,…,∆H denote the 
differences of A1,k,B1,k,…,H1,k, respectively. ∆ML and ∆MR   

denote the differences of Mσ1 (2k) and Mσ1 (2k+1), 
respectively. We found 5-step inner collision patterns of 
FORK-256 with the probability 2−40 as listed in Table II and 
III. If we apply these patterns to BRANCH1, the output 
difference ∆1will be zero with the probability 2−40. 

As mentioned in the previous subsection, however, it is 
hard to use the pattern for the attack on FORK-256 because 
the following events seldom occurs: either that the 
computation of the output differences of the other branches is 
zero or that the other branches have the same differential 
pattern in the message words as BRANCH1. 
 

 
TABLE II 

CASE 1: 5-STEP INNER COLLISION PATTERN OF FORK-256: 
THE NUMBERS IN THE ENTRIES OF THE TABLE DENOTES THE BITS IN WHICH 

THE DIFFERENCE IS 1 
Step ΔA ΔB ΔC ΔD Δ E ΔF  ΔG ΔH ΔML ΔMR Prob.

0         31   

1  31 6,12 
1,26

3,4 
8,11

21,26

1,6 
15,16     

1,6 
15,16
20,23

2-16 

2   31 6,12
21,26      

3,4 
8,11 

21,26
2-10 

3    31      6,12 
21,26 2-4 

4          31 1 
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TABLE III 
CASE 2: 5-STEP INNER COLLISION PATTERN OF FORK-256: THE NUMBERS IN 
THE ENTRIES OF THE TABLE DENOTES THE BITS IN WHICH THE DIFFERENCE IS 

1 
  Step ΔA ΔB ΔC ΔD ΔE ΔF ΔG ΔH ΔML ΔMR Prob

0          31 2-10 

1 
1,6 

15,16 
20,23 

    31 6,12 
21,26 

3,4 
8,11 
21,26 

1,6 
15,16 
20,23 

 2-16 

2 
3,4 

8,11 
21,26 

     31 6,12 
21,26 

3,4 
8,11 

21.26 
 2-10 

3 6,12 
21,26       31 6,12 

21,26  2-4 

4 31        31  1 

V.   EFFICIENCY AND PERFORMANCE 
In this section we compare the total number of operations 

and the performance of FORK-256 and SHA-256. The total 
number of operations is compared in the Table IV, 
Implementations were written in C language. We denote the 
simulation environment as CPU/OS/Compiler. The 
performance is compared in the following environments: 
 

TABLE IV 
NUMBER OF OPERATIONS USED IN FORK-256 AND SHA-256 

Operation Fork – 256 SHA-256 

Addition (+) 472 600 
Bitwise operation 

( ⊕ , ∨ ∧ ) 
328 1024 

Shift (<<,>>)  96 
Shift rotation 
(<<<, >>>) 

512 576 

 
– P3/WinXP/VC 
– P4/WinXP/VC  

Where the notations are as follows: 
 
P3: Pentium III, 801 MHz, 192MB RAM 
P4: Pentium IV, 2.0 GHz, 768MB RAM 
 
WinXP : Microsoft Windows XP Professional ver 2002 
VC       : Microsoft Visual C++ Ver 6.0 
 

TABLE V 
PERFORMANCE OF FORK-256 AND SHA-256 ON SEVERAL ENVIRONMENTS 

FORK - 256 SHA - 256 
Environment Mbps  

Cycle/Byte Mbps Cycle/Byte 

P3/WinXP/V
C 192.1 31.413 132.46 44.581 

P4/WinXp/V
C 521.1 28.755 318.72 46.372 

 
These implementations of FORK-256 are not optimized, so 

we expect performance can be improved for the optimized 
version. 

VI. CONCLUSION 
In this paper we have proposed a recent committed crypt 

analysis 256-bit hash function FORK 256, which is designed 

to be not only secure but also fast than SHA-256. The main 
features are the followings; 
– Four branches are used in parallel, where as SHA-256 

uses four serial rounds. This means that FORK-256 can 
be implemented in hardware and it is difficult to analyze 
all branches simultaneously.  

– Unlike other dedicated hash functions, FORK-256 
doesn’t use Boolean functions but uses other nonlinear 
functions which output one word with one input word. 

– Especially, FORK-256 updates several words with using 
one word. 

These properties make it difficult to analyze FORK-256 with 
known attack methods including Wang et al.’s attack. 

It is believed that FORK-256 is secure against any known 
attacks on hash functions. However, the extensive analysis of 
our new hash function is required and also we believe that 
Fork-512 is highly secured attack are developed latter. We 
believe that new FORK 512 hash function is launched in 
future with high security measures. 
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