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Abstract—Levenberg-Marquardt method (LM) was proposed to 

be applied as a non-linear least-square fitting in the analysis of a 
natural gamma-ray spectrum that was taken by the Hp (Ge) detector. 
The Gaussian function that composed of three components, main 
Gaussian, a step background function and tailing function in the low-
energy side, has been suggested to describe each of the -ray lines 
mathematically in the spectrum. The whole spectrum has been 
analyzed by determining the energy and relative intensity for the 
strong  -ray lines.

Keywords—Gamma-Ray, Spectrum analysis, Non-linear least-
square fitting.

I. INTRODUCTION

OR the past three decades, conventional computational 
techniques have been in use for the identification and 
quantification of radioisotopes through the analysis 

gamma-ray spectrum. 
In every quantitative application of gamma-ray 

spectrometry, one of the most important issues to be addressed 
is the identification in the spectra of the peaks associated with 
gamma-ray transitions and then performing the fitting process 
for precise determination of the position and peak area in the 
spectrum [1-3].

In the review of literature different programs have been 
designed depending on the types of the mathematical method 
in the fitting technique. Mariscotiet.al. [4] have suggested a 
fitting subroutine which follows the linearization to estimate 
the required derivatives, and the Newton-Raphson method to 
occur the iterations in the fitting; while Helmer et.al.[5] have 
used Gauss equation and truncated Taylor series.

According to Rotti et.al. [6], the line-shape calculation and 
the fitting procedure was performed by running the computer 
codes SAMPO (and its modification versions SAMPO76, 
SAMPO80, SAMPO90)[7], that is  one of the widely used 
computer programs in this field that features algorithms for 
automatic peak fitting which follows an iterative gradient 
minimization searching with variable metric. Then in the latest 
years some software were also widely used to analyze the 
gamma spectra, like Genie 2000, SAANI and VISPECT, 
Cambio [7].

In the present study, a FORTRAN code was programmed to 
use a non-linear least square fitting with Levenberg-Marquardt 
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(LM) method to perform analysis of the gamma-ray spectrum 
of Hp(Ge) detector.

II. DATA ANALYSIS

In the present study the data was accumulated in a 
mountainous region of Iraqi Kurdistan (Erbil).The data were 
recorded with a high-pure germanium detector HP(Ge), of 
active volume (62 cm3) with an efficiency of about (15%) and 
resolution of (2.1 KeV) for the (1332.5 KeV) gamma-ray line 
of Co60, preamplifier model (120-4), spectroscopy amplifier 
model 2020 (Canberra), multichannel analyzer with (4096) 
channel {series–85 (Canberra origin)} and the IBM  proprinter 
model 5514-2.

The first step in the process of gamma-ray spectrum analysis 
is indication of the individual peaks in the spectrum. Then 
Gaussian function has been used as a mathematical model that 
is a non-linear function, to perform process of peak fitting for 
finding the best parameters of the Gaussian. Then the second 
step begins to analyze the gamma-ray spectrum by determining 
the energy and relative intensities of the individual strong 
peaks [9].

III. MATHEMATICS OF THE LEVENBERG-MARQUARDT FITTING

   The fitting process of n-data on the gamma-ray peak 
(i.e., ) requires to use a mathematical model 

( , )y x pi . Thus, from the definition of Chi-square we have [9-

10]:
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Here (p) is used for the parameters of function ( , )y x pi   and  

i represents the weight such that:
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As shown in Fig.(3-1), the function of gamma-ray line 

( , )y x pi can be constructed from three functions: main 

Gaussian ( )G xi , a step background ( )B xi , and tailing

Gaussian ( )T xi in the low energy region. Thus, ( , )y x pi can 

be expressed as:

( , ) ( ) ( ) ( ) (3)y x p G x T x B xi i i i  
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The components, main Gaussian, tailing Gaussian, and step 
functions are given by [6]:

2 2( ) 2( )

2 2( ) 2( ) (4)

( ),1( )
( ),

x xi oG x hei

x xi To TT x h ei To
y x x xoB xi y x x xn o





  

  
   

By noting that the parameters , ,oh x and  symbolize to 

the respective height, centroid, and standard deviation of the 

main Gaussian; while hT , xTo , and T are used to the tailing 

Gaussian.

From the fact that the function ( , )y x pi is non-linear in 

parameters, it is convenient to use Taylor expansion to 

linearize both 2 ( )p and ( , )y x pi i in eqs.(1 and 3) to be:
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Knowing that 2 ( )po is determined from eq.(1) with replacing 

( , )y x pi by ( , )y x po i , and p j is the step length.

To get the best values of the parameters, 2 ( )p   must be 

minimized to evaluate the local minimum point from relation 

[11]:
2 2 2 2( ) ( ) ( ) 0 (7)
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Eq.(7) is a differential equation that can be solved to find the 

step length p j [9], or

2( )
(8)

2( )
1

pk op mk
H p

kj oj







 




In such a way that  2 ( )pk o
 and 2 ( )H p

kj o
 are the  

components of the respective gradiant and the Heissian 
matrices [11-12],
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With its corresponding matrix form:
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Here, F and the Jaccobian matrix J, are (1 )n and ( )n m
matrices respectively, such that:
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By substituting eq.(10) in eq.(8), the step length of the fitting 
becomes:

1[ ] (12)T T Tp J J F H J F      

That is equivalent to the formula:
1( ) ( ) (13)k k kp p p    

Both matrices  , are two (1 )m and ( )n m matrices 

respectively, which have the elements:
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In the search direction, for kth iteration with step length kp , 

the Newton method is used to reach the local minimum 
1kp  , or

Fig. 1: A typical gamma-ray peak with its components, step and 
tailing functions
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1 (15)k k k kp p p p     

Here, k I is the step size which takes the small positive
values. 
The (LM) method is a type of modified Newton-Gauss 
algorithm of eq.(15).The method involves an additive square 

diagonal matrix ( k I ) for the Hessian matrix ( ) in eq.( 15) 
to replace the negative or small eigenvalues of  by 
reasonable positive ones. The resulting step length is given by 
[12]:

1[ ( ) ] ( ) (16)k k k kp p I p      

(I) is a unit matrix with the same order of  , and 1k k 

takes the values such that 0
k  .

The basis of (LM) method is to control the step length (p), so 

that it decreases monotonically in length as ( k ) increases. 

However, if the value of ( k ) is changed, one has to 

calculate the new ( kp ) and the iteration procedure for 

( pk ) requires selecting ( k ), such that [13], 1k k 

To estimate ( kp ), the elements of  and  must be 

determined from eqs.(10-14):
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According to eq.(17) the diagonal elements of () are given 
by:

' (1 ) (18)jj jj   

Computationally, at least two problems are involved in the 
(LM) method: the first is the need for solving a linearaized 
system at each step, and the second is evaluating the 
derivatives at each step. One can eliminate most of the 
derivatives by using the differences (non-analytical 
method)[9]:
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So that the step size is so small that causes to maintain rapid 
convergence. 

IV. PEAK CALCULATION
After performing the process of fitting, the peak parameters 

( , and   ) can be found; then from the peak centroid ( ) 
and from the energy calibration the photopeak energy can be
evaluated from [8,14] :
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And similarly, calibration of the standard deviation that:

2
(22)1 2 3

2.355

G G x G x
o o

FWHM





  







Where is the Full Width at Half Maximun;  , 
and are constants of energy calibration; while  , 
and are constants of calibration of standard deviation.

In similar way the efficiency of the peak (
f

 ) and peak 

energy ( ) are combined according to efficiency calibration 
relation:

2 (23)1
zz Ef



Where and are constants of efficiency calibration for the 
detector.

By subtracting background before peak fitting, there occurs 
simplification of the shapes of experimental peaks that reduces 
the required fitting time. Therefore, after the background 
estimation (which is not fitted or its values before and after 
fitting are equal) had been made and the background 
subtraction performed under the event channels, analytic fits 
were then made to result the interest parameters [15-16].
From the fitting process the best values of the parameters can 
be found, and then putting them in eq.(3), area of the peak (A) 
can be evaluated from[9-10]:

( ) (24)A y x dx


 


Where (h) and () are the height and standard deviation of the 
Gaussian respectively.  And the percentage error in area 

( )Er A is calculated from [17]:

( )
( ) 165 (25)

AEr A A




Knowing that ( )Er A is the estimation of uncertainty in the 

peak area that is calculated from [19]:
( ) (26)A A B  

Since(B) represents area of the counts under the background.

The intensities of individual gamma-lines ( In ) in a spectrum 

are characterized by the corresponding peak area (A) and 

efficiency ( f ) [8-10], or

(27)
AIn f



And thus, the percentage error in the intensity is 
calculated from:

( )
( ) (28)

Er AEr In f


But in addition to the energies of the gamma lines, the 
interested quantities in gamma-ray spectrum analysis is the 
relative intensity of the peaks, which can be obtained in such a 
way that a line for each element in the spectrum must be 
specified to be taken as a line with intensity assumed to be 
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100%, then the intensity of all other gamma-lines belonging to 
the same element are measured relative to that line. Therefore, 
the relative intensity ( ) for any line with intensity ( ) and 
belonging to a standard line with intensity ( ) is written as 
[10]:

(29)
InI Ist 

, with its corresponding error:

( )
( ) (30)

Er InEr I
f 

V. RESULTS AND DISCUSSION

The peak shape model presented is a powerful tool for a 
precise analysis of the gamma-ray peaks in the pulse height 
spectrum of Hp(Ge) spectrometer. By applying the fitting 

programs with the boundary channels of the peaks separately, 
the parameters of the peak shape functions and backgrounds 
were determined.             

For the utilized spectrum which contains 4095 channels, 
see Fig.1, a computer program with Fortran language has been 
developed for calculating the physically meaningful Gaussian 
functions. Then after running the program, the requirements of 
spectral analysis on the present data was made with general 
purposes of nonlinear least-square fitting (Levenberg-
Marquardt) method by making the individual peak analysis for 
the strong lines. 

              The purpose in the spectrum analysis is usually to determine 
energies and intensities of nuclear radiation which are related 
to free parameters (peak counts, positions and widths) in the 
Gausian function.  After performing fitting process, the peak 
parameters have been found, and then for each line of gamma 
ray the centroid was putted in eqs.(20-21)  to evaluate the peak 
energy with its percentage error. Thus, from the efficiency 
calibration, in eq.(23), the efficiency was obtained and after 

Fig. 2: The whole spectrum of Hp(Ge) detector for the channel ranges (1-4095)
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then from the full description of the photopeak, the integration 
(continuous) method was proposed, in eq.(24), to determine 
area under the peak. As the final process of calculation, both 
area and efficiency were substituted in eqs.(27-28) to get the 
line intensity and its error estimation. Hence, for the strong 
lines the relative intensities with thier corresponding errors 
have been obtained from eqs.(29-30) A typical gamma-ray full 
energy peak having a very low background was carefully 
studied to indicate an analytical expression, which would very 
closely represent its shape. Accordingly, the ratio between the 
peak height and its background (i.e., peak-to-background ratio, 
PB) has been proposed to describe the strong peaks (having 
PB>2) in the spectrum. Therefore, one of the typical aspects of 
differences in the results is what might be described as a small 
peak-to-background ratio (PB)[4,10]. This is a case where the 
peak in the data is riding on a very high background, and the 
ratio of the highest point of the peak to the average of the 
baseline level is a very nearly one.

Table 1 shows the calculated values of some of the 
interesting parameters, peak areas, percentage errors in the 
areas, peak-to-background ratios (PB), and the peak 
boundaries before the fitting for the choosing strong lines (23 
peaks) in the spectrum. So one obtains that the peak area 
evaluation depends mostly on the base line height and the 
percentage error in area goes up as (PB) decreases because the 
statistics are poorer; thereby, the table also shows that the 
strong peaks usually have large values of peak-to-background 
ratios (PB>2) and small errors in areas. After the fitting 
process, the parameters of the main Gaussian have been 
obtained and they are listed in Table 2.

TABLE I  SOME OF THE INTERESTING PHYSICAL QUANTITIES OF THE STRONG 

LINES IN THE SPECTRUM

No
.

A A% PB Peak boundary

Initial Final

01 14309.1 01.35 03.38 0327 0332
02 33539.6 01.96 13.22 0407 0413
03 55843.6 00.70 29.43 0484 0493
04 03782.5 02.32 03.54 0814 0820
05 37711.3 00.01 32.93 0851 0858
06 03203.3 04.59 05.30 1074 1082
07 02402.7 00.06 04.53 1274 1285
08 01706.9 01.48 03.91 1309 1319
09 01382.0 00.97 02.64 1359 1366
10 07140.9 00.06 14.31 1572 1582
11 02562.7 01.12 05.10 1738 1747
12 01578.5 06.06 05.34 1936 1944
13 00546.8 04.89 02.91 1970 1977
14 00945.7 02.33 03.46 1976 1986
15 00373.1 03.15 02.78 2338 2346
16 00984.8 01.95 08.19 2434 2444
17 04998.4 00.03 40.25 2482 2492
18 00114.7 04.26 02.29 2588 2596
19 00648.8 02.88 05.90 2599 2608
20 00331.4 01.75 06.26 2983 2994
21 01290.1 00.60 25.62 3104 3115
22 00328.1 01.20 3.769 3451 3458
23 01156.9 02.30 25.47 3686 3696

TABLE II  THE PARAMETERS OF THE STRONG   LINES IN THE SPECTRUM

No
.

Peak parameters

Height Centroid Width

01 07772.0±99.46 0329.36±0.009 0.73±0.0080
02 16034.7±95.87 0409.58±0.005 0.81±0.0040
03 25993.2±97.47 0489.93±0.004 0.85±0.0030
04 01649.7±40.87 0817.12±0.022 0.90±0.0190
05 14800.8±68.46 0853.93±0.006 1.01±0.0040
06 01173.3±30.95 1078.60±0.026 1.08±0.0240
07 00764.3±27.74 1280.31±0.036 1.03±0.0320
08 00529.6±81.74 1312.72±0.047 1.18±0.0420
09 00506.8±22.98 1362.24±0.044 0.97±0.0400
10 02368.9±38.40 1576.08±0.016 1.16±0.0140
11 00877.5±25.82 1742.87±0.031 1.11±0.0270
12 00526.0±19.35 1940.11±0.030 1.16±0.3520
13 00156.6±12.03 1973.85±0.098 1.27±0.0900
14 00299.4±16.29 1982.81±0.058 1.06±0.0520
15 00100.2±10.93 2342.03±0.103 0.85±0.0920
16 00278.3±12.59 2438.11±0.056 1.37±0.0480
17 01247.8±27.16 2487.72±0.026 1.27±0.0200
18 00127.8±10.99 2591.66±0.298 1.58±0.2740
19 00174.8±11.24 2604.12±0.076 1.15±0.0660
20 00084.5±06.56 2988.38±0.112 1.56±0.0950
21 00345.8±12.64 3109.55±0.046 1.47±0.0380
22 00039.6±06.66 3455.17±0.239 1.24±0.1970
23 00292.9±11.27 3690.29±0.052 1.57±0.0420

    This large appearance of percentage errors in the weak peak 
areas is due to that these peaks cannot be represented 
accurately by Gaussian functions only, but it must do 
additional corrections in the Gaussians or other complex 
representations to define those photopeaks. 
     In other words, it states that the used function gives a better 
fit to the experimental full energy strong peaks. Consequently 
the detection of very small peaks in the spectrum is 
complicated by the appearance of fraudulent peaks which are 
in nearly noise and fitting of these peaks are very sensitive to 
the height of the background under the peaks.  For this reason, 
the peaks whose percentage errors in areas exceed (23%) they 
would very likely not considered as real peaks in the spectrum 
and would be removed from the fit. 

The final columns of the table show the peak boundaries, 
i.e. initial peak and final channels; and the peak parameters, 
i.e. height, centroid, and with their corresponding errors.

The peak energies and relative intensities (intensities 
normalized to (100) for the standard lines) which are common 
feature in many environmental radiation measurement 
programs have been calculated after fitting the data peaks 
separately. The accuracy of such results is especially bad if the 
peak of interest is small and on the tail of a large one. The 
percentage area contribution on the tail function (T) is 
dependent on the fitting used in the analysis.

The computed results, relative intensities, are shown in 
Table 3 and compared with those published in the Nuclear 
Data Sheets (N.D.S) [18-22]. The comparison in Table 3
illustrates the existence of good accuracy in the obtained 
results because they are in small errors. Moreover, the present 
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-ray intensities agree well with those of (N.D.S) [18-22], that     
considered as standard values. The agreement is more obvious 
for the strong lines, i.e., in ideal situations, the peak area is 
mostly well resolved and has large peak-to-background ratios.

              It is important to be known the two lines with the energies of 
(662 KeV) and (1461 KeV) from 137Cs and 40K nuclides, 
respectively, were clearly observed that is impossible to 
identify their relative intensities because they are members of 
the ((Non-Serious Radioactive Nuclide In Nature)). Other 
types of these nuclides are not found either because of their 
low energy or their extremely low natural abundance. 

TABLE III COMPARISON OF THE COMPUTED -RAY RELATIVE

INTENSITIES FOR THE STRONG LINES WITH WHOSE REPORTED BY

THE NUCLEAR DATA SHEETS (N.D.S)

 A:  231Th, B:  228Th, C:  214Bi, D:  214Po,]
                  E:  212Bi, F:  208Pb, G:  212Po

In addition, two other obvious peaks are seen in the 
spectrum that represent disperse -ray lines, are (741.304 
KeV) belonging to 214Po and (1001.26 keV) belonging to 207Ti 
and 234U, were identified and ascribed qualitatively. The 
disperse -ray lines included:

1- Low intensity -ray lines.
2- Overlapping lines in the low-energy region.
3- Lines with unknown origins.
4- Fluorescence lines (have X-ray contributions).

    The spectrum contains also some other obvious peaks 
whose energies were determined and belonged to X-ray, so 
they are of no interest in the present work.

Furthermore, the inclusion of this analysis would, in 
practice, to break down in some peaks as a result of controlling 

their values (the peak) only by a few channels (narrow region, 
n<5, n is the number of the counts on the peak) that leads to 
appear   (floating point error, overestimated) in the running 
procedure. It express that, the computer analysis is less 
sensitive to resolution than analysis by hand for this 
photopeaks in the running procedure.
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N
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[1

8-
22

]

E (KEV) I

01 B* 03.38 0238.54±0.006 100.00±0.316 100.00
02 A 13.22 0295.29±0.004 051.45±0.016 051.74
03 E 29.43 0352.12±0.003 100.00±0.014 100.00
04 B 03.54 0583.55±0.015 085.15±0.099 085.20
05 A 32.93 0609.73±0.004 100.00±0.024 100.00
06 B 05.30 0768.48±0.015 010.55±0.015 010.59
07 A 04.53 0911.13±0.025 100.00±0.255 100.00
08 A 03.91 0934.05±0.033 006.63±0.029 006.86
09 B 02.64 0969.07±0.031 060.68±0.350 060.80
10 A 14.31 1120.28±0.011 032.68±0.010 032.62
11 B 05.10 1238.22±0.021 012.82±0.024 012.83
12 E 05.34 1377.68±0.028 008.66±0.033 008.72
13 C 02.91 1401.53±0.069 003.06±0.072 003.00
14 C 03.46 1407.87±0.040 005.31±0.052 005.37
15 B 02.78 1661.83±0.073 002.51±0.120 002.49
16 C 08.19 1729.76±0.039 006.75±0.046 006.60
17 F 40.25 1764.82±0.018 034.38±0.017 034.54
18 C 02.29 1838.30±0.011 000.81±0.234 000.83
19 E 05.90 1847.11±0.053 004.68±0.061 004.60
20 B 06.26 2118.72±0.079 002.56±0.103 002.62
21 B 25.62 2204.36±0.032 010.93±0.040 010.83
22 C 3.769 2448.41±0.166 003.02±0.103 003.36
23 D 25.47 2614.78±0.036 100.00±0.460 100.00


