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Abstract—Most of the commonly used blind equalization 

algorithms are based on the minimization of a nonconvex and 

nonlinear cost function and a neural network gives smaller residual 

error as compared to a linear structure. The efficacy of complex 

valued feedforward neural networks for blind equalization of linear 

and nonlinear communication channels has been confirmed by many 

studies. In this paper we present two neural network models for blind 

equalization of time-varying channels, for M-ary QAM and PSK 

signals. The complex valued activation functions, suitable for these 

signal constellations in time-varying environment, are introduced and 

the learning algorithms based on the CMA cost function are derived. 

The improved performance of the proposed models is confirmed 

through computer simulations. 

Keywords—Blind Equalization, Neural Networks, Constant 

Modulus Algorithm, Time-varying channels. 

I. INTRODUCTION

HE cancellation of inter-symbol interference (ISI) using an 

adaptive equalizer has been studied for several years by 

the signal processing community [1]. The classical methods of 

channel equalization rely on transmitting the training signal, 

known in advance by the receiver. The receiver adapts the 

equalizer so that its output closely matches the known 

reference-training signal. For time-varying situations, the 

training signals have to be transmitted repeatedly. Inclusion of 

such training signals, sacrifices valuable channel capacity. 

Therefore, to reduce the overhead of transmission of training 

signals, the equalization without using the training signals i.e. 

blind equalization is required. Thus, the term, blind 

equalization, means retrieving the information regarding the 

transmitted signal or the channel by analyzing the 

characteristics of its output, and some information about the 

system or the transmitted sequence but not the sequence itself 

[2].

Over the past few years many blind adaptive algorithms 

have been developed for the recovery of digitally modulated 

signals [3-9]. The blind equalization techniques can be broadly 

classified as based on higher order statistics or based on 

second order statistics. Some of the approaches aim at 

estimating the system function and then determining the input 

signals from these estimates, while others can directly estimate 
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the input signals from the system outputs [2, 10]. For the 

implementation of blind adaptive algorithms, linear 

feedforward filter structures have been used. However, some 

of the studies are focused on decision feedback equalization 

[11, 12]. Higher order statistics-based blind equalization 

methods rely on optimization of some cost function. These 

cost functions of blind algorithms are non-convex and 

nonlinear functions of tap weights, when implemented using 

linear FIR filter structures. A linear FIR filter, however, has a 

convex decision region, and hence, is not adequate to optimize 

such cost functions. Therefore, a blind equalization scheme 

with a nonlinear structure that can form nonconvex decision 

regions is desirable [13].  

Neural networks, often referred to as an emerging 

technology, have grown very rapidly on many fronts during the 

past few years. They have been used in many signal processing 

applications including nonlinear signal processing, real time 

signal processing, and adaptive signal processing [14-17]. The 

feedforward neural networks have been widely used for blind 

equalization [3, 4, 7-9, 13]. Application of recurrent neural 

networks for blind equalization can be found in [18-20]. 

However, most of these studies are limited to real valued 

signals and channel models. Therefore, the development of 

neural network-based equalization schemes is desirable for 

complex-valued channel models. One such study of blind 

equalization schemes is available in [13], but is limited to M-

ary QAM signal in stationary channels only. 

In general, complex data can be handled in two different 

ways. One way is to treat the real and imaginary parts of each 

complex data as two separate entities. In this case, the weights 

of two real valued neural networks are updated, independently. 

The other way is to assign complex values to the weights of 

neural network and update using a complex learning algorithm 

such as complex backpropagation algorithm (CBP). Some 

studies [13, 21] have shown that a complex valued MLP yields 

more efficient structure than two real valued MLP’s. 

The constant modulus algorithm (CMA) is considered to be 

the most successful among the HOS-based blind equalization 

algorithms. The cost function of the constant modulus 

algorithm is based solely on the amplitude of the received 

signals. Therefore, it is more robust than other Bussgang 

algorithms with respect to carrier phase offset [2, 22-24]. 

Thus, in this paper, the learning algorithms, to train the 

complex-valued multilayer feedforword neural networks for 

M-ary QAM and PSK signals, are based on minimization of 
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the CMA cost function. 

In order to demonstrate the performance of the blind 

equalizers based on the proposed models in time-varying 

environment, the simulation of a time-varying channel is 

considered here. We present the models by introducing a 

modification to the activation function of [13] for M-ary QAM 

signals, and then defining new activation functions for M-ary 

PSK signals. A new algorithm to correct the arbitrary phase 

shift inherent in a blind algorithm, for the improved 

performance of the blind equalizer, in case of M-ary QAM 

signals, is also given. The paper is organized as follows. In 

section II the equalizer models are presented. Sections III-IV 

describe the training algorithms of the equalizers while 

simulation is presented in section V. Finally the conclusions 

are given in section VI. 

II. NEURAL NETWORK MODELS

A. Structure 

The structure of a complex valued feedforward network for 

blind equalization with M-ary QAM and PSK signals is shown 

in Fig 1. The network has N input nodes, H hidden layer nodes 

and one output node. The complex valued weight (1)

kl
w denotes 

the synaptic weight, connecting the node l of input layer to the 

input of neuron k in the hidden layer and (2)

k
w  refers to the 

synaptic weight connected between neuron k of hidden layer 

and the output neuron. 

Figure1: Structure of the Neural Network Equalizer 

A signal sequence of independent and identically distributed 

(iid) data is transmitted through a linear channel whose output 

along with the additive noise is denoted by x(t). The input to 

the equalizer is formed by N samples of the received signal as  

( ) [ ( ), ( 1),.... ( 1)]Tn x n x n x n N= − − +x                   (1) 

and represented as  

1 2
( ) [ ( ), ( ),..... ( )]T

N
n x n x n x n=x   .          (2) 

The activation sum )()1( nnetk and the output )(nu k
of neuron 

k in the hidden layer, are given as 
(1) (1) (1)

, ,( ) ( ) ( )k k R k Inet n net n jnet n= +

(1) (1)

1

( ) ( ) ( )
N

kl l k

l

w n x n nθ
=

= +∑             (3) 

and (1) (1)
( ) ( ( ))k ku n net nϕ=   ; 1, 2,.....k H=           (4) 

where 
(1) (1)

, ,( ) and ( )k R k Inet n net n  are, respectively, the real and 

imaginary parts of the activation sum (1) ( )
k

net n , at time n,

(1) (.)ϕ  represents the nonlinear activation function of neurons 

in hidden layer and (1) ( )
k

nθ  denotes the bias term for neuron k

of the hidden layer. 

For the neuron of the output layer, the activation sum and 

the output are expressed as 

(2) (2) (2)( ) ( ) ( )
R I

net n net n jnet n= +         

                    
(2) (2)

1

( ) ( ) ( )
H

k k

k

w n u n nθ
=

= +∑                      (5) 

and          (2) (2)( ) ( ( ))y n net nϕ=               (6) 

where y(n) denotes the output of the equalizer, (2) ( ) 
R

net n  and 

(2) ( )
I

net n  are, respectively, the real and imaginary parts of the 

activation sum (2) ( )net n , at time n, (2) (.)ϕ  is the activation 

function, and (2) ( )nθ  denotes the bias term for the neuron in 

output layer.

B. Activation Functions 

Although the structure of blind equalizer is same for both 

QAM and PSK signal constellations, the activation functions 

used for these signal constellations are different. The nonlinear 

activation functions perform the decorrelation of input signal 

and thus help in equalization [13]. The choice of activation 

functions, therefore, plays an important role in the 

performance of the blind equalizers. It has been observed that, 

the use of different nonlinear functions in different layers gives 

better results in some channel models [9]. In the present model 

of complex-valued neural blind equalizers, different nonlinear 

functions are chosen for hidden and output layer neurons.  For 

the neurons of hidden layer, the activation function (1)ϕ  is 

described as 
(1) (1) (1)( ) ( ) ( )R Iz z j zϕ ϕ ϕ= +                      (7) 

where 
R

z and 
I

z  are the real and imaginary parts of the 

complex quantity z, and (1) (.)ϕ  is a nonlinear function. For the 

neuron of output layer, the activation function is described as 
(2) (2) (2)( ) ( ) ( )

R I
z z j zϕ ϕ ϕ= +                      (8) 

where (2) (.)ϕ  is another nonlinear function.

With M-ary PSK signals, for the neurons in the hidden 

layer, following function can be used. 
(1) ( ) tanh( )x xϕ α β=                        (9) 

while α and β are two real constants. For the node of the 

output layer , the activation function is given by 
(2)

1 2( ) ( ).exp( ( ))z f z jf zϕ = ∠

                   = 1 2 1 2( ).cos( ( )) ( ).sin( ( ))f z f z jf z f z∠ + ∠        (10) 

Output 

.

.
Bias 

Input 

Bias 

Outputs from  
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z
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where  and zz ∠  denote the modulus and the angle of a 

complex quantity z. The function f1(.) and f2(.) are defined as 

1
( ) tanh( . )f z a b z=                    (11) 

and  

2
( ) sin( )f z z c n z∠ = ∠ − ∠                    (12) 

where a, b and c are real constants and m is the order of PSK 

signals. 

In case of  M-ary QAM Signals, for the hidden layer nodes, 

following function can be used. 
(1)

( ) sin( )x x d xϕ π= +                       (13) 

where d is a positive constant. The activation function of (13) 

is found to be suitable for M-ary QAM signals in stationary 

channels [13], and has been used in both hidden and output 

layers. However, these functions are most effective in the 

output layer because of their saturation characteristics. For 

nonstationary channels, we define a modified activation 

function for the output layer, as the function defined in (13) 

cannot correct the arbitrary phase of the equalizer’s output 

signal in time-varying channels. In case of the output node, the 

function is defined as 
(2)

( ) ( cos ( ) sin ( ))

                 ( sin ( ) cos ( ))

R I

R I

z f z n z n

jf z n z n

ϕ θ θ
θ θ

= −
+ +

             (14) 

where R I
z z jz= +  is a complex quantity, the function f(.) is 

defined as ( ) sin( )f x x d xπ= + , and d is a positive real 

number. The parameter θ(n), introduced in (14), is used for the 

correction of the phase of the output signal and is updated 

using the algorithm given in the next section.  

III. PHASE CORRECTION

The activation functions defined by equations (11)-(12) and 

(13)-(14) have multisaturation characteristics in accordance 

with the M-ary signal constellations. Due to these 

characteristics of the nodes, the networks become robust to 

noise and can also correct the arbitrary phase shifts of the 

output symbols [9, 13]. However, since the neural blind 

equalizer cannot correct the arbitrary phase shift of the output 

symbols automatically, in case of the time varying channels 

with M-ary QAM signals, therefore, some external phase 

correction algorithm that can continually correct the arbitrary 

phase shift of output symbols is required. One such algorithm 

is mentioned in [12]. However, we propose a simpler 

algorithm, inspired by the CMA cost function, to correct the 

arbitrary phase shift as described below. 

 The phase angle ( ) nθ in the phase shift term ( )j ne θ− in the 

output of the equalizer is recursively updated by an adaptive 

algorithm. To take the full advantage of multi-saturated 

activation function of the neural network, the phase correction 

should be applied to the signal in the network, before it passes 

through the nonlinearity of the output node. For example, the 

arbitrary phase shift can be corrected at the output of the 

hidden layer nodes. However, to achieve this objective, we 

propose to use the modified activation function of the output 

layer neuron as described in (14). The parameter θ(n),

introduced in (14) for phase correction is present in the phase 

shift term, and is adapted by the following update equation. 

( )
(2) (2)

(2) 2

2

( 1) ( ) Im[ ( )].Re[ ( )]

                                      . (Re[ ( )])

n n net n net n

net n R

θ θ µ+ = +

−
          (15) 

where 
(2) 4 (2) 2

2 (Re[ ( )]) / (Re[ ( )])R E net n E net n⎡ ⎤ ⎡ ⎤= ⎣ ⎦ ⎣ ⎦          (16) 

The constant 
2

R  = 8.2 for 16 – QAM signal. The operators 

Re[.], Im[.] and E[.], respectively, denote the real part, the 

imaginary part and the expectation. 

IV. UPDATE RULES

A. PSK Signals  

The updating rules for the weights of the blind equalizer for 

PSK signals are described as follows. 

For the weights, connected between hidden layer and output 

layer: 
(2) (2) (2) *( 1) ( ) ( ) ( )
k k k

w n w n n u nηδ+ = +             (17) 

where, (2) ( )nδ is given as 

2 2(2)

2

(2) (2)

( ) ( ( ) ) ( ) ( ( ) )

                                    .( ( ) / ( ) )

b
n y n R y n ab y n

a

net n net n

δ = − −
         (18) 

In (18), the parameter 
2

R  depends on the statistical 

characteristics of the signal sequence, as defined in the 

Appendix, whereas constants a and b are chosen according to 

the channel outputs. 

For the weights connected between input and hidden layer: 
(1) (1) (1) *( 1) ( ) ( ) ( )
kl kl k l

w n w n n x nηδ+ = +                 (19) 

where (1) ( )
k

nδ  is given by 

(2)
(1) (1) (1) (2) (2)*

,(2)

(1) (1) (2) (2)*

,

( )
( ) { ( ( )) Re( ( ) ( ))

( )

                          - ( ( )) Im( ( ) ( ))}

k k R k

k I k

n
n net n w n net n

net n

net n w n net n

δδ ϕ

ϕ

′=

′
    (20) 

Here *
( )ku n  and *

( )lx n  denote the complex conjugate of kth 

and lth elements of u(n) and x(n) respectively, η is the 

learning rate parameter while (1) (.)  andϕ ′ (2) (.)ϕ ′  represent 

the derivatives of (1) (2)(.)  and (.)ϕ ϕ .

B. QAM Signals 

The weights connected between hidden and output layer are 

updated by  

   (2) (2) (2) * ( )( 1) ( ) ( ) ( ) j n

k k k
w n w n n u n e θηδ −+ = +                 (21) 

where (2)
( )nδ  is defined as follows. 
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=)()2( nδ (2) (2) (2) (2) (2) (2) (2) (2){ ( ( )) ( ( )) ( ( )) ( ( ))}R R I In n n n j n n n nϕ ϕ ϕ ϕ′ ′+      

                        
2

2
.( ( ) )R y n−           (22) 

with   
(2) (2) (2)( ) ( ).cos ( ) .sin ( )
R R I

n n net n n net nθ θ= −             (23) 

and  
(2) (2) (2)( ) ( ).sin ( ) .cos ( )
I R I

n n net n n net nθ θ= +             (24) 

where θ(n) is the phase shift parameter of the node, and (21) is 

used along with (15). 

The update rule for weights (1){ }
kl

w , connected between 

input and hidden layer, is given as,  

(1) (1) (1) *
( 1) ( ) ( ) ( )kl kl k lw n w n n x nηδ+ = +                 (25) 

where (1) ( )
k

nδ  is defined by 

(1) (1) (1) (2) (2)* ( )

,

(1) (1) (2) (2)* ( )

,

( ) ( ( ).Re ( ). ( ).

            ( ( )).Im ( ). ( ).

j n

k k R k

j n

k I k

n net n n w n e

j net n n w n e

θ

θ

δ ϕ δ

ϕ δ

−

−

′⎡ ⎡ ⎤= ⎣ ⎦⎣
′ ⎤⎡ ⎤+ ⎣ ⎦⎦

       (26) 

 The derivations of the phase correction algorithm given in 

(15) and the weight update equations (17) – (26) are given in 

the Appendix. 

V. SIMULATION

It has been shown in [13] that a neural network equalizer 

gives better performance than a linear transversal filter for 

stationary channels, for M-ary QAM signals. In this section we 

present the simulation of the proposed models in the time-

varying environment. As an example, a time-varying channel 

used for the simulation is shown in Fig 2. 
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-1

-0.5

0

0.5

1

Real Part

Im
ag

in
ar

y
 P

ar
t

2

Mobile Zero 

Figure 2: Zeros and poles of the nonstationary channel 

 This channel incorporates both, a sudden change and a 

gradual change in the environment. There is a fixed zero at z1

= 0.5. After 3000 iterations another zero which is a mobile 

zero, appears as given below.  

4

2
( ) 1.6exp( 2 / 3) 0.2exp( .( 3000).10 )z n j j nπ π −= + − (27)

The channel suddenly changes after n = 3000 and becomes a 

continuously varying medium.  

Fig 3(a) and (b) show the 8-PSK, 16-QAM signal 

constellations, whereas the outputs of the channel and the 

equalizer for 8-PSK signal are shown in Fig 3(c) and (d), 

respectively, at 20 dB SNR. The structural details and the 

initializations for the blind equalizers used in the simulation 

are given in the Table  1. 

Figure 3. (a) 8-PSK signal constellation 

(b) 16-QAM signal constellation

(c) Output of the channel for 8-PSK signal  

(d) Output of the NN equalizer for 8-PSK signal 

TABLE 1 

STRUCTURAL DETAILS OF THE BLIND EQUALIZERS 

Type of blind 

equalizer 

No. of 

nodes in 

the input 

layer 

No. of 

nodes in 

hidden 

layer 

No. 

of

taps 

Initialization of 

equalizers 

NN

Equalizer for 

8-PSK signal 15 9 -

a = 2, b = 0.5, 

c = 0.15, α = 4, 

β = 0.4 
(1)

59,
1

R
w = (2)

5,
2.5

R
w =

other weights as 

small random 

numbers 

Linear FIR 

Equalizer 

For 

8-PSK signal 

- - 25
13 1w =

other weights = 0 

NN

Equalizer for 

16-QAM 

signal 

15 9 -

d = 0.15 
(1)

58, 1.3
R

w = (2)

5, 1
R

w = .
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The outputs of the equalizer of [13] and the proposed model 

for 16-QAM signal, are given in Fig 4 (a) and (b), 

respectively. The MSE plots obtained with and without phase 

correction in the output of the equalizer of [13] and the 

proposed model are shown in Fig 5(a) for 16-QAM signal. 

These plots are obtained by averaging 50 independent runs. 

The symbol error rate curves obtained from the proposed 

model (i.e. with phase correcting node) and the equalizer of 

[13] with external phase correction applied at the output of the 

equalizer, are shown in Fig 5(b). From these figures, it can be 

seen that the use of activation function of (14) gives lower 

MSE and SER than those obtained when the arbitrary phase 

shift is corrected at the output of the equalizer. 

The MSE and SER plots for 8- PSK signal are shown in Fig 6 

(a) and (b), respectively. The comparison with the linear blind 

equalizer shows that the neural network equalizer with the 

proposed activation function gives lower MSE and SER. 
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Figure 4:  Output of NN blind equalizers for 16-QAM signal 

(a) Equalizer of [13] (b) The proposed model 

VI. CONCLUSION

We have presented two models of complex-valued 

feedforward neural networks for blind equalization in time-

varying environment. Training algorithms are based on the 

CMA cost function. Activation functions are chosen in 

accordance with the signal constellations. In case of M-ary 

QAM signals, the arbitrary phase shift, inherent in a blind 

equalization scheme, is corrected by the output node of the 

neural network. Therefore, the proposed scheme does not 

require any external phase correction. The algorithm for the 

phase correction at the output nodes is based on the modified 

CMA cost function. The proposed models also give lower 

MSE and SER under time-varying environment. These 

benefits are, however, obtained at the cost of increased 

complexity.
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Figure 5: Performance of NN blind equalizer under 

nonstationary channel for 16-QAM signal 

(a) MSE convergence 

(b) Plot of symbol error rate
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Figure 6: Performance of NN blind equalizer under 

nonstationary channel for 8-PSK signal 

(a) MSE convergence (b) Plot of symbol error rate

APPENDIX

A. Derivations of Update Rules for QAM Signal 

The CMA cost function is expressed as 

     ( )2
2

2

1
( ) ( )

4
J n E y n R

⎡ ⎤= −⎢ ⎥⎣ ⎦
                              (28) 

where
4 2

2
[ ( ) ] / [ ( ) ]R E s n E s n= , E[.] is the expectation 

operator and s(n) denotes the data sequence. 

Using the gradient descent technique, the weights of the 

neural network are updated as 
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(2)

(2) (2)( 1) ( ) ( )
k

k k w
w n w n J nη+ = − ∇           (29) 

and  

(1)

(1) (1)( 1) ( ) ( )
kl

kl kl w
w n w n J nη+ = − ∇           (30) 

where η is the learning rate parameter and the terms 

(2) (1)( ) and ( )
k klw w

J n J n∇ ∇  represent the gradients of the cost 

function J(n) defined by (28), with respect to the weights 
(2) (1)

 and k klw w  respectively. These gradients are given as  

(2)

2

2 (2) (2)

, ,

( ) ( )
( ) ( ( ) ). ( ) .

( ) ( )kw
k R k I

y n y n
J n y n R y n j

w n w n

⎛ ⎞∂ ∂
∇ = − +⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

   (31) 

and 

(1)

2

2 (1) (1)

, ,

( ) ( )
( ) ( ( ) ). ( ) .

( ) ( )klw
kl R kl I

y n y n
J n y n R y n j

w n w n

⎛ ⎞∂ ∂
∇ = − +⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

. (32) 

Now, in order to compute these gradients, let us define as 

given by (23) and (24): 

(2) (2) (2)( ) ( ).cos ( ) .sin ( )
R R I

n n net n n net nθ θ= −
and 

(2) (2) (2)( ) ( ).sin ( ) .cos ( )
I R I

n n net n n net nθ θ= +
                

where θ(n) is the phase shift parameter of the node. The 

partial derivative terms required in (31), are expressed as 

(2) (2) (2) (2)

(2)

,

( ) 1
( ( )). ( ( )).

( )( )
R R

k R

y n
n n n n

y nw n
ϕ ϕ

∂ ′⎡= ⎣∂
(2) (2) (2) (2)

, ,
( ( ).cos ( ).sin ( )) ( ( )). ( ( )).k R k I I Iu n u n n n n n nθ θ ϕ ϕ ′− +

          , ,( ( ).cos ( ).sin ( ))k I k Ru n u n nθ θ ⎤+ ⎦       (33) 

and 

(2) (2) (2) (2)

(2)

,

( ) 1
( ( )). ( ( )).

( )( )
R R

k I

y n
n n n n

y nw n
ϕ ϕ

∂ ′⎡= − ⎣∂
(2) (2) (2) (2)

, ,
( ( ).cos ( ).sin ( )) ( ( )). ( ( )).k I k R I Iu n u n n n n n nθ θ ϕ ϕ ′+ −

, ,( ( ).cos ( ).sin ( ))k R k Iu n u n nθ θ ⎤− ⎦ .      (34) 

On substituting (33) and (34) in (31), we obtain the 

expression of gradient (2) ( )
kw

J n∇  after some simplification as 

(2)

2 (2) (2) (2) (2)

2

(2) (2) (2) (2) * ( )

( ) ( ( ) ). ( ( )). ( ( ))

                  ( ( )). ( ( )) . ( ). .

k
R Rw

j n

I I k

J n y n R n n n n

j n n n n u n e
θ

ϕ ϕ

ϕ ϕ −

′⎡∇ = − ⎣
′ ⎤+ ⎦

  (35) 

By substituting (35) in (29), the update equation (21) 

follows. To obtain the update equation for the hidden layer 

weights, (1){ }
kl

w , the gradient of (32) is used. The partial 

derivative terms of (32) can be expressed as 

(2)

(2) (2) (2) (2)

(1) (1)

, ,

(2)

(2) (2) (2) (2)

(1)

,

( ) ( )1
( ( )). ( ( )).

( )( ) ( )

( )
                         ( ( )). ( ( )).

( )

R

R R

kl R kl R

I

I I

kl R

y n n n
n n n n

y nw n w n

n n
n n n n

w n

ϕ ϕ

ϕ ϕ

⎡∂ ∂′= ⎢∂ ∂⎢⎣
⎤∂′+ ⎥∂ ⎥⎦

     (36) 

and 

(2)

(2) (2) (2) (2)

(1) (1)

, ,

(2)

(2) (2) (2) (2)

(1)

,

( ) ( )1
( ( )). ( ( )).

( )( ) ( )

( )
                        ( ( )). ( ( )).

( )

R

R R

kl I kl I

I
I I

kl I

y n n n
n n n n

y nw n w n

n n
n n n n

w n

ϕ ϕ

ϕ ϕ

⎡∂ ∂′= ⎢∂ ∂⎢⎣
⎤∂′+ ⎥∂ ⎥⎦

      (37) 

where  

(
)

(2)

(2) (1) (1)

, , ,(1)

,

(2) (1) (1)

, , ,

(2) (1) (1)

, , ,

( )
cos ( ). ( ). ( ( )). ( )

( )

                               ( ). ( ( )). ( )

                 sin ( ). ( ). ( ( )). (

R
k R k R l R

kl R

k I k I l I

k R k I l I

n n
n w n net n x n

w n

w n net n x n

n w n net n x

θ ϕ

ϕ

θ ϕ

∂ ′=
∂

′−

′− (
)(2) (1) (1)

, , ,

)

                              ( ). ( ( )). ( )k I k R l R

n

w n net n x nϕ ′+

   (38) 

(
)

(

(2)

(2) (1) (1)

, , ,(1)

,

(2) (1) (1)

, , ,

(2) (1) (1)

, , ,

( )
cos ( ). ( ). ( ( )). ( )

( )

                             ( ). ( ( )). ( )

                sin ( ). ( ). ( ( )). ( )

I

k R k I l I

kl R

k I k R l R

k R k R l R

n n
n w n net n x n

w n

w n net n x n

n w n net n x n

θ ϕ

ϕ

θ ϕ

∂ ′=
∂

′+

′+

)(2) (1) (1)

, , ,
                             ( ). ( ( )). ( )

k I k I l I
w n net n x nϕ ′−

   (39) 

(
)

(2)

(2) (1) (1)

, , ,(1)

,

(2) (1) (1)

, , ,

(2) (1) (1)

, , ,

( )
cos ( ). ( ). ( ( )). ( )

( )

                                ( ). ( ( )). ( )

                 sin ( ). ( ). ( ( )).

R

k R k R l I

kl I

k I k I l R

k R k I l

n n
n w n net n x n

w n

w n net n x n

n w n net n x

θ ϕ

ϕ

θ ϕ

∂ ′= −
∂

′+

′− (
)(2) (1) (1)

, , ,

( )

                                 ( ). ( ( ). ( )

R

k I k R l I

n

w n net n x nϕ ′−

  (40) 

and 

(
)

(

(2)

(2) (1) (1)

, , ,(1)

,

(2) (1) (1)

, , ,

(2) (1) (1)

, , ,

( )
cos ( ). ( ). ( ( )). ( )

( )

                             ( ). ( ( )). ( )

              sin ( ). ( ). ( ( )). ( )

I

k R k I l R

kl I

k I k R l I

k R k R l I

n n
n w n net n x n

w n

w n net n x n

n w n net n x n

θ ϕ

ϕ

θ ϕ

∂ ′=
∂

′−

′−

)(2) (1) (1)

, , ,
                          ( ). ( ( )). ( )

k I k I l R
w n net n x nϕ ′+

   (41) 

Now by substituting the partial derivative terms from (38) 

and (39) in (36), and from (40) and (41) in (37) and then 

making use of (32), we get the expression for the gradient after 

some simplification as 
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((1)

(1) (1) (2) (2)*

,( ) ( ( )).Re ( ). ( ) .
kl

k R kw
J n net n n w nϕ δ′⎡ ⎡ ⎤∇ = − ⎣ ⎦⎢⎣

)(1) (1) (2) (2)* *

,( ( )).Im ( ). ( ) . ( ).cos ( )k R k lj net n n w n x n nϕ δ θ′ ⎡ ⎤+ ⎣ ⎦

( (1) (1) (2) (2)*

,( ( )).Im ( ). ( )k R knet n n w nϕ δ′ ⎡ ⎤+ ⎣ ⎦

)(1) (1) (2) (2)* *

,( ( )).Re ( ). ( ) . ( ).sin ( )k I k lj net n n w n x n nϕ δ θ′ ⎡ ⎤ ⎤− ⎣ ⎦ ⎦ .

Further simplification leads to 

(1)

(1) (1) (2) (2)* ( )

,( ) ( ( ).Re ( ). ( ).
kl

j n

k R kw
J n net n n w n e θϕ δ −′⎡ ⎡ ⎤∇ = ⎣ ⎦⎣

(1) (1) (2) (2)* ( ) *

,( ( )).Im ( ). ( ). . ( )
j n

k I k lj net n n w n e x nθϕ δ −′ ⎤⎡ ⎤+ ⎣ ⎦⎦
(1) *( ). ( )
k l

n x nδ=     (42) 

where 

(1) (1) (1) (2) (2)* ( )

,

(1) (1) (2) (2)* ( )

,

( ) ( ( ).Re ( ). ( ).

          ( ( )).Im ( ). ( ).

j n

k k R k

j n

k I k

n net n n w n e

j net n n w n e

θ

θ

δ ϕ δ

ϕ δ

−

−

′⎡ ⎡ ⎤= ⎣ ⎦⎣
′ ⎤⎡ ⎤+ ⎣ ⎦⎦

    (43) 

Substitution of (42) in (30) gives update equation for the 

weights 
(1)

,
{ }k lw  given in (25). 

B. Update equation for phase angle 

To obtain the update equation for parameter θ, either the 

real or the imaginary version of CMA cost function can be 

used i.e. 

2 2

2

1
( ( ) )

4
IJ E z n R⎡ ⎤= −⎣ ⎦

or      
2 2

2

1
( ( ) )

4
RJ E z n R⎡ ⎤= −⎣ ⎦                       (44) 

where    ( )( ) ( ). ( ) ( )j n

R I
z n y n e z n jz nθ= = +                    (45) 

represents the output of the equalizer after the phase rotation, 

( ) and ( )R I
z n z n  are real and imaginary parts of z(n) at time n,

respectively. The parameter 
2

R  is given by 

4

2 2

R

R

E z
R

E z

⎡ ⎤⎣ ⎦=
⎡ ⎤⎣ ⎦

.                        (46) 

The update equation for θ is expressed by using the gradient 

descent approach, as 

       ( 1) ( ) . ( )n n J nθθ θ µ+ = − ∇                 (47) 

where µ  is a constant that governs the convergence rate. The 

gradient of the cost function of  (44) is expressed as 

2

2

( )
( ) ( ( ) ). ( ).

( )

R

R R

z n
J n z n R z n

n
θ θ

∂
∇ = −

∂
.                  (48) 

Now the partial derivative term in (48) is obtained from (45), 

as 

[ ]( )
( ).cos( ( )) ( ).sin( ( ))

( ) ( )

R

R I

z n
y n n y n n

n n
θ θ

θ θ
∂ ∂= −
∂ ∂

   ( )
I

z n= −  .                            (49) 

By substituting (49) in (48), we get 

2

2
( ) ( ( ) ). ( ). ( )

R R I
J n z n R z n z nθ∇ = − − .                     (50) 

Finally, by the substitution of ( )J nθ∇  from (50) in (47) and 

replacing z(n) by (2) ( )net n , (15) is obtained. Then (46) gives 

(16).

C. Derivations of update rules for PSK signal 

Since the activation function of the output layer neuron for 

M-ary PSK signal is defined in terms of modulus and angle of 

the activation sum, the gradient of the CMA cost function with 

respect to the output layer weight (2) ( )
k

w n  is expressed as 

(2)

(2)
2 2

2 (2)

( )
( ) ( ( ) ). ( ) . . ( ) .

( )kw
k

b net n
J n y n R y n ab y n

a w n

∂⎛ ⎞∇ = − −⎜ ⎟ ∂⎝ ⎠
.

                                    (51) 

To obtain an expression for the partial derivative of (51), we 

use the relationship 

( ) ( )2 22
(2) (2) (2)( ) ( ) ( )

R I
net n net n net n= + .               (52) 

On differentiating (52) with respect to )2(

kw  we get 

(2)

(2)

( )

( )k

net n

w n

∂
=

∂
(2) (2)

(2) (2)

(2) (2)(2)

( ) ( )1
. ( ). ( )

( ) ( )( )

R I

R I

k k

net n net n
net n net n

w n w nnet n

⎡ ⎤∂ ∂
+⎢ ⎥∂ ∂⎣ ⎦

          

     
(1)* (1) (2)

(2)

( ( )). ( )

( )

k
net n net n

net n

ϕ
= .                   (53) 

On substituting (53) in (51), the expression for the gradient 

becomes 

(2)

(2) *( ) ( ). ( )
k

kw
J n n u nδ∇ =                      (54) 

where           

( )
(2)

2 2(2)

2 (2)

( )
( ) ( ) . ( ) . ( ) .

( )

b net n
n y n R y n ab y n

a net n
δ ⎡ ⎤⎛ ⎞= − −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

.

 (55) 

Substitution of (54) in (29) along with (55) gives the update 

equation (17) with (18) for M-ary PSK signal. 

 In order to obtain the update equation for the weights 
(1){ }
kl

w , we need the following gradient. 

( )(1)

(2)

2 2

2 (1)

( )
( ) ( ) . ( ) . ( ) .

( )klw
kl

net nb
J n y n R y n ab y n

a w n

∂⎛ ⎞∇ = − −⎜ ⎟ ∂⎝ ⎠
                                                                   (56) 

The partial derivative terms in (56) can be obtained by using 

(52) as described below. 
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(2)

(1)

(2) (2)

(2) (2)

(1) (1)(2)

( )

( )

( ) ( )1
    ( ). ( )

( ) ( )( )

kl

R I

R I

kl kl

net n

w n

net n net n
net n net n

w n w nnet n

∂
=

∂

⎡ ⎤∂ ∂
+⎢ ⎥∂ ∂⎣ ⎦

   (57) 

where 
(2)

(2) (1) (1)

, , , ,(1)

(2) (1) (1)

, , , ,

( )
( ). ( ( )).( ( ) ( ))

( )

                ( ). ( ( )).( ( ) ( ))

R

k R k R l R l I

kl

k I k I l I l R

net n
w n net n x n jx n

w n

w n net n x n jx n

ϕ

ϕ

∂ ′= −
∂

′− +

      (58) 

and    
(2)

(2) (1) (1)

, , , ,(1)

( )
( ). ( ( )).( ( ) ( ))

( )

I
k R k I l I l R

kl

net n
w n net n x n jx n

w n
ϕ∂ ′= +

∂

                 
(2) (1) (1)

, , , ,
( ). ( ( )).( ( ) ( ))k I k R l R l Iw n net n x n jx nϕ ′+ −  (59) 

Now the substitution of (58) and (59) in (57) and some 

simplification lead to 

(
(2) *

(1) (1) (2) (2)*

,(1) (2)

( ) ( )
( ( )).Re[ ( ). ( )]

( ) ( )

l

k R k

kl

net n x n
net n w n net n

w n net n
ϕ

∂ ′=
∂

                  )(1) (1) (2) (2)*

,( ( )).Im[ ( ). ( )]k I kj net n w n net nϕ ′− .    (60) 

Finally, by substituting  (60) in (56), we get 

((1)

(2) * (1) (1) (2) (2)*

,( ) ( ). ( ). ( ( )).Re[ ( ). ( )]
kl

l k R kw
J n n x n net n w n net nδ ϕ ′∇ =

)(1) (1) (2) (2)*

,( ( )).Im[ ( ). ( )]k I kj net n w n net nϕ ′−
(1) *( ). ( )
k l

n x nδ=               (61) 

where 

((2)
(1) (1) (1) (2) (2)*

,(2)

( )
( ) . ( ( )).Re[ ( ). ( )]

( )
k k R k

n
n net n w n net n

net n

δδ ϕ ′=

                 )(1) (1) (2) (2)*

,( ( )).Im[ ( ). ( )]k I kj net n w n net nϕ ′− .

Using (61) and (30), we get the update rule of (19) for M-ary 

PSK signal.
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