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Flow acoustics in solid-fluid structures
Morten Willatzen and Mikhail Vladimirovich Deryabin

Abstract—The governing two-dimensional equations of a het-
erogeneous material composed of a fluid (allowed to flow in the
absence of acoustic excitations) and a crystalline piezoelectric cubic
solid stacked one-dimensionally (along the z direction) are derived
and special emphasis is given to the discussion of acoustic group
velocity for the structure as a function of the wavenumber component
perpendicular to the stacking direction (being the x axis). Variations
in physical parameters with y are neglected assuming infinite material
homogeneity along the y direction and the flow velocity is assumed
to be directed along the x direction. In the first part of the paper,
the governing set of differential equations are derived as well as the
imposed boundary conditions. Solutions are provided using Hamil-
ton’s equations for the wavenumber vs. frequency as a function of the
number and thickness of solid layers and fluid layers in cases with
and without flow (also the case of a position-dependent flow in the
fluid layer is considered). In the first part of the paper, emphasis is
given to the small-frequency case. Boundary conditions at the bottom
and top parts of the full structure are left unspecified in the general
solution but examples are provided for the case where these are
subject to rigid-wall conditions (Neumann boundary conditions in the
acoustic pressure). In the second part of the paper, emphasis is given
to the general case of larger frequencies and wavenumber-frequency
bandstructure formation. A wavenumber condition for an arbitrary
set of consecutive solid and fluid layers, involving four propagating
waves in each solid region, is obtained again using the monodromy
matrix method. Case examples are finally discussed.

Keywords—Flow, acoustics, solid-fluid structures, periodicity.

I. INTRODUCTION

IN previous papers on acoustic propagation in periodic
composition of fluid layers [1], [2], [3], [5], [4], [6], [7], [8],

the phenomena of obtaining effective reduction in the group
velocity (below the individual material sound speeds) are
discussed and implications for sound-beam focusing, acoustic
surgery, and flow measurement presented [9], [10], [11], [6].
In recent works by the authors, results for wavenumber-
frequency relations in a finite set of alternating layers of two
fluid materials allowing for fluid flows are presented along
with discussions of acoustic stability properties. Using the
monodromy matrix method analytical results can be obtained
for the effective group velocity even in the presence of a
fluid flow. In the present work, we extend the analysis to
include the practically more relevant case with a finite set
of alternating layers of solid and fluid layers (with a possible
flow in the fluid layer). The thickness of each solid and fluid
layer can be arbitrary as well as the flow-velocity dependence
on position in the fluid layer. The solid materials are as-
sumed to be cubic piezoelectric crystals including the simpler
case of isotropic solids. Firstly, the general set of governing
differential equations, interface, and boundary conditions is
derived for the case of small frequencies. A single equation
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describing the dependence of the group velocity on the number
and thicknesss of structure consisting of N solid layers and
M fluid layers as well as the flow velocity is obtained. It is
shown that a cut-off thickness of the fluid layer relative to
the solid layer thickness exists for a set of complete solid
and fluid layers N = M below which evanescent waves
corresponding to imaginary group velocities are solutions and
above which usual travelling waves can propagate. Near this
cut-off thickness, changes in the group velocity with flow
velocity are significantly amplified if the (tangential) flow
velocity at the interface between the fluid and solid layers
is nonzero.

In the second part of the paper, discussions are extended
to account for the case of larger frequencies. Based on a
monodromy matrix method, a wavenumber relation is obtained
for a set of N solid layers and M fluid layers. In particular, it
is shown that four waves can generally propagate in the solid
layer. A case study for wavenumber-frequency bandstructure
formation is discussed.

II. THEORY

In this section, a derivation of the governing differential
equations for a structure composed of layers of a solid and
a fluid is presented. Interface conditions are derived in the
presence of a fluid flow along with boundary conditions
imposed. A Hamiltonian method is used to obtain an equation
for the group velocity at small frequencies for a structure with
a finite number and varying thicknesss of solid and (moving)
fluid layers. In the second part, the derivation is extended to
account for general frequencies and solid-fluid in alternatingly
stacked structures by use of the monodromy matrix method.

A. Solid layer

In the following, we consider a system composed of two
materials A and B, where A is a solid layer and B is a fluid
layer. The fluid layer is allowed to move, albeit at constant
velocity in time, i.e., steady-state flow, in the absence of sound
excitation. We do not, unless explicitly stated, assume that the
full structure is composed by alternatingly stacking material
layers A and B (i.e., local periodicity is not necessary). In the
Cartesian coordinate system (x, y, z), we take z as the direc-
tion of material inhomogeneity, see Figure 1. Furthermore, we
assume monofrequency acoustic excitation, i.e., all dynamic
variables vary as exp(iωt) with ω the frequency and t is time.

The Navier’s equations representing the acoustic equations
for the solid A read:

∂Tij

∂xj

= −ρAω2ui, i = 1, 2, 3, (1)

with Tij , xj , ρA, and ui the stress tensor, the spatial coordi-
nates [(x1, x2, x3) = (x, y, z)], the mass density of material
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A, and the displacement components, respectively. Repeated
indices are to be summed over (Einstein notation). The stress
tensor relates to the strain tensor Sij according to Hooke’s
law in addition to piezoelectric effects accounting for the
crystalline nature of material A. In other words:

Tij = cijklSkl − eijkEk, (2)

Sij = 1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
, (3)

where cijkl is the stiffness tensor components allowed by
crystal symmetry, eijk is the piezoelectric e tensor, and Ek

is the k’th component of the electric field. Finally, we must
include the Poisson equation:

∂Di

∂xi

= ρfree, (4)

where Di is the electric displacement and ρfree is the free-
carrier charge density supplemented by the constitutive rela-
tion:

Di = εijEj + eijkSjk, (5)

with εij the permittivity tensor.
In order to simplify the above system, we will analyze

cases where the material-system dimensions in the x and
y directions are much larger than along the z direction.
This allows for considering the well-known (infinite-plate)
capacitor conditions, i.e., the electric field and the electric
displacement point along the z direction:

E1 = E2 = 0, (6)

D1 = D2 = 0. (7)

Considering also that no free electrical charges are present in
the system, Equation (4) simplifies to:

∂D3

∂z
= 0. (8)

Employing the constitutive relation [Equation (5)] then gives:

∂E3

∂z
= −

e3jk

ε33

∂Sjk

∂z
. (9)

If, as is usually the case, the fluid is an insulator, electric
currents cannot move through the system. At ultrasonic fre-
quencies the important contribution to the electric current is
the displacement current being proportional to the electric
displacement. Thus, we may simplify further and require

D3 = 0, (10)

which by use of Equation (5) allows for augmenting the
electric field in terms of the strain coefficients:

E3 = −
e3jk

ε33
Sjk. (11)

Employing Equations (11), (2) in Equation (1) yields(
cijkl +

eij3e3kl

ε33

)
∂Skl

∂xj

= −ρAω2ui, (12)

which upon combining with the strain definition in terms
of (elastic) displacements are three second-order differential
equations in the (elastic) displacements. Notice that the effect

of piezoelectricity is simply to alter the effective stiffness from
cijkl to cijkl +

eij3e3kl

ε33
.

In order to obtain specific equations, information about the
crystal symmetry of material A is necessary. Consider material
A to be a zinc-blende crystal (cubic, piezoelectric crystal due
to lack of inversion symmetry). We have also assumed that
our variables do not depend on y. The three Navier equations
[Equation (12)] become:

c11
∂2u1

∂x2
+ c12

∂2u3

∂x∂z
+

c44

2

∂

∂z

(
∂u1

∂z
+

∂u3

∂x

)
= −ρAω2u1, (13)

(
c44

2
+

e2
x4

2ε33

) (
∂2u2

∂x2
+

∂2u2

∂z2

)
= −ρAω2u2, (14)

c11
∂2u3

∂z2
+ c12

∂2u1

∂x∂z
+

c44

2

∂

∂x

(
∂u1

∂z
+

∂u3

∂x

)
= −ρAω2u3, (15)

following the contracted tensor notation used in, e.g.,
Ref. [12]. If material A is an isotropic solid, the above
equations simplify to

c11
∂2u1

∂x2
+ c12

∂2u3

∂x∂z
+

c11 − c12

4

∂

∂z

(
∂u1

∂z
+

∂u3

∂x

)
= −ρAω2u1, (16)

c11 − c12

4

(
∂2u2

∂x2
+

∂2u2

∂z2

)
= −ρAω2u2, (17)

c11
∂2u3

∂z2
+ c12

∂2u1

∂x∂z
+

c11 − c12

4

∂

∂x

(
∂u1

∂z
+

∂u3

∂x

)
= −ρAω2u3, (18)

since piezoelectric coefficients are zero and c44 = (c11 −
c12)/2 in the case of isotropic solids. Note that the form of
the above system of differential equations is the same for zinc-
blende and isotropic crystals.

Observe that the approximations made lead to decoupling
of u2 from the u1, u3 (elastic) displacement components in the
case with zinc-blende crystal symmetry (and of course also for
isotropic crystals). The above equations can be further simpli-
fied due to the material homogeneity along the x direction.
This fact allows us to search for solutions in the form:

∂ui

∂x
= iβui. (19)

Parameter β will be referred to as a wavenumber.
Observe that the approximations made lead to decoupling

of u2 from the u1, u3 (elastic) displacement components in the
case with zincblende crystal symmetry (and of course also for
isotropic crystals). The above equations can be further sim-
plified due to the material homogeneity along the x direction.
This fact allows us to search for solutions in the form:

∂ui

∂x
= iβui. (20)

Parameter β will be referred to as a wavenumber.
Insertion of Equation (20) in Equation (13)-(15) leads to

(for zincblende crystals):

−β2c11u1 + iβc12
∂u3

∂z
+

c44

2

∂

∂z

(
∂u1

∂z
+ iβu3

)
= −ρAω2u1, (21)

−β2

(
c44

2
+

e2
x4

2ε33

)
u2 +

∂2u2

∂z2
= −ρAω2u2, (22)

c11
∂2u3

∂z2
+ iβc12

∂u1

∂z
+

c44

2
iβ

(
∂u1

∂z
+ iβu3

)
= −ρAω2u3, (23)
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while for isotropic solids:

−β2c11u1 + iβc12
∂u3

∂z
+

c11 − c12

4

∂

∂z

(
∂u1

∂z
+ iβu3

)

= −ρAω2u1, (24)

−β2 c11 − c12

4
u2 +

∂2u2

∂z2

= −ρAω2u2, (25)

c11
∂2u3

∂z2
+ iβc12

∂u1

∂z
+

c11 − c12

4
iβ

(
∂u1

∂z
+ iβu3

)
=

−ρAω2u3. (26)

Remark. This is in fact a real-valued system of equations:
to see it, one has to denote iu1 = w1, i.e., to consider real-
valued u3 and imaginary u1. This choice of notation is natural,
and we shall see that when we couple two layers together: for
purely imaginary u1, the pressure p in layer B is a real-valued
function (cf. relation (46) below).

B. Fluid layer

For the fluid layer B, the governing non-viscous equations
read:

∂ρB

∂t
+

∂(ρBvj)
∂xj

= 0, (27)

∂vi

∂t
+vj

∂vi

∂xj
= − 1

ρB

∂p
∂xi

, (28)

where vi is the i’th component of the fluid particle velocity, ρB

is the mass density of material B, and p is the fluid pressure.
We assume that the background flow is stationary, with the

velocity

v0 = (v0, 0, 0), p = p0, ρ = ρ0, (29)

We linearize Equations (28) in the neighbourhood of the
stationary flow (29), making use of the following assumption:
p0 = const (while the background velocity v0 needs not
to be constant). From now on, we replace v, p and ρB by
v + v0, p + p0 and ρ + ρ0 respectively, and consider the
parameters v, p and ρ being small acoustic perturbations.

Using the isentropic condition

p = c2ρ, (30)

and the monofrequency condition:

∂

∂t
= iω,

the linearized equations for the acoustic flow become

iω

c2
p +

v0

c2

∂p

∂x
+ ρ0

(∂v1

∂x
+

∂v2

∂y
+

∂v3

∂z

)
= 0,

iωv1 + v0
∂v1

∂x
+ v2

∂v0

∂y
+ v3

∂v0

∂z
= −

1

ρ0

∂p

∂x
,

iωv2 + v0
∂v2

∂x
= −

1

ρ0

∂p

∂y
, (31)

iωv3 + v0
∂v3

∂x
= −

1

ρ0

∂p

∂z
,

see Ref. [8] for details.

Next, we are looking for solutions in the B-layer in the
same monofrequent form as above for the layer A (keeping
the assumption that there is no y-dependence):

∂p

∂x
= iβp,

∂v

∂x
= iβv. (32)

As above, we assume that the functions ρ0 and v0 do not
depend on y, and we assume that the pressure p does not
depend on y either. Substituting relations (32) into equations
(31), we get the following expression for the pressure p, cf.
Ref. [8]:

∂

∂z

( 1

ρ0(ω + βv0)2
∂p

∂z

)
+

( 1

c2ρ0
−

β2

ρ0(ω + βv0)2

)
p = 0. (33)

C. Coupling

The above set equations in layer A and B constitutes the
full differential-equation framework. In order to complete
the model, we need to describe the interface and boundary
conditions. Notice that, in the layer A we have (actually) two
second-order equations for u1 and u3, while in the layer B we
have one second-order equation for the pressure p. To solve the
whole system, we have to know the relations between u1, u3

and p and their derivatives at the A − B boundary.
At interfaces between materials A and B we require that the

shear stresses are zero (since material B is considered an ideal,
non-viscous fluid and stresses are continuous everywhere
through the full structure). We also impose continuity of the
normal stresses (pressure), i.e.,

T13 = T23 = 0, at A − B interfaces, (34)

T33 = p, at A − B interfaces. (35)

Finally, we impose continuity of normal particle velocity at
A − B interfaces:

iωu3 = v3, at A − B interfaces. (36)

For the full-structure end-point boundary conditions [at z =
zL and z = zR], we will consider:

pinput = T33(z = zL), (37)

T13(z = zL) = T23(z = zL) = 0, (38)

u3(z = zR) = 0, (39)

T13(z = zR) = T23(z = zR) = 0, (40)

where pinput is assumed to be a known input pressure acting
on the structure at z = zL, while the other end of the structure
[at z = zR] is rigid. Both ends are not subject to shear stresses.

Expressions for the stress components T13, T23, T33 in terms
of displacements are needed when imposing the boundary
conditions listed in Equations (34)-(40):

T13 =
c44

2

(
∂u1

∂z
+

∂u3

∂x

)
, (41)

T23 =
c44

2

∂u2

∂z
, (42)

T33 = c12
∂u1

∂x
+ c11

∂u3

∂z
. (43)

We notice also that ε33 for a cubic crystal (and for isotropic
crystals) equals ε11.
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Due to Equation (31), we get

(iω + iβv0)vz = −
1

ρ0

∂p

∂z
. (44)

As vz = iωu3 (the continuity of the normal velocity at the
A − B interface), we get:

iω(iω + iβv0)u3 = −
1

ρ0

∂p

∂z
. (45)

Applying relation T33 = p on the interface, we get:

c12iβu1 + c11
∂u3

∂z
= p. (46)

As T13 = 0 on the interface, we have:

∂u1

∂z
+ iβu3 = 0. (47)

Conditions (45)-(47) are enough to solve completely our
system. Indeed, let p and ∂p/∂z be given at the beginning of
a layer A, i.e., if this layer is given by relation z ∈ [zA

L , zA
R ],

then p and its derivative are given at z = zA
L . In order to find

the pressure and its derivative at z = zA
R , we solve system

(21)-(23) [or (24)-(26)] subject to the boundary conditions
above. At z = zA

L , conditions (45)-(47) must be satisfied
while Equation (47) applies at z = zA

R . Thus, four boundary
conditions are given which uniquely define the solution of
system (21)-(23). Next, at z = zA

R , we use relations (45, 47)so
as to determine p and ∂p/∂z. Notice that the mapping

p, ∂p/∂z |z=zA
L
→ p, ∂p/∂z |z=zA

R

is linear, and one can find the monodromy matrix for this sys-
tem. We then solve Equation (33) with these initial conditions
at z = zA

R , and so on. Thus, the above set of equations is
solved following a procedure similar to the one presented in
Refs. [7], [8].

Remark. Notice that formally, we have systems of dif-
ferent dimensions in layers A and B: A four-dimensional
system in A (two second-order differential equations) and
a two-dimensional system in B (two first-order differential
equations). The complete system is however well-defined by
the conditions at the boundaries between layers A and B as
mentioned above.

III. GROUP VELOCITY

The group velocity for our composite media is defined by

cg =
∂ω

∂β
|, (48)

see Ref. [6]. In this section, we only consider the group
velocity in the case where ω tends to zero as β tends to zero.

To determine the function ω(β), one has to solve the whole
system with the boundary conditions at z = zL and z = zR.

We first rewrite Equation (33) in the following form. We
introduce the variable

q =
1

ρ0(ω + βv0)2
∂p

∂z
. (49)

Equation (33) now becomes

q′ = −
∂H

∂p
, p′ =

∂H

∂q
, (50)

which are Hamilton’s equations, where (·)′ = ∂/∂z, and the
Hamiltonian equals

H(p, q) =
1

2

(
ρ0(ω + βv0)

2q2 +
( 1

c2ρ0
−

β2

ρ0(ω + βv0)2

)
p2

)
. (51)

To find the derivative ∂ω/∂β, the following trick is used.
We substitute ω = cgβ + O(β2) into the full system of
equations, tend β → 0, and then write down the solution
to these equations – instead of first solving the equations,
and then tending β → 0. This is a correct operation, as
the equations depend regularly on β: the right-hand side of
Equations (50) tends to a finite limit as β → 0, ω → 0,
ω/β → cg , and so do Equations (21)-(23) [or (24)-(26)]
and the boundary conditions (45).(47). Thus, by Poincaré’s
theorem, on any bounded interval, the solution to Hamilton’s
equations for β → 0, ω → 0, ω/β → cg tends to the solution
at β = 0, ω = 0, ω/β = cg . Notice that in this limit case, the
group velocity coincides with the phase velocity cp = ω/β.

Remark. Observe that, as β, ω → 0, Equation (33) becomes
singular. This has apparently been the reason for numerical
inaccuracies in solving Equation (33) in Ref. [6]. As we have
shown, the singularity is removed by passing to Hamiltonian
equations.

In the A layer, we get from Equations (21)-(23) the follow-
ing system of equations as ω, β → 0

∂2u1

∂z2
= 0,

∂2u3

∂z2
= 0. (52)

In the B layer, we have from Equation (49)-(50)

p′ = 0, q′ = −
1

ρ0

(
1

c2
B

−
1

(cg + v0)2

)
p. (53)

The boundary conditions are:

∂u1

∂z
= 0, u3 =

(
1 +

v0

cg

)
q, c11

∂u3

∂z
= p. (54)

System (52, 53, 54) can be readily solved. Let the n-th A−B
layer start at z = zn

A and end at z = zn+1
A (the n-th sub-layer A

is given by z ∈ [zn
A, zn

B], and the n-th sub-layer B is given by
z ∈ [zn

B, zn+1
A ]). We also assume that the background velocity

v0 may depend on z, however, the values of the velocity on
the interfaces of A−B-layers v0(z

n
A), v0(z

n
A) are all the same

and equal vA,B (for example, a natural assumption could be
vA,B = 0).

The pressure p equals the same constant in each B layer:
p = p0, while the transformation of q after the passage through
one A − B layer is given by

qn+1 = qn −
p0

ρ0

∫ z
n+1

A

zn
B

(
1

c2
B

−
1

(cg + v0)2

)
dz

+
p0

c11(1 + vA,B/cg)
(zn

B − zn
A). (55)

Relation (55) allows the value of the group velocity cg to
be found. Suppose that the whole domain consists of N A
layers and M B layers of thickness Li

A (i = 1, 2, ..., N ) and
Lj

B (j = 1, 2, ..., M ), respectively (clearly, |M − N | ≤ 1),
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and that q should be zero when z = zL and z = zR (rigid
embedding walls). Then, from Equation (55) we get:

N∑
i=1

Li
A

c11(1 + vA,B/cg)
−

1

ρ0

M∑
j=1

∫ z
j+1

A

z
j

B

(
1

c2
B

−
1

(cg + v0)2

)
dz = 0, (56)

where Li
A = zi

B − zi
A and Lj

B = zj+1
A − zj

B. The above
expression is remarkably simple and general. It applies readily
for an arbitrary number of layers and arbitrary individual layer
thickness.

If v0 = const = vA,B , then (56) is a quadratic equation for
cg , and the solution can be easily found explicitly. First, we
rewrite Equation (56) in the following form:

cg(cg + v0)

N∑
i=1

Li
A

c11
−

1

ρ0

(
(cg + v0)

2

c2
B

− 1

) M∑
j=1

Lj
B = 0, (57)

(here we have assumed that cg �= −v0). The solution to
Equation (57) is given by:

cg =
−Λ2 ±

√
Λ2

2 − Λ1Λ3

Λ1
, (58)

provided Λ1 �= 0, where we have denoted

Λ1 =

N∑
i=1

Li
A

c11
−

1

ρ0c2
B

M∑
j=1

Lj
B,

2Λ2 = v0

N∑
i=1

Li
A

c11
−

2v0

ρ0c2
B

M∑
j=1

Lj
B,

Λ3 =
1

ρ0

M∑
j=1

Lj
B. (59)

One can readily see that, with v0 being fixed, the group
velocity is a function of the ratio

∑N
i=1 Li

A/
∑M

j=1 Lj
B only,

and does not depend on the number or precise distribution of
layers.

Expression (56) simplifies for M = N (provided all layers
are identical):

LA

c11(1 + vA,B/cg)
−

1

ρ0

∫ LB

0

(
1

c2
B

−
1

(cg + v0)2

)
dz = 0. (60)

When the layers are identical, except for some fixed number
of layers (for example, the first one and the last one are not
complete, or there is some local irregularity in the middle of
the structure), Equation (57) provides the asymptotics of the
group velocity when the number of layers N tends to infinity
for arbitrary bounded boundary conditions. Indeed, let the
”pressure gradient” q be bounded on both sides of the domain,
and let N be the number of A−B layers. Then, the increase
of q should be of order 1/N over each A − B-layer.

Remark. Strictly speaking, we have only shown that the
equation for the group velocity for a finite number of layers
tends to a similar equation for infinite number of layers. In
principle, the solutions may behave differently. For example,
we must be careful whenever Equation (59) has degenerate

solutions. For example, in the case with Λ1 = 0, only
one solution exists for cg but the number of distinct group
velocities is not one as the number of layers approaches
infinity.

IV. DISPERSION RELATIONS

As noted above, the system of Equations (23), (50), and (51)
with boundary conditions (45-(47) can be solved explicitly. We
may use the monodromy matrix (for the mapping of p and q
across an A − B block) to find all possible (ω, β) solutions,
i.e., not only those for which β, ω → 0 for the case with
alternatingly stacked A and B layers.

To find the monodromy matrix, we only need to find
the mapping over the A-layer, which we assume to the the
isotropic solid. The governing equations are:

c11 − c12

4

∂2w1

∂z2
+ (ρAω2 − c11β

2)w1 −(
βc12 + β

c11 − c12

4

)
∂u3

∂z
= 0,

c11
∂2u3

∂z2
+

(
ρAω2 −

c11 − c12

4
β2

)
u3 +

(
βc12 + β

c11 − c12

4

)
∂w1

∂z
= 0. (61)

Integration of this system (known in classical mechanics, as a
system with gyroscopic forces) is performed in the standard
way, see, e.g., [13]. First, we make the following notations:
we omit indices of w and u, denote by ′ = ∂/∂z, and denote

A1 =
c11 − c12

4
, B1 = ρAω2 − c11β

2,

C = βc12 + β
c11 − c12

4
,

A2 = c11, B2 = ρAω2 −
c11 − c12

4
β2. (62)

Equations (61) become

A1w
′′ + B1w − Cu′ = 0, A2u

′′ + B2u + Cw′ = 0. (63)

The eigenvalues λi, i = 1 − 4, satisfy the condition

det

(
A1λ

2 + B1 −Cλ
Cλ A2λ

2 + B2

)
= 0. (64)

This gives a bi-quadratic equation

(A1λ
2 + B1)(A2λ

2 + B2) + C2λ2 = 0, (65)

which has solutions

λ2 =
−(A1B2 + A2B1 + C2)

2A1A2
±

√
(A1B2 + A2B1 + C2)2 − 4A1A2B1B2

2A1A2
. (66)

The eigenvectors that correspond to these eigenvalues are
given by

ξi = (A2λ
2
i + B2, −Cλi), i = 1, . . . , 4, (67)

and the general solution is:

w =

4∑
i=1

ci(A2λ
2
i + B2)e

λiz, u = −

4∑
i=1

ciCλie
λiz, (68)
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where ci are constants, determined by the initial conditions.
In our case, at all boundaries/interfaces the condition T13 =

0 applies. Hence,

w′ − βu = 0. (69)

Substituting this condition in the solution gives:

4∑
i=1

(
ciλi(A2λ

2
i + B2) + βciCλi

)
= 0,

4∑
i=1

(
ciλi(A2λ

2
i + B2)e

λiLA + βciCλie
λiLA

)
= 0, (70)

where LA = zn
B − zn

A, see Section III. Here we have assumed
that the width of each A-layer is the same (otherwise, just
replace LA by Ln

A everywhere below).
In case of λ1 �= λ2 (mod 2πi/LA), one can express c1

and c2 through c3 and c4 by use of Equations (70):

c1 =

∑4
i=3 ci

(
A2λ

2
i + B2 + βCλi

) (
eλiLA − eλ2LA

)
(A2λ2

1 + B2 + βCλ1) (eλ1LA − eλ2LA)

c2 =

∑4
i=3 ci

(
A2λ

2
i + B2 + βCλi

) (
eλiLA − eλ1LA

)
(A2λ2

2 + B2 + βCλ2) (eλ2LA − eλ1LA)
. (71)

The solution can now be written in the following matrix form:(
w(z)
u(z)

)
= α(z)

(
c3

c4

)
, (72)

where the matrix α(z) has the components

α11 =

2∑
i=1

(
A2λ

2
3 + B2 + βCλ3

) (
eλ3LA − eλ3−iLA

)
(A2λ2

i + B2 + βCλi) (eλiLA − eλ3−iLA)

(A2λ
2
i + B2)e

λiz + (A2λ
2
3 + B2)e

λ3z,

α12 =

2∑
i=1

(
A2λ

2
4 + B2 + βCλ4

) (
eλ4LA − eλ3−iLA

)
(A2λ2

i + B2 + βCλi) (eλiLA − eλ3−iLA)

(A2λ
2
i + B2)e

λiz + (A2λ
2
4 + B2)e

λ4z,

α21 = −

2∑
i=1

(
A2λ

2
3 + B2 + βCλ3

) (
eλ3LA − eλ3−iLA

)
(A2λ2

i + B2 + βCλi) (eλiLA − eλ3−iLA)

Cλie
λiz − Cλ3e

λ3z,

α22 = −

2∑
i=1

(
A2λ

2
4 + B2 + βCλ4

) (
eλ4LA − eλ3−iLA

)
(A2λ2

i + B2 + βCλi) (eλiLA − eλ3−iLA)

Cλie
λiz − Cλ4e

λ4z.

(73)

We can now find an expression for the pressure p and
pressure gradient q after passing a single A-layer. To get this
expression, we employ the boundary conditions at the A−B-
layer:

p = iβc12u1 + c11
∂u3

∂z
, q =

ω

ω + βv0
u3. (74)

If we introduce the matrices

μ =

(
c12β 0

0 ω
ω+βv0

)
, ν =

(
0 c11

0 0

)
, (75)

the following expressions apply:(
p(zn

A)
q(zn

A)

)
= (μα(zn

A) + να′(zn
A))

(
c3

c4

)
, (76)

(
w(zn

B)
u(zn

B)

)
= α(zn

B) (μα(zn
A) + να′(zn

A))
−1

(
p(zn

A)
q(zn

A)

)
, (77)

and finally,(
p(zn

B)
q(zn

B)

)
=

(
(μα(zn

B) + να′(zn
B)) (μα(zn

A) + να′(zn
A))

−1
)

(
p(zn

A)
q(zn

A)

)
, (78)

Example. Consider the simplest case, when the material
consists of a solid A-layer. Let the boundary conditions be
q = 0. To determine the wavenumber β from a given ω, one
must solve the following equation for β:

(
0 1

)(
(μα(zn

B) + να
′(zn

B))
(
μα(zn

A) + να
′(zn

A)
)
−1

)(
1
0

)
= 0. (79)

The matrix

MAn
= (μα(zn

B) + να′(zn
B)) (μα(zn

A) + να′(zn
A))

−1
, (80)

is the monodromy matrix for our system corresponding to
the n’th A-layer. In the B-layer, the equation system for p, q
is a linear first-order Hamiltonian system, and finding the
monodromy matrix MBn

for the mapping of p, q over the
n’th B-layer is given in Ref. [8]:

MBn
=

(
cos

√
F1F2

(
z

n+1

A
− zn

B

) √
F1
F2

sin

√
F1F2

(
z

n+1

A
− zn

B

)
−

√
F2
F1

sin

√
F1F2

(
z

n+1

A
− zn

B

)
cos

√
F1F2

(
z

n+1

A
− zn

B

)
)

, (81)

with

F1 = ρ0(ω + βv0)
2, F2 =

1

c2
Bρ0

−
β2

ρ0(ω + βv0)2
. (82)

Thus, the monodromy matrix for p, q for the complete n-th
A − B-layer is Mn = MBn

· MAn
(layer A comes first).

The equation for the wavenumber β under conditions q = 0
on zL, zR is (cf. Example above)
(

0 1
)

MR · MN · MN−1 · . . . · M1 · ML

(
1
0

)
= 0, (83)

where N is the number of complete A−B layers, and matrices
ML and MR are the monodromy matrices for mappings from
the initial point zL to the starting point z1

A of the first complete
A − B-layer, and from the ending point zN+1

A of the last
complete A − B-layer to the end-point zR of the structure.

V. NUMERICAL RESULTS AND DISCUSSIONS

Consider first the case with small β, ω values corresponding
to the first part of the Theory section. The group velocity in
the absence of a fluid flow for a complete number N of layers
A and B becomes using Equation (60):

cg =
cB√

1 −
c2

B
ρ0

c11

LA

LB

, (84)
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Fig. 1. Variation of the group velocity (at zero flow velocity) with the
thickness of the fluid layer for a structure with N complete layers of material
A (stainless steel - isotropic solid) and B (water) [i.e., N = M ]. The
thickness of the solid layer: LA is fixed to be 0.01 m.

thus, we have infinite group velocity if

LB = LA
c2

Bρ0

c11
≡ Lthres

B . (85)

In other words, when L > Lthres
B , all wavenumber solutions

are imaginary corresponding to evanescent wave propagation.
When L < Lthres

B , propagation along the x direction (perpen-
dicular to the stacking direction) is sinusoidal.

In Figure 1, we show the variation of the group velocity (at
zero flow velocity) with the thickness of the fluid layer for a
structure with N complete layers of material A (stainless steel
- isotropic solid) and B (water) [i.e., N = M ]. The thickness
of the solid layer: LA is fixed to be 0.01 m. Evidently, as Equa-
tion (84) reveals, the group velocity is a function of the ratio
LA/LB only [refer to the discussion before Equation (60)] and
it diverges when LB = Lthres

B . For a steel-water structure, the
threshold water-layer thickness is: Lthres

B = 0.013LA. Other
material data used in the computations in this section are:
c11 = 2.61 · 1011 Pa, c12 = 1.06 · 1011 Pa, ρA = 7500 kg/m3,
cB = 1500 m/sec, and ρ0 = 1000 kg/m3.

Figure 2 (upper plot) shows the continuous variation of
the absolute value of the group velocity as a function of
the full structure thickness at zero flow. Again, we consider
a structure composed of alternating layers of stainless steel
and water. The lower plot displays the total material A (dash-
dotted) and material B (dashed) thickness parts of the full
structure as a function of the full structure thickness (solid).
Parameters used are LA = 0.01 m and LB = 2.5Lthres

B for
each complete A and B layer in the full structure. The last
layer is generally an incomplete layer of material A type if the
secondlast complete layer is of material B type and vice versa.
More interesting, note that when the structure thickness equals
LA +Lthres

B = 0.0101 m or an integer number ofLA+Lthres
B ,

the group velocity becomes infinite. However, the structure
thickness never equals N

(
LA + Lthres

B

)
for N > 1 since a

complete B layer thickness equals 2.5Lthres
B . Furthermore, for

thicknesses below LA+Lthres
B , the group velocity is imaginary
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Fig. 2. The upper plot shows the continuous variation of the absolute value
of the group velocity as a function of the full structure thickness at zero flow.
The structure is composed of alternating layers of stainless steel and water.
The lower plot displays the total material A (dash-dotted) and material B
(dashed) thickness parts of the full structure as a function of the full structure
thickness (solid). Parameters used are LA = 0.01 m and LB = 2.5Lthres

B

for each complete A and B layer in the full structure.
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Fig. 3. Continuous variation of the absolute value of the group velocity as
a function of the full structure thickness at zero flow for parameter values:
LA = 0.01 m and LB = 0.5Lthres

B
for each complete A and B layer in

the full structure. Otherwise, conditions are the same as described in the text
for Figure 2.

corresponding to evanescent modes. Observe also the step
behavior in the absolute value of the group velocity as the full
structure thickness increases. This is understandable keeping
in mind the large differences in the stiffness values of stainless
steel and water (c11 = 2.61 ·1011 Pa vs. ρ0c

2
B = 2.25 ·109 Pa).

Figure 3 shows the continuous variation of the absolute
value of the group velocity as a function of the full structure
thickness at zero flow for parameter values: LA = 0.01 m
and LB = 0.5Lthres

B . Otherwise, conditions are the same
as described in the text for Figure 2. Note that the distance
between steps in structure thickness is smaller than for the
case with LB = 10Lthres

B since the thickness of a complete
unit block of material A and B is smaller than above. In
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Fig. 4. Computed results are shown for LB = 20Lthres

B
otherwise the

conditions described for Figure 2 apply.
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Fig. 5. Continuous variation of the (positive) and (negative) group velocity
solutions to Equation (58) as a function of total structure thickness. The fluid
flow velocity equals approximately 30 m/sec such that only one group velocity
solution (albeit doubly degenerate) exists when the structure thickness equals
a complete layer of material A and B. Refer to further details in the textual
description.

this case, where the thickness of the structure never equals
N(LA +Lthres

B ) with N an integer, an infinite group velocity
is not possible.

In Figure 4, computed results are shown for LB = 20Lthres
B

otherwise the conditions described for the two preceding
Figures apply.

In Figure 5, the two group velocities computed from Equa-
tion (58) are plotted as a continuous function of the total
structure thickness. The upper plot shows the real (solid)
and imaginary (dashdotted) components of the group velocity
corresponding to choosing the positive sign in front of the
square root in Equation (58) (denoted the positive solution).
Similarly, the lower plot shows the real (solid) and imaginary
(dashdotted) components of the group velocity corresponding
to choosing the negative sign in front of the square root in
Equation (58) (denoted the negative solution). The fluid flow
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Fig. 6. The upper plot shows the change in group velocity as a function
of fluid flow velocity for a structure with LB = 10Lthres

B
(same number of

complete layers, the starting and ending layers are both complete layers).

0 1 2 3 4 5 6 7 8 9 10
−600

−500

−400

−300

−200

−100

0

100

flow velocity [m/sec]

Δ 
c g [m

/s
ec

]

0 1 2 3 4 5 6 7 8 9 10
−4

−3

−2

−1

0

1

flow velocity [m/sec]

Δ 
c g/c

g [%
]

Fig. 7. The upper plot shows the change in group velocity as a function of
fluid flow velocity for a structure with LB = 1.01Lthres

B
. Otherwise same

conditions as in Figure 6.

velocity v0 is chosen to be such that the square root vanishes
when the total structure thickness is one complete block of
material A and B. In this case, a complete B layer has a
thickness equal to LB = 0.9999Lthres

B for which v0 equals
approximately 30 m/sec. Observe that the peaks located near
integer values of 0.01 m correspond to places for which the
two group velocities are the same (degeneracy). Such a case
(with nonzero group velocities) occurs only if v0 �= 0 as one
easily verifies from Equation (58).

In Figure 6, we show (upper plot) the change in group
velocity as a function of fluid flow velocity for a structure
with LB = 10Lthres

B . Observe that the group velocity changes
exactly by the fluid flow velocity. In the lower plot, the relative
change in group velocity due to the fluid flow is shown.

In Figure 7, we show (upper plot) the change in group
velocity as a function of fluid flow velocity for a structure
with LB = 1.01Lthres

B . Note that the flow-induced group-
velocity change is pronouncedly higher than the flow velocity
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Fig. 8. Plot of the first bands (in frequency) in the β interval: 110−180 m−1

for a structure composed of an A layer (steel) with thickness 0.01 m and a
B-layer(water) with thickness 0.001 m.
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Fig. 9. Plot of the first bands (in frequency) in the β interval: 110−180 m−1

for a structure composed of an A layer (steel) with thickness 0.005 m and a
B-layer(water) with thickness 0.001 m.

and also the linear dependence with fluid flow velocity. In the
lower plot, the relative change in group velocity due to the
fluid flow is shown.

We next consider the case with finite values of β, ω. In
Figure 8 a plot of the first bands (in frequency) in the β
interval: 110 − 180 m−1 for a structure composed of an A
layer (steel) with thickness 0.01 m and a B-layer(water) with
thickness 0.001 m. Notice, as expected, that for each β value
a discrete set of possible ω solutions exist. In Figure 9, a
similar calculation is shown for the case with an A-layer (steel)
thickness equal to 0.005 m and a B-layer(water) with thickness
0.001 m.

VI. CONCLUSIONS

A discussion of group velocities in structures consisting of
alternating layers of piezoelectric cubic crystals (including the
case of isotropic crystals) and fluids allowing for a flow in

the fluid layers is presented. The thicknesses of each of the
solid and fluid layers can be arbitrary. It is found using the
Hamiltonian equations that a single equation for the group
velocity is obtained at small frequencies even in the presence
of a flow. Special consideration is provided for flow-velocity
dependencies and sensitivities of the group velocity. In the
second part of the paper, special attention is given to the
general frequency case of a solid-fluid alternatingly-stacked
finite structure and the formation of bandstructures. These
results apply to the case of infinite number of layers as well.
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