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Modeling and stability analysis of delayed game
network

Zixin Liu, Jian Yu and Daoyun Xu

Abstract—This paper aims to establish a delayed dynamical rela-
tionship between payoffs of players in a zero-sum game. By introduc-
ing Markovian chain and time delay in the network model, a delayed
game network model with sector bounds and slope bounds restriction
nonlinear function is first proposed. As a result, a direct dynamical
relationship between payoffs of players in a zero-sum game can
be illustrated through a delayed singular system. Combined with
Finsler’s Lemma and Lyapunov stable theory, a sufficient condition
guaranteeing the unique existence and stability of zero-sum game’s
Nash equilibrium is derived. One numerical example is presented to
illustrate the validity of the main result.

Keywords—Game networks, zero-sum game, delayed singular sys-
tem, nonlinear perturbation, time delay.

I. INTRODUCTION

Game Theory is the study of optimal decision making
under competition when one individual’s decisions affect the
outcome of a situation for another individuals involved. It is a
mathematical method for analyzing calculated circumstances.
Since the Von Neumann’s original proof used Brouwer’s fixed-
point theorem on continuous mappings into compact convex
sets [1], game theory attracted many scholars’ interest. In
the research of game theory, much effort has been devoted
to developing all kinds of game theories. Up to now, many
excellent papers and monographs have been published [2-
11]. General speaking, Game Theory can be broadly classified
into four main sub-categories of study: classical game theory,
combinatorial game theory, dynamic game theory, and other
game theory. Today, game theory applies to a wide range
of class relations, and has developed into an umbrella term
for the logical side of science, to include both human and
non-humans. As a result, it has been widely recognized as an
important tool in many fields such as economics, biology, en-
gineering, political science, control theory, computer science,
and philosophy.

Recently, some famous game such as prisoner’s dilemma
and snowdrift game have been applied to investigate the
cooperation game [12-14]. However, as pointed out in [15]
that, the most concerned issue is the payoffs for individuals
in a game, it is desirable to construct a direct dynamical
relationship among the payoffs. Hence, in this paper, we will
focus our interest on the differential dynamics between payoffs
of players in a zero-sum mixed strategy game. In order to
describe the zero-sum property in a game, singular model [16-
18] is a good selection. On the basis of the network topology
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among the payoffs for players in a game, Xiong , Daniel,
and Cao [15] established a singular game network model
with Markovian chain to describe the zero-sum mixed strategy
game, and analyzed the dynamic behavior.

It worth pointing out that the model established in [15] only
considered the current payoff impacts among the players and
the external issues. In fact, the payoffs of every individuals
in a game not only relate to the other’s current payoffs
and external issues, but also related to the other players’
previous payoffs. It is a result of all kinds of comprehensive
factors. This idea motivates this study. In order to describe the
relationship among players’ current payoffs, previous payoffs
and external disturbance factors, we first analyzed the delayed
network topology among these factors for a zero-sum game,
and established a delayed singular game network model with
Markovian jumping parameters. Then, combined with Finsler’s
Lemma and Lyapunov stable theory, a sufficient condition
guaranteeing the unique existence and stability of zero-sum
game’s Nash equilibrium is derived. At last, one numerical
simulation example is presented to illustrate the validity of
the given result.

II. MATHEMATIC MODELING OF DELAYED GAME
NETWORK

Assume that there are n persons in a game, and a pure action
profile of player i is si, the set of pure strategies be Si, namely
si ∈ Si. Let S =

∏
i

Si be the set of all pure action profiles

for all players. Let s ∈ S be pure strategy for all players,
when n persons perform this pure strategy to play a game,
every player’s payoff is clearly related to the other’s payoffs.
Moreover, the payoff of a player i(i = 1, 2, · · · , n) may be
affected by other player’s previous payoffs and some external
issues such as economical power, reputation, resources and
so on. Fig.1 is given to show the relationship between the
payoff of player j and those of other players in perform-
ing a strategy s, where xi denotes the payoff of player i;
Weighting parameters aji and bji (i = 1, 2, · · · , n) reflect
the current and previous impacts in performing a strategy s
from player i to player j respectively. fj(xj(t)) represents
the external uncertain influence which is caused by player j′s
own condition, and cji is the weighting parameter. In order
to obtain a Nash equilibrium, a mixed strategy σ is needed,
and assume σ of all players is probability measure over the
pure strategy set S. Let Σ denote the set of mixed strategies of
players, and S is known, total number is m, a mixed strategy
Σi of player i is a probability measure over pure strategy
sj

i , where sj
i is implemented with probability pj satisfying∑m

j=1 pj = 1, pj ≥ 0 (j = 1, 2, · · · ,m). Obversely, the
probability pj of pure strategy sj

i is related to the probabilities
of other pure strategy in a mixed strategy. In order to describe
this mixed strategy property, a appropriate way is Markovian
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Fig. 1. Delayed Network Topology of Zero-sum Game

chain. Additional, in order to describe the zero-sum property
in a zero-sum game, singular model can also be introduced
to simulate the differential dynamics among the payoffs of
all the players in a zero-sum mixed strategy game. On the
basis of these analysis, we can establish a delayed zero-sum
differential game model with n persons as follows:

ẋ(t) = Ã(r(t))x(t) + B̃d(r(t))x(t − τ) + C̃g(r(t))g(x(t)), (1)

subject to

x1(t) + x2(t) + · · · + xn(t) = 0. (2)

Here, x(t) = (x1(t), x2(t), · · · , xn(t))T is a vector of
payoffs for all players; {r(t), t ≥ 0} is a condition-time
Markovian process with right-continuous trajectories and tak-
ing values in a finite set Ψ = {1, 2, · · · ,m} with transition
probability matrix Π = (πij) (i, j ∈ Ψ) given by

p{r(t + h) = j|r(t) = i} =

{
πijh + o(h), i �= j,

1 + πiih + o(h), i = j,

(3)

where h > 0 and lim
h→0

o(h)
h = 0, πij ≥ 0 is transition rate from

i to j if i �= j, and πii = −∑m
j=1,j �=i πij . Ã(r(t)), B̃d(r(t)),

and C̃g(r(t)) are known real constant matrices with appropri-
ate dimensions for each r(t) ∈ Ψ; τ is time delay satisfying
τ > 0; g(x(t)) denotes the nonlinear perturbation.

Notice that ẋ1(t) + ẋ2(t) + · · ·+ ẋn(t) = 0, model (1) and
(2) can be rewritten as small

Eẏ(t) = A(r(t))y(t) + B(r(t))y(t−τ) + C(r(t))f(y(t)), (4)

where

y(t) = [xT (t), 0]T , E =
[

In 0
1n 0

]
, f(y(t)) =

[
g(x(t))

0

]
,

A(r(t)) =
[

Ã(r(t)) 0
0 1

]
, B(r(t)) =

[
B̃d(r(t)) 0

0 1

]
,

C(r(t)) =
[

C̃g(r(t)) 0
0 1

]
, and 1n = [1, 1, · · · , 1︸ ︷︷ ︸

n

].

Remark 2.1: As mentioned in [8], for a differential equa-
tion of a game, there exist a close relation between the rest
point and the Nash equilibrium as follows:
1) If y is a Nash equilibrium, then it is a rest point;
2) If the rest point y is stable, then it is a Nash equilibrium;

This conclusion implies that the research about the existence
of Nash equilibrium in a differential game can be transmitted
to the research on the stability problem of the rest point.

Based on the above result obtained in [8], in what follows,
we will focus on the asymptotically stable analysis for the
rest point of model (4). Before deriving the main results, the
following assumption, definition, and lemmas are needed.

Assumption: f(0) = 0 and f(y(t)) is restricted by the
sector bounds [l−i , l+i ], i.e

l−i ≤ fi(yi(t))
yi(t)

≤ l+i , i = 1, 2, · · · , n.

Remark 2.2: As assumption f(0) = 0, one can easily
obtain that 0n = (0, 0, · · · , 0)T is the rest point of system
(4), this implies that if we obtain the stochastic asymptotic
stability of 0n, then 0n is a Nash equilibrium of system (4),
this suggests us to analyze the stability of the rest point in
system (4).

Notice that the nonlinear function fi(·) can be written as a
convex combination of the sector bounds as follows:

fi(yi(t)) = (λi(yi(t))l−i + (1 − λi(yi(t)))l+i )yi(t),

where λi(yi) = fi(yi(t))−l−i yi(t)

(l+i −l−i )yi(t)
satisfying 0 ≤ λi(yi) ≤ 1.

Namely, fi(y(t)) = Λi(yi(t))yi(t), where Λi(yi(t)) is an
element of a convex hull Co{l−i , l+i }. Let us define

Λ = diag{Λ1(y1(t)),Λ2(y2(t)), · · · ,Λn(yn(t))},

Δ1 = diag{l−1 , l−2 , · · · , l−n }, Δ2 = diag{l+1 , l+2 , · · · , l+n }.
Then, nonlinearity f(y(t)) can be expressed as f(y(t)) =

Λy(t). Set Ω = {Λ | Λ ∈ Co{Δ1,Δ2}}.
Definition 2.1: The system (4) is said to be stochastically

asymptotically stable, if for any y0 ∈ Rn and r0 ∈ Ψ, there
exists a positive scalar M(y0, r0) such that

lim
t→+∞E {

∫ t

0

‖ y(t, y0, r0) ‖2 dt|y0, r0} < M(y0, r0),

where y(t, y0, r0) denotes the solution of system (4) at time t
under the initial conditions y0 and r0.

Lemma 2.1: [19] Let a matrix F , a symmetric matrix
Q = QT and a compact subset of real matrices h be given.
The following statements are equivalent:
(1) For each H ∈ h, ξT Qξ < 0, for all ξ �= 0 such that
HFξ �= 0.
(2) There exists Θ = ΘT such that Q + FT ΘF < 0,
ΨT

h ΘΨh ≥ 0, for all H ∈ h, where Ψh is a matrix belong to
a null space of H .

Lemma 2.2: [20] For any positive definite symmetric con-
stant matrix Q and scalar τ > 0, such that the following
integrations are well defined, then

−
∫ 0

−τ

∫ t

t+θ

yT (s)Qy(s)dsdθ

≤ − 1
τ2

(
∫ 0

−τ

∫ t

t+θ

y(s)dsdθ)T Q(
∫ 0

−τ

∫ t

t+θ

y(s)dsdθ).
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III. STABILITY ANALYSIS OF THE REST POINT

In this section, we attempt to establish a practically com-
putable stochastic stability criterion for system (4). By con-
structing a Lyapunov functional including tripe-integral item,
we obtain the following stability result.

Theorem 3.1: For given scalar τ > 0, positive definite
diagonal matrices L− = diag(l−1 ,l−2 , · · · , l−n ), L+ = diag(l+1 ,
l+2 , · · · ,l+n ), singular system (4) is stochastically asymptoti-
cally stable if there exist positive definite diagonal matrices
D = diag{d1, d2, · · · , dn}, Λ1 = diag{λ1, λ2, · · · , λn},
Λ2 = diag{α1, α2, · · · , αn}, Γ = diag{γ1, γ2, · · · , γn},
symmetric positive definite matrices Q1, Q2, Q3, symmetric
matrix Θ, and arbitrary matrices F1, N1,M1,M2, Pi (i ∈ Ψ)
of appropriate dimensions such that for every i ∈ Ψ,

(1) ET Pi = PT
i E ≥ 0,

(2)
[

I
ω

]T

Θ
[

I
ω

]
≥ 0,∀ω ∈ Ω,

(3) Ξ =

⎡
⎣ Ξ1 + ΞT

2 ΘΞ2 FT

∗ − τ2

2 ET Q3E
∗ ∗

⎤
⎦ < 0,

where Ξ1 = (Ξij) i, j = 1, 2, · · · , 7, and

Ξ11 = τ2Λ2(L+ − L−) + 2τQ2 + Q1 − 2L−ΓL+

+PT
i Ai + AT

i Pi +
m∑

j=1

πijE
T Pj ,

Ξ12 = PT
i Bi, Ξ13 = L+D − L−Λ1 + AT

i MT
2 ,

Ξ14 = Γ(L+ − L−) + AT
i MT

1 + PT
i Ci,

Ξ22 = −Q1, Ξ23 = −BT
i MT

2 , Ξ24 = BT
i MT

1 ,

Ξ33 =
τ2

2
ET Q3E − M2E − ET MT

2 ,

Ξ34 = ΛT
1 + DT − ET MT

1 + M2Ci,

Ξ44 = −Γ − ΓT + M1Ci, F = [0, 0, 0, 0, 0, 0, F1],

Ξ55 =
2
τ

Q2, Ξ66 = − 2
τ2

Λ2(L+−L−), Ξ77 = −F1−FT
1 ,

Ξ2 =

⎡
⎣ I 0 0 0 0 0 0

0 0 0 I 0 0 0
τN1 0 0 0 −N1 0 −N1

⎤
⎦ .

Proof: Choose a new class of Lyapunov functional can-
didate as follows:

V (y(t), r(t)) = V1(y(t))+V2(y(t))+V3(y(t))+V4(y(t)),

where

V1(y(t))

= yT (t)ET P (r(t))y(t) + 2
n∑

i=1

{
∫ yi(t)

0

λi(fi(s) − l−i s)ds

+
∫ yi(t)

0

di(l+i s − fi(s))ds +
∫ t

t−τ

yT (s)Q1y(s)ds},

V2(y(t))

= 2
n∑

i=1

{
∫ 0

−τ

∫ 0

θ

∫ t

t+μ

αiyi(s)[fi(yi(s)) − l−i yi(s)]dsdμdθ}

+ 2
n∑

i=1

{
∫ 0

−τ

∫ 0

θ

∫ t

t+μ

αiyi(s)[l+i yi(s) − fi(yi(s))]dsdμdθ}

+ 2
∫ 0

−τ

∫ t

t+θ

yT (s)Q2y(s)dsdθ,

V3(y(t)) =
∫ 0

−τ

∫ 0

θ

∫ t

t+μ

ẏT (s)ET Q3Eẏ(s)dsdμdθ.

Let A be the weak infinitesimal generator of random process
{y(t), r(t)}. Then for each r(t) = i (i ∈ Ψ), we have

AV (y(t), r(t) = i)

= lim
Δ→0

1

Δ
[E{V (y(t+Δ), r(t+Δ))|y(t), r(t) = i}−V (y(t), r(t) = i)].

Let P (r(t)|r(t) = i) = Pi, (i ∈ Ψ),

V11(y(t), r(t) = i) = yT (t)ET P (r(t))y(t),

V12(y(t), r(t) = i) = 2
n∑

i=1

{
∫ yi(t)

0

λi(fi(s) − l−i s)ds.

AV11(y(t), r(t) = i)

= lim
Δ→0

1

Δ
[E{V11(y(t + Δ), r(t + Δ))|y(t), r(t) = i} − V11(y(t), r(t) = i)]

= lim
Δ→0

m∑
j=1,j �=i

yT (t + Δ)ET Pjy(t + Δ)[πijΔ + o(Δ)]

Δ

yT (t + Δ)ET Piy(t + Δ)[1 + πiiΔ + o(Δ)] − yT (t)ET Piy(t)

Δ

= lim
Δ→0

[

m∑
j=1

y
T

(t + Δ)πijE
T

Pjy(t + Δ)

+
yT (t + Δ)ET Piy(t + Δ) − yT (t)ET Piy(t)

Δ
]

= 2y
T

(t)P
T
i Eẏ(t) + y

T
(t)(

m∑
j=1

πijE
T

Pj)y(t).

AV12(y(t), r(t) = i)

= lim
Δ→0

2
m∑

j=1,j �=i

{
n∑

i=1

(
∫ yi(t+Δ)

0
λi(fi(s) − l−i s)ds)}[πijΔ + o(Δ)]

Δ

+2(
n∑

i=1

∫ yi(t+Δ)

0
λi(fi(s) − l−i s)ds)[1 + πiiΔ + o(Δ)]

Δ

−2(
n∑

i=1

∫ yi(t)

0
λi(fi(s) − l−i s)ds)

Δ

= lim
Δ→0

2{
n∑

i=1

(
∫ yi(t+Δ)

0
λi(fi(s) − l−i s)ds)}
Δ

×{
m∑

j=1,j �=i

πijΔ + 1 + πiiΔ + 2o(Δ)}

Δ

−2(
n∑

i=1

∫ yi(t)

0
λi(fi(s) − l−i s)ds)

Δ
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= lim
Δ→0

2{
n∑

i=1

(
∫ yi(t+Δ)

0
λi(fi(s) − l−i s)ds)}
Δ

−2(
n∑

i=1

∫ yi(t)

0
λi(fi(s) − l−i s)ds)

Δ

= lim
Δ→0

2
n∑

i=1

(
∫ yi(t+Δ)

yi(t)
λi(fi(s) − l−i s)ds)

Δ

= lim
Δ→0

2
n∑

i=1

λi(fi(ζ) − l−i ζ)(yi(t + Δ) − yi(t))

Δ
(ζ ∈ [min(yi(t), yi(t + Δ)),max(yi(t), yi(t + Δ))])

= lim
Δ→0

2
n∑

i=1

λi(fi(ζ) − l−i ζ)
yi(t + Δ) − yi(t)

Δ

= 2
n∑

i=1

λi(fi(t) − l−i t)ẏi(t).

Similarly, the other weak infinitesimal generators of the
rest items can also be computed, which are omitted here,
and the weak infinitesimal generator of random process
{y(t), r(t)} along the trajectory of system (4) is given as
AV (y(t), r(t) = i) = AV1(y(t), r(t) = i)+AV2(y(t), r(t) =
i) + AV3(y(t), r(t) = i), where

AV1(y(t), r(t) = i)

= lim
Δ→0

1
Δ

[E {V1(y(t + Δ), r(t + Δ))|y(t), r(t) = i}
− V1(y(t), r(t) = i)]

= 2yT (t)PT
i Eẏ(t) + yT (t)(

m∑
j=1

πijE
T Pj)y(t)

+ 2[fT (y(t)) − yT (t)L−]Λ1ẏ(t)

+ 2[yT (t)L+ − fT (y(t))]Dẏ(t)

+ yT (t)Q1y(t) − yT (t − τ)Q1y(t − τ),

(5)

AV2(y(t), r(t) = i)

= 2
n∑

i=1

{
∫ 0

−τ

∫ 0

θ

αiyi(t)[fi(yi(t)) − l−i yi(t)]dμdθ

−
∫ 0

−τ

∫ 0

θ

αiyi(t + μ)[fi(yi(t + μ)) − l−i yi(t + μ)]dμdθ}

+ 2
n∑

i=1

{
∫ 0

−τ

∫ 0

θ

αiyi(t)[l+i yi(t) − fi(yi(t))]dμdθ

−
∫ 0

−τ

∫ 0

θ

αiyi(t + μ)[l+i yi(t + μ) − fi(yi(t + μ))]dμdθ}

+ 2τyT (t)Q2y(t) − 2
∫ t

t−τ

yT (s)Q2y(s)ds

= 2
n∑

i=1

{αiyi(t)[fi(yi(t)) − l−i yi(t)]
τ2

2

−
∫ 0

−τ

∫ t

t+θ

αiyi(s)[fi(yi(s)) − l−i yi(s)]dsdθ}

+ 2
n∑

i=1

{αiyi(t)[l+i yi(t) − fi(yi(t))]
τ2

2

−
∫ 0

−τ

∫ t

t+θ

αiyi(s)[l+i yi(s) − fi(yi(s))]dsdθ}

+ 2τyT (t)Q2y(t) − 2
∫ t

t−τ

yT (s)Q2y(s)ds

= 2
n∑

i=1

{αiτ
2

2
yi(t)[l+i − l−i ]yi(t)

− 2
∫ t

t−τ

yT (s)Q2y(s)ds + 2τyT (t)Q2y(t)

−
∫ 0

−τ

∫ t

t+θ

αiyi(s)[l+i − l−i ]yi(s)dsdθ.

(6)

Notice that,
∑n

i=1 αiτ
2yi(t)[l+i − l−i ]yi(t) = τ2yT (t) Λ2

[L+ − L−]y(t). From Lemma 2.2, we have

2
n∑

i=1

{−
∫ 0

−τ

∫ t

t+θ

αiyi(s)[l+i − l−i ]yi(s)dsdθ}

= −2
∫ 0

−τ

∫ t

t+θ

yT (s)Λ2[L+ − L−]y(s)dsdθ

≤ − 2
τ2

(
∫ 0

−τ

∫ t

t+θ

y(s)ds)T Λ2[L+ − L−](
∫ 0

−τ

∫ t

t+θ

y(s)dsdθ).

Thus, we have
AV2(y(t), r(t) = i)

≤ yT (t)[τ2Λ2(L
+ − L−) + 2τQ2]y(t)

− (

∫ 0

−τ

∫ t

t+θ

y(s)dsdθ)T 2

τ2
Λ2(L

+ − L−)

∫ 0

−τ

∫ t

t+θ

y(s)dsdθ

− 2

τ
(

∫ t

t−τ

y(s)ds)T Q2(

∫ t

t−τ

y(s)ds),

AV3(y(t), r(t) = i)

=

∫ 0

−τ

∫ 0

θ

[ẏT ET (t)Q3Eẏ(t)

− ẏT (t + μ)ET Q3Eẏ(t + μ)]dμdθ

=
τ2

2
ẏT (t)ET Q3Eẏ(t) −

∫ 0

−τ

∫ t

t+θ

ẏT (s)ET Q3Eẏ(s)dsdθ.

(7)

Since Q3 > 0, then ET Q3E > 0, as the processing method
used in [21], for arbitrary matrix F1, F = [0, 0, 0, 0, 0, 0, F1]
of appropriate dimensions, we have

−
∫ 0

−τ

∫ t

t+θ

ẏT (s)ET Q3Eẏ(s)dsdθ

≤ −2
∫ 0

−τ

[
∫ t

t+θ

ẏT (s)dsFξi(t)]dθ

−
∫ 0

−τ

θξT
i (t)FT (ET Q3E)−1Fξi(t)dθ,

= −2
∫ 0

−τ

∫ t

t+θ

ẏT (s)dsdθFξi(t)

+
τ2

2
ξT
i (t)FT (ET Q3E)−1Fξi(t).

(8)

where ξT
i (t) = [yT (t), y(t − τ), ẏT (t), fT (y(t)),

∫ t

t−τ
yT (s)ds,∫ 0

−τ

∫ t

t+θ
yT (s)dsdθ,

∫ 0

−τ

∫ t

t+θ
ẏT (s)dsdθ]T .
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Combined with inequalities (7)-(8), we have

AV3(y(t), r(t) = i) ≤ τ2

2
ẏT (t)ET Q3Eẏ(t)

+
τ2

2
ξT

i (t)F T (ET Q3E)−1Fξi(t)

− 2

∫ 0

−τ

∫ t

t+θ

ẏT (s)dsdθFξi(t).

(9)

Furthermore, for positive definite diagonal matrix Γ, arbi-
trary matrices M1, M2 of appropriate dimensions, we have
−2f

T
(y(t))Γf(y(t))+2y

T
(t)Γ(L

+
+L

−
)f(y(t))−2y

T
(t)L

−
ΓL

+
y(t) ≥ 0,

2fT (y(t))M1[−Eẏ(t)+Aiy(t)+Biy(t− τ)+Cif(y(t))] = 0,

2ẏT (t)M2[−Eẏ(t) + Aiy(t) + Biy(t − τ) + Cif(y(t))] = 0,

Using convex properties of the nonlinear perturbation
function f(y(t)), the following constraint is satisfied:

f(y(t)) = Λy(t),

For any matrices N1 of appropriate dimensions, by using
Newton-Leibnitz formula, we can obtain the following zero
equation:

ΛN1[τy(t) −
∫ t

t−τ

y(s)ds −
∫ 0

−τ

∫ t

t+θ

ẏ(s)dsdθ] = 0.

Namely,[
Λ 0 0 −I 0 0 0

τΛN1 0 0 0 ΛN1 0 ΛN1

]
ξi(t) = 0.

This can be represented as

[ω,−I]Ξ2ξi(t) = 0, ω ∈ Ω.

If there exists a symmetric matrix Θ satisfying

Ξ1 + ΞT
2 ΘΞ2 < 0,

[
I
ω

]T

Θ
[

I
ω

]
≥ 0,∀ω ∈ Ω.

Then, by lemma 2.1 and Schur complement [22], if the
conditions in Theorem 3.1 hold, we can obtain

AV (y(t), r(t) = i) ≤ −εξT
i (t)Ξξi(t),

This implies that there must exist a positive scalar ε > 0
such that

AV (y(t), r(t) = i) ≤ −ε ‖ ξi(t) ‖2≤ −ε ‖ yi(t, y0, r0) ‖2 .

By Dynkin’s formula, one has

E {V (y(t), r(t))|y0, r0} − V (y0, r0)

≤ E {
∫ t

0

AV (y(s), r(s))ds|y0, r0}

≤ −εE {
∫ t

0

‖ y(s), r(s)) ‖2 ds|y0, r0},

(10)

this implies

lim
t→+∞E {

∫ t

0

‖ y(t, y0, r0) ‖2 dt|y0, r0} <
1
ε
V (y0, r0).

Therefore, by Definition 2.1, it can be seen that the singular
system (4) with Markovian jumping parameters is stochasti-
cally stable, which implies that the rest point of system (4) is
a Nash equilibrium, and this Nash equilibrium is stable. This
completes the proof.

IV. ILLUSTRATIVE EXAMPLE

In this section, a simple matching pennies zero-sum game
example will be given to show the validity of the main result
derived in this paper.

Example 4.1: Consider a 3-player matching pennies zero-
sum game, three players choose a head (H) or tail (T) of a
penny to play the game.

Obversely, there are eight pure strategies, i.e.,

S1 = {T, T, T}, S2 = {H, H,H},
S3 = {T, T,H}, S4 = {T, H, T},
S5 = {H, T, T}, S6 = {H, H, T},
S7 = {H, T, H}, S8 = {T, H, H}.

Similar to [15], we can assume that there are twelve dif-
ferent weight matrices Ãi = (ai

jk)3×3, B̃
i
d = (bi

jk)3×3, C̃
i
g =

(ci
jk)3×3 (j, k = 1, 2, 3, i = 1, 2, 3, 4) among the eight pure

strategies, and assign matrices Ã1, B̃
1
d, C̃1

g to strategy S1,
matrices Ã2, B̃

2
d, C̃2

g to strategy S2, matrices Ã3, B̃
3
d, C̃3

g to
strategy S3, S4, S5, matrices Ã4, B̃

4
d, C̃4

g to strategy S6, S7, S8.
Then, a delayed zero-sum differential game model with 3
persons can be established as in model (4) with parameters
given by

Ã1 =

⎡
⎣ −3 1 1

1 −4 −2
1 2 −3

⎤
⎦ , Ã2 =

⎡
⎣ −4 1 2

1 −3 −1
2 1 −3

⎤
⎦ ,

Ã3 =

⎡
⎣ −5 2 2

−2 −4 1
1 1 −2

⎤
⎦ , Ã4 =

⎡
⎣ −6 4 −1

−2 −4 1
2 2 −4

⎤
⎦ ,

B̃1
d =

⎡
⎣ 0.1 0.2 0.3

0.2 0.2 0.1
0.1 0.1 −0.2

⎤
⎦ , B̃2

d =

⎡
⎣ 0.2 0.1 0.2

0.1 0.1 0.2
0.1 0.2 −0.3

⎤
⎦ ,

B̃3
d =

⎡
⎣ 0.2 0.1 0.1

0.2 0.2 0.2
0.3 0.2 −0.5

⎤
⎦ , B̃4

d =

⎡
⎣ 0.3 0.1 0.2

0.2 0.3 0.1
0.1 0.1 −0.2

⎤
⎦ ,

C̃1
g =

⎡
⎣

3
100

2
100

1
100

2
100

2
100

1
100

1
100

1
100

−2
100

⎤
⎦ , C̃2

g =

⎡
⎣

1
100

4
100

3
100

2
100

3
100

2
100

0.0 1
100

−1
100

⎤
⎦ ,

C̃3
g =

⎡
⎣

1
100

1
100

1
100

2
100

2
100

3
100

4
100

0.0 −4
100

⎤
⎦ , C̃4

g =

⎡
⎣

2
100

4
100

3
100

1
100

4
100

2
100

4
100

2
100

−6
100

⎤
⎦ .

If the external perturbation nonlinear function is g1(t) =
tanh(−0.3t), g2(t) = tanh(−0.8t), g3(t) = tanh(−0.1t).
Obviously, l−1 = l−2 = l−3 = 0, l+1 = 0.3, l+2 = 0.8, l−3 = 0.1.
Considering that the affection caused by players’ previous
payoffs to current payoffs may be limited, and can become
weaker with the developing of game, one can see that time
delay should be small, thus we assume τ = 0.5, and the
transition probability matrix between every four different state
weighting matrices is supposed as

Π = (πij)4×4 =

⎡
⎢⎢⎣

−0.3 0.2 0.4 −0.3
−0.1 0.2 −0.4 0.3
0.2 0.2 0.1 −0.5
0.4 0.1 0.2 −0.6

⎤
⎥⎥⎦ .
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Fig. 2. State variable x(t) of system (1) with initial value (3, 6,−9)T

Notice that (0, 0, 0)T is a rest point of model (4). If the
conditions in Theorem 3.1 are satisfied, the stochastic stability
of system (4) can be achieved. In this case, from Remark
2.1, one can see that the states of system (4) have a stable
Nash equilibrium at zero. Additional, the conditions given
in Theorem 3.1 are all described in the forms of linear
matrix inequalities, which can be easily solved by using LMI
toolbox in Matlab software through interior point algorithm.
The corresponding simulation is given in Fig. 2, from which
one can see that the state vector stable to zero, this means that
the concerned game has a stable Nash equilibrium.

V. CONCLUSIONS

By analyzing the delayed network topology for a zero-sum
game, we established a delayed singular game network model
with Markovian jumping parameters to describe the relation-
ship among the current payoffs, previous payoffs, and external
comprehensive factors. Combined with Finsler’s Lemma and
Lyapunov stable theory, a sufficient condition guaranteeing
the unique existence and stability of zero-sum game’s Nash
equilibrium is given. Simulation numerical example shows that
the result established in this paper is valid.

ACKNOWLEDGMENT

This work was supported by Science and technology Foun-
dation of Guizhou Province of China ([2010]2139).

REFERENCES

[1] J. Von Neumann, O. Morgenstern, H.W. Kuhn, A. Rubinstein, Theory
of Games and Economic Behavior, Princeton university press, Princeton,
NJ, 1947.

[2] J. Nash, Equilibrium points in n-person games, Proc. Nat. Acad. Sci.
U.S.A. 36 (1) (1950) 48-49.

[3] L.S. Shapley, Stochastic Games, Proc. Nat. Acad. Sci. U.S.A. 39 (1953)
1095-1100.

[4] Harsanyi, C. John, An equilibrium point interpretation of stable sets,
Manage. SCI. 20 (11) (1974) 1472-1495.

[5] S. Maynard, John, Evolution and the theory of games, Cambridge
University Press, 1982.

[6] Skyrms, Brian, The stag hunt and the evolution of social structure,
Cambridge University Press, 2004.

[7] Z. Rong, X. Li, X. Wang, Roles of mixing patterns in cooperation on a
scale-free networked game, Phys. Rev. E. 76 (2) (2007) 027101.

[8] J. Hofbauer, K. Sigmund, Evolutionary game dynamics, Bull. Am. Math.
Soc. 40 (4) (2003) 479-519.

[9] E. Semsar-Kazerooni, K. Khorasani, Multi-agent team cooperation:a
game theory approach, Automatica 45 (10) (2009) 2205-2213.

[10] Z. Varga, A. Scarelli, R. Cressman, J. Garay, Evolutionary game model
for a marketing cooperative with penalty for unfaithfulness, Nonlinear
Anal. Real World Appl. 11 (2) (2010) 742-749.

[11] J. Yu, Slightly altruistic equilibria of n-person noncooperative game, J.
of Systems Science and Mathematical Sciences, 31(5) (2011) 534-539.

[12] J. Wang, F. Fu, and L. Wang, Effects of heterogeneous wealth distribution
on public cooperation with collective risk, Phys. Rev. E. 82(1) (2010)
16102.

[13] F.V. Jennifer, Policy: Global cooperation game, Nature Climate Chan.
1 (2011) DOI: doi:10.1038/nclimate1038.

[14] J.Q. Liu, X.D. Liu, Fuzzy extensions of bargaining sets and their
existence in cooperative fuzzy games, Fuzzy Sets Syst. 188 (1) (2012)
88-101.

[15] W.J. Xiong, W.H. Daniel, J.D. Cao, Dynamic alanalysis of a game
network, Nonlinear Anal. Real World Appl. 12 (2011) 2286-2293.

[16] H.L. Gao, B.G. Xu, Delay-dependent state feedback robust stabilization
for uncertain singular time-delay systems, J. Syst. Eng. Electron. 19(4)
(2008) 758-765.

[17] Y.Q. Xia, et al., Stability and stabilization of continuous-time singular
hybrid systems, Automatica, 45(6) (2009) 1504-1509.

[18] S.L. Tung, et al., An improved particle swarm optimization for exponen-
tial stabilization of a singular linear time-varying system, Expert Syst.
Appl. 38 (10) (2011) 13425-13431.

[19] R.E. Skelton, T. Lwasaki, K.M. Grigoradis, A unified algebraic approach
to linear control design, Taylor and Francis, New York, 1997.

[20] J. Sun, G.P. Liu, J. Chen, Delay-dependent stability and stabilization of
neutral time-delay systems, Int. J. Roubst Nonlinear Control. 19 (2009)
1364-1375.

[21] J.H. Park , O.M. Kwon , S.M. Lee, LMI optimization approach on sta-
bility for delayed neural networks of neutral-type, Appl. Math. Comput.
196 (2008) 236-244.

[22] S. Boyd, L. El Ghaoui, E. Feron, V. Balakrishnam, Linear Matrix
Inequalities in System and Control Theory, SIMA, Philadelphia, 1994.


