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Abstract—In this paper, the local grid refinement is focused by 

using a nested grid technique. The Cartesian grid numerical method is 
developed for simulating unsteady, viscous, incompressible flows 
with complex immersed boundaries. A finite volume method is used in 
conjunction with a two-step fractional-step procedure. The key aspects 
that need to be considered in developing such a nested grid solver are 
imposition of interface conditions on the inter-block and accurate 
discretization of the governing equation in cells that are with the 
inter-block as a control surface. A new interpolation procedure is 
presented which allows systematic development of a spatial 
discretization scheme that preserves the spatial accuracy of the 
underlying solver. The present nested grid method has been tested by 
two numerical examples to examine its performance in the two 
dimensional problems. The numerical examples include flow past a 
circular cylinder symmetrically installed in a Channel and flow past 
two circular cylinders with different diameters. From the numerical 
experiments, the ability of the solver to simulate flows with 
complicated immersed boundaries is demonstrated and the nested grid 
approach can efficiently speed up the numerical solutions. 
 

Keywords—local grid refinement, Cartesian grid, nested grid, 
fractional-step method.  

I. INTRODUCTION 
N the numerical simulation of complex physical phenomena, 
the crucial requirement is predictability, i.e., that the 
simulation results remain faithful to the actual physical 

processes. Errors resulting from a lack of spatial resolution are 
particularly deleterious. However, over-resolving is 
computationally expensive. As a result, how to efficiently and 
effectively solve the partial differential equations which 
represent the mathematical model of physical problems 
concerned becomes a subject of active research in numerical 
analysis [1], [2]. 

In general, there are two approaches to obtain accurate 
solution of PDEs. One approach is to employ high-order 
numerical method [3], and the other is to improve the resolution 
through the computational grid. Mesh refinement is desirable to 
improve spatial resolution by using uniform or non-uniform 
grids. The uniform mesh refinement is that the resulting grid 
evolution equation is generally less nonlinear and less stiff 
which becomes very efficient in conjunction with the line 
successive-overrelaxation (SOR) solver. However, the uniform 
mesh refinement is not perfect for the applications, of which the 
solution may need different resolutions for different regions. 

In this paper, we develop a structured, nested Cartesian grid 
method for simulating unsteady, viscous, incompressible flows 
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with complex immersed boundaries. One drawback of adopting 
nested grid method as the local refinement technique is that the 
resulting nested grids are uniform and the corresponding 
evolution equations is less stiff and very efficient in 
conjunction with line-SOR. For the numerical simulations of 
flow past bluff body problems in the present study, we used an 
Immersed Boundary (IB) method where the solid object is 
represented by a distributed body force in the Navier–Stokes 
equations [4].  

The current paper will focus on describing these and other 
salient features of the numerical methodology, validating the 
accuracy and fidelity of the approach and demonstrating the 
capabilities of the solver in some complex configurations. 

II. NUMERICAL METHODOLOGY 

A. Fractional-Step Method 
We first describe the underlying solver, the fractional-step 

method, for a Cartesian mesh [5]. The governing equation is the 
unsteady, viscous, incompressible Navier–Stokes equation 
written in terms of the primitive variables. This equation is 
discretized on a Cartesian mesh using a cell-centered colocated 
(non-staggered) arrangement of the primitive variables ( p,u ). 
The integral form of dimensionless governing equations is 
given by mass conservation  

0=⋅∫ dSnu
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This is used as the starting point for deriving a second-order 
accurate finite-volume method. In the above equations CV and 
CS denote the control-volume and control-surface, 
respectively, and n  is a unit vector normal to the 
control-surface. A second-order accurate, two-step fractional 
step method is used for advancing the solution in time. In this 
time-stepping scheme, the solution is advanced from time level 
“n” to “n+1” through an intermediate advection-diffusion step 
where the momentum equations without the pressure gradient 
terms are first advanced in time. A second-order 
Adams–Bashforth scheme is employed for the convective 
terms and the diffusion terms are discretized using an implicit 
Crank–Nicolson scheme. This eliminates the viscous stability 
constraint which can be quite severe in simulation of viscous 
flows. At this stage, in addition to the cell-center velocities 
which are denoted by u , we also introduce face-center 
velocities U . In a manner similar to a fully staggered 
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arrangement, only the component normal to the cell-face is 
computed and stored (see Fig.1). The face-center velocity is 
used for computing the volume flux from each cell in our 
finite-volume discretization scheme. The semi-discrete form of 
the advection-diffusion equation for each cell can therefore be 
written as  
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where u  is the intermediate cell-center velocity and CV and 
CS denote the volume and surface of a cell, respectively. 
Following the advection-diffusion step, the intermediate 
face-center velocity U  is computed by interpolating the 
intermediate cell-center velocity. 
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Fig. 1 Schematic plots of the regular Cartesian cells and arrangement 
of cell-center and face-center velocities. 
 

The advection-diffusion step is followed by the 
pressure-correction step  
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where we require that the final velocity field satisfy the integral 
mass conservation equation given by 

0
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This results in the following equation for pressure 
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which is the integral version of the pressure Poisson equation. 
Note that the pressure correction step is represented by Eq. 4 
and is well posed only if the velocity component normal to the 
boundary is specified. The velocity boundary condition 

consistent with Eq. 4 is NvNu
nn

⋅=⋅
++ 11

, where v  is the 
prescribed boundary velocity and N  is the unit normal to the 
boundary of the flow domain. It can be easily shown that this 

implies that 01 =⋅∇ + N)p( n  be used as the boundary condition 
for Eq. 6. Once the pressure is obtained by solving this 
equation, both the cell-center (cc) and face-center (fc) 
velocities are updated separately as  
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It should be pointed out that the pressure gradient computed 

at the face-center is not simply an interpolated version of the 
pressure gradient at the cell-center. For instance with reference 
to Fig. 1 the x-direction pressure gradient at the cell center is 
computed as  

,2/)()/( xppxp WEp Δ−=∂∂                                                           (8) 
whereas the same gradient on the east face is given by 

./)()/( xppxp PEe Δ−=∂∂                                                               (9) 

It follows that 
1+n

U  is not simply an interpolated version of 

the face-center velocities 
1+n

u . In fact the pressure equation 
(Eq. 6) is discretized in terms of the pressure gradients on the 
cell faces and with the separate update of the face-center 
velocity as shown in Eq. 7, exact satisfaction of Eq. 5 is 
guaranteed.  

B. Nested Grid Methodology 
In this study, the local grid refinement technique is completed 

by a nested grid method. Sketch of the flow domain and the 
inside coarse and fine grid area are plotted and shown as in 
Fig.2. For simplicity, we illustrate our nested grid technique in 
a two-dimensional (2D) flow with a 2-block domain. It is worth 
noting that the present nested grid technique can be further 
applied to a 3D flow and higher multi-block domain without 
mystery. As shown in Fig.2, the coarse and fine grid domains 
are denoted by D1 by D2, respectively. Again, for simplicity, the 
fine grid length is defined as half as that of coarse grid. Our 
approach is to solve the flow in both D1 and D2 domains 
simultaneously according to the procedure of fractional step 
method.  
The advection-diffusion step 
    The approach for a nested grid method is extended from the 
uniform grid method. We get start from the advection-diffusion 
step, the scalar form of *u  discretization equation (Eq. 3) can 
be read as follows ( *v  equation is similar and not shown in this 
paper),  
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Where u  and v  are the x- and y-directions velocities, 
respectively, at the cell-center, eU , wU , nV , and sV  are the 
introduced face center velocities. 
    Eq. 10 is the discretization form of advection-diffusion 
equation for a general cell. We will describe how these 
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equations are implemented in cells without domain interface, in 
D1 cells with domain interface, and in D2 cells with domain 
interface in sequence. 
Cells without domain interface 
   For those control volumes without domain interface, Eq. 10 is 
exactly the same as Eq. 3 of a single block domain which has 
been outlined in the previous section. By using second order 
accurate center difference method for spatial terms, the 
cell-center velocities and gradient of these velocities at the 
cell-face are computed from those adjacent cell-center 
velocities, i.e., (equation of sv (Eq. 12) is not shown) 
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D1 cells with domain interface 

For those D1 cells with domain interface as shown in Fig.2 
(a), since Eu  and Ev  are not defined in the computational 
domain, the cell-center velocities at the east surface can not be 
computed by using Eqs. 11~12 directly, we need to computed 
velocities at the ghost cell by introducing appropriated 
interpolations first. In this study, a simple way devoted to 
calculate these ghost velocities is using averaged velocity of the 
occupied D2 cells instead, i.e.,  

 
,4/)( 4321 uuuuuu GE +++==                                                      (14) 

 
where subscript G denotes the D1 ghost cell (for instant E=G, E 
denotes the eastern cell), as shown in Fig.2 (a), which control 
volume is occupied by those four 1, 2, 3, and 4 D2 cells. With 
the use of Eq. 14, the general form of the cell-surface velocities, 
Eq. 12 can be preserved. Most importantly, the second-order 
accurate of the present numerical method are also prevented. 
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Fig. 2 Schematic plots of refinement cells. (a) Coarse cell. (b) Fine 
cell. 
 

That is the domain-interface processing which plays the 
essential part of the present nested grid method. In the general 
advection-diffusion equation Eq. 10, except eu  and ev  which 
has been processed in the previous paragraph, there are some 
other terms such as eU , e)x/u( ∂∂  and e)x/v( ∂∂  located at the 
block interface. Where eU  and e)x/u( ∂∂  and e)x/v( ∂∂  are 
used for computing the volume flux and momentum flux, 
respectively, from D1 to D2 cells. Although there are varied 
interpolations available, we use the volume and momentum 
flux from D2 to D1 cells instead, i.e.,  
    22211 dyUdyUdyU wwe ×+×=× ,                                        (15)                  
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where dy1 and dy2 denote the vertical lengths of D1 and D2 
cells, respectively. It has to noted that the use of Eqs. 15~16 can 
make sure the mass and the momentum diffusion fluxes, 
respectively, through the D1 and D2 domain interface and vice 
versa are consistent. 
D2 cells with domain interface 

For the D2 cells with domain interface as shown in Fig.2 (b), 
since Wu , and Wv  are not defined in the computational 
domain, the general form of the cell-face velocities (Eq. 12) can 
not be applied directly, we need to compute these terms by 
introducing second order accurate interpolations. Similar to the 
processing of ghost D1 cells, these ghost velocities are obtained 
by using averaged value of those adjacent velocities, i.e.,  

,4/)( 4321 uuuuuu GW +++==                                                      (17) 
where Puu 11 = , 2/)( 112 EP uuu += , 

4/)( 11113 NNEEP uuuuu +++= ,  and 2/)( 114 NP uuu += , in 
which the subscript 1P, 1E, 1N, and 1NE denote those 
corresponding D1 cell, D1 eastern, northern, and north-east 
cells, respectively, as shown in Fig.2 (b). Here, 

NENEEE v,u,v,u 1111  are not defined in our computational 
domains, these velocities are again obtained from Eq. 14. 
Computing *U  and *V  
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Following the advection-diffusion step, the intermediate 
face-center velocity *U  and *V are computed by interpolating 
the intermediate cell-center velocity.  
(1) For fine-fine or coarse-coarse non-inter-domain cell-face 
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(2) For fine-coarse domain interface 

At the fine-coarse domain interface shown in Fig. 2, eU  is 
obtained from Eq. 15, 

2
*
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*
11
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While wU1 and wU 2  are computed by interpolating the 

intermediate cell-center velocity, i.e., 
2111 /)uu(U Ww +=  and 2/)( 222 uuU Ww += ,                           (19) 

where subscripts 1W and 2W denote those ghost D2 cells, 
consequently, Wu1  and Wu2  are again obtained from ghost 
cell equation (Eq. 17).  
Solving pressure 
The scalar form of the pressure descritization equations (Eq. 6) 
can be read as 
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Cells without domain interface 
 By second order accurate center difference method, pressure 

gradients at cell surface are computed from 
dx/)pp()x/p( PEe −=∂∂ , dx/)pp()x/p( WPw −=∂∂ , 
dy/)pp()y/p( PNn −=∂∂ , dy/)pp()y/p( SPs −=∂∂            

(21) 
D1 cells with domain interface  

For those D1 cells with domain interface as shown in Fig. 
2(a), the pressure gradient term at the interface, e)x/p( ∂∂ , need 
to be processed rather than be computed by using Eq. 21 
directly. In a manner similar to the momentum diffusions 
processing, the pressure gradient is obtained from the diffusion 
consistency equation, 
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D2 cells with domain interface 
For those D2 cells with domain interface as shown in Fig.2 

(b), since W is ghost cell and Wp  is not defined in the 
computational domain, the pressure gradient at the east surface 
can not be computed by using Eq. 21 directly, we need to 
computed ghost pressure pG (pG= Wp ). Similar to the 
advection-diffusion processing, the interpolation is listed as  

44321 /)pppp(pp GW +++== ,                                                (23) 
where Ppp 11 = , 2112 /)pp(p EP += , 

411113 /)pppp(p NNEEP +++= , and 2114 /)pp(p NP += , in 
which Ep1  and NEp1 are not defined in our computational 

domains, these pressures are once again obtained from the 
ghost sell equation 

,/)pppp(pp GE 443211 +++==                                                 (24) 
where subscript G denotes the D1 ghost cell (G=1E, 1E denotes 
the eastern cell), as shown in Fig.2 (a), which control volume is 
occupied by those four D2 cells denoted by 1, 2, 3, and 4. 
Velocity correction 

Once the pressure is obtained by solving pressure 
equation, both the cell-center and face-center velocities are 
updated separately as  

cc
n*n )x/p(tuu ∂∂Δ−= ++ 11 , and cc

n*n )y/p(tvv ∂∂Δ−= ++ 11 ; 

fc
n*n )x/p(tUU ∂∂Δ−= ++ 11 , and fc

n*n )y/p(tVV ∂∂Δ−= ++ 11 . 
Again, we will describe how the cell-center velocity be 

corrected in cells without domain interface, in D1 cells with 
domain interface, and in D2 cells with domain interface, and 
how the face-center velocity be corrected at the non 
domain-interface and at the domain interface in sequence. 
Cell-center velocity correction in cells without domain 
interface 

For instance with reference to Fig. 1, velocity correction at 
the cell center is computed as  

dx/)pp(tu)x/p(tuu WE
*

p
*n 21 −×Δ−=∂∂×Δ−=+                  

(25) 
Cell-center velocity correction in D1 cells with domain 
interface 

For those D1 cells with domain interface as shown in Fig.2 
(a), since Ep  is not defined in the computational domain, the 
cell-center velocity can not be corrected by using Eq. 25 
directly, we need to computed Ep  by introducing appropriated 
interpolation first. The ghost pressure is the averaged pressure 
of the occupied D2 pressures (Eq. 24), i.e.,  

,/)pppp(pp GE 44321 +++==                                         
Cell-center velocity correction in D2 cells with domain 
interface 

For those D2 cells with domain interface as shown in Fig. 
2(b), since Wp  is not defined in the computational domain, the 
pressure gradient at the east surface can not be computed by 
using Eq. 25 directly, we need to computed Wp  first. Similar 
to those processing in the previous paragraph, the ghost 
pressure is computed by Eq. 23,  
    44321 /)pppp(pp GW +++== ,                                 
Velocity correction at non inter-domain face-center 

For fine-fine or coarse-coarse non inter-domain face-center, 
we have general form of velocity correction at face-center as 

dx/)pp(tU)x/p(tUU PE
*

e
n*n −×Δ−=∂∂×Δ−= ++ 11           (26) 

Velocity correction at domain interface 
At the fine-coarse cell interface shown in Fig. 2, coarse cell 

face-center velocity, 1+n
eU , is obtained from the consistent 

equation ( Eq. 15), 

2
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while 1
1

+n
w,U and 1

2
+n
w,U  are corrected by Eq. 26 with the fine 

mesh domain ghost velocity formulation Eq. 17. 
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C. Immersed Boundary Method 
In this study, a simple concept of Immersed Boundary 

method is adopted for numerical simulation of bluff body flows 
by using a distributed body force in the Navier-Stokes 
equations instead of the existence of solid body. The governing 
equations for fluid flow are solved everywhere, including cells 
which are occupied by the solid body. The distributed body 
force is determined at every time step of the iteration by 
requiring the value of the velocity in those cells to match the 
prescribed velocity of the solid body. Similar procession has 
been applied by Ravoux et al. (2003) and they referred it as 
Embedding method. 

III. NUMERICAL  RESULTS 

In this section, two examples are presented to examine the 
performance of the proposed nested grid refinement method. 

A. Flow past a Circular Cylinder in a Channel 

d h
parabolic
profile

fixed wall

fixed wall

3h
10.5h

 
Fig. 3 Computational domain of flow past a cylinder placed 
symmetrically in a planar channel. 
 

The first test case is to validate the solver in the finite 
Reynolds number regime by simulating unsteady flow past a 
circular cylinder of diameter d placed symmetrically in a planar 
channel of height h. Fig. 3 shows a schematic of the flow 
configuration that has been simulated in this study. Parabolic 
profile is specified at the channel inlet and the two main 
parameters in this flow are the blockage ratio h/d=β  and the 
Reynolds number defined as ν/QRe =  where Q denotes the 
inlet volume flux. A systematic numerical study of this flow 
configuration over a range of parameters has been conducted 
by Chen et al. (1995) [6] and results from this study are used to 
validate our simulations. This flow shares some features with 
the case of a cylinder immersed in a free stream. In particular, 
vortex shedding is observed in this flow beyond a critical 
Reynolds numbers. However, the critical Reynolds number is a 
strong function of the blockage ratio. Furthermore, the 
development of the vortices is also significantly affected by the 
boundary layers that develop on the channel walls. Thus, 
overall this is a more complicated flow and a good test case for 
our simulation methodology.  

We first conducted a resolution study by solving the vortex 
shedding flow at Re=500 for a blockage ratio of 0.2. A series of 
grid systems including 1block, 2block, and 3block are used for 
simulation this flow. The resolution study included two parts, 
local-refined-domain inference study and grid independence 
study, which are separately conducted and results are collected 
and listed in Table 1 and Table 2, respectively. In Table 1, 
numerical results including dimensionless dynamics forces 
acting on the circular cylinder, mean drag force coefficient dC  
and lift force amplitude Cl, and dimensionless vortex shedding 

frequency, the Strouhal number, St, of uniform grid systems are 
listed. Where B1G1 denotes a one block coarse uniform grid 
system with h.yx 020=Δ=Δ , and B1G2 denotes a one block 
finer uniform grid system with h.yx 010=Δ=Δ . It is noted that 
the numerical results are strongly dependent on the resolutions. 
The difference of Cl obtained by B1G1 to that from B1G2 up to 
34.4%, while differences of dC  and St between coarse (B1G1) 
and finer (B1G2) grids are 6.8% and 5.0%, respectively. 
Although the improve numerical results of B1G2 to B1G1 are 
significant, the B1G2 grid number are four times of B1G1 and 
the CPU time can be more than 6 times of that of B1G1, which 
means there is necessary of a local refinement. To explore the 
local-refinement-domain inference on the simulated results, we 
performed a series of numerical simulations by the 2block 
method arranging the refined area around the circular cylinder. 
Eight grid systems denoted by B2D1 to B2D8 are conducted, 
the refined area of each grid system can be seen in Fig. 4 and 
the grid numbers, including coarse (G1) and finer (G2) grid 
numbers, are listed on Table 1. From the numerical results 
listed on Table 1, it is noted that refined grids around cylinder 
improve the numerical simulation results significantly. For 
instant with extra 6,000 refined grids (B2D5 in Table 1), about 
20% of the G1 grid number, the present 2block method can 
predict a closely resembled results of B1G2. The differences of 
computed dC , Cl, and St values between B1G2 and B2D5 are 
all within 1.0%. This local-refined-domain inference study not 
even demonstrates efficiency of the present nested grid method, 
but also indicates the local-refinement necessary around the 
circular cylinder.  

From the image of the local-refined-domain inference 
study, we conducted a three block grid system B3G3 for 
simulating this vortex shedding flow with high resolutions. In 
B3G3 grid system, the computational domain are divided into 3 
blocks, which arranged uniformly distribution of coarse (G1), 
finer (G2), and finest (G3) Cartesian grids, respectively, where 
G1 denotes a uniform cell with h.yx 020=Δ=Δ , G2 denotes a 
uniform cell with h.yx 010=Δ=Δ , and G3 denotes a uniform 
cell with =Δ=Δ yx  h.0050 . Computational vorticity contours 
of B3G3 are simulated and plotted on Fig. 5, in Fig. 5 the 3 
blocks are also marked. It is seen from Fig. 5 that the vorticity 
contours are distributing around those block-interfaces 
smoothly, which shows that the present nested grid method 
works smoothly even across complex and reversed flow fields. 
Numerical results of dC , Cl, and St, grid numbers, and CPU 
time of B3G3 simulations are collected, these values are listed 
on Table 2 and compared to those results or values of B1G1, 
B1G2, and B2D5. All the computations are carried out on a 
personal computer with Pentium 4 (3.4G) and Fortran 90 
compiler. As shown on Table 2 that the computational results 
are greatly improved over those of B1G1, B1G2, and B2D5. It 
is expected that computational results are closed to the grid 
independent results, although further investigations are 
necessary. For instance, we found that the simulated Cl 
differences between B1G1, B1G2, and B2D5 to that of B3G3 
are up to 39%, 7.2% and 7.9%, respectively. While the present 
nested grid method improves the coarse single-block 
simulations greatly, the grid size and CPU time of nested grid 
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method are still preserved at the coarse-grid level. So far, it can 
be observed from the numerical tests that our nested grid 
algorithm can achieve an equivalent accuracy as it obtains on 
the finest uniform mesh, and at the same time greatly save the 
CPU time. 
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Fig. 4 Refine domain plots of B2D1 to B2D8. 

TABLE I COMPUTATIONAL RESULTS OF MEAN DRAG COEFFICIENT AND LIFT 
COEFFICIENT AMPLITUDE OF VARIOUS 1BLOCK AND 2BLOCK GRID SYSTEMS 

Grid dC  Diff. to 
B1G2 lC  Diff. to 

B1G2 
Grid 

number 
B1G

1 
2.60

8 6.8% 0.51
0 34.4% 26,250 

B1G
2 

2.79
7 0.0% 0.77

7 0.0% 105,00
0 

B2D
1 

2.75
9 1.4% 0.68

7 11.6% 27,850 

B2D
2 

2.78
5 0.4% 0.76

0 2.2% 29,850 

B2D
3 

2.79
6 0.0% 0.77

9 0.3% 32,650 

B2D
4 

2.79
1 0.2% 0.76

8 1.2% 31,050 

B2D
5 

2.79
1 0.2% 0.77

1 0.8% 32,250 

B2D
6 

2.79
1 0.2% 

0.77
0 

0.9% 33,450 

B2D
7 

2.79
1 0.2% 

0.77
0 

0.9% 35,850 

B2D
8 

2.79
2 0.2% 

0.77
2 

0.6% 39,050 
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Fig. 5 Computed vorticity contours in the near wake of the flow past a 
circular cylinder in a channel at Re=500 with grid system B3G3. 
 

We then focused on predicting the critical Reynolds number 
for a blockage ratio of 0.2. The bifurcation analysis of Chen et 
al. (1995) indicates that for this particular blockage ratio the 
critical Reynolds number is 231. 

TABLE II COMPUTATIONAL RESULTS OF MEAN DRAG COEFFICIENT, LIFT 
COEFFICIENT AMPLITUDE, STROUHAL NUMBER, AND CPU TIME OF VARIOUS 

1BLOCK, 2BLOCK, AND 3BLOCK GRID SYSTEMS 
Grid 

system 
dC  

Dif. to 
B3G3 

lC  
Dif. to 
B3G3 

St 
Dif. to 
B3G3 

Grid 
number 

CPU(m
in) 

B1G1 2.608 
6.8% 

0.510 
34.4% 

0.277 
0.0% 

26,250 
 

174 

B1G2 2.797 
0.0% 

0.777 
0.0% 

0.276 
0.3% 

105,00
0 

800 

B2D5 2.791 
0.2% 

0.771 
0.8% 

0.277 
0.0% 

32,250 227 

B3G3 2.828 
0.0% 

0.837 
0.0% 

0.277 
0.0% 

40,100 300 

This result has been confirmed by Ye et al. (1999). Herein, 
we devoted to simulated results of B1G1, B1G2, and B3G3. 
For each grid system, we have performed numerical 
simulations ranging from a Reynolds number of 225 to 270 in 
order to pinpoint the critical Reynolds number. From the flow 
stability analysis of the present study (not shown), it is expected 
that the first bifurcation of steady flow happens between Re = 
225 and 270. The bifurcation of flow past circular as well as 
square cylinders has been clarified as a supercritical pitchfork 
bifurcation. In order to show the characteristic of the 
bifurcation, 2

lC  as a function of Re is plotted in Fig. 6. Since 

the linear relation ReCl ∝2  holds, the supercritical pitchfork 
bifurcation from steady flow to vortex shedding flow is 
confirmed (Peng, 2003). We explore the bifurcation of present 
vortex shedding flow by investigating 2

lC  vs. Re in a similar 
manner with all the three B1G1, B1G2, and B3G3 grid systems. 
The value of 2

lC  as functions of Re are plotted as shown in Fig. 
6. It is noted that Recr is evaluated as Recr=230.7, Recr=234.2, 
and Recr=262.6 for B3G3, B1G2, and B1G1, respectively. 
Comparing with numerical result (Recr=231) of Chen et al. 
(1995) and Ye et al. (1999), it is found that the predicted Recr of 
present B3G3 is in very good agreement with previous studies, 
while error of simulated results of B1G2 and B1G1 are about 
1.4% and 13.7%, respectively. 
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Fig. 6 2

Amp,lC  as functions of Re and critical Reynolds numbers Recr. 

B. Flow past two circular cylinders with different diameters 
The second test case is flow past two cylinders with different 

diameters. In 1990, Strykowski and Sreenivasan investigated 
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the suppression of the vortex shedding from a circular cylinder 
by introducing a small circular cylinder at low Reynolds 
numbers [7]. Since the experiments of Strykowski and 
Sreenivasan [7], many experimental and computational studies 
have been performed in order to control wake flows at 
supercritical Reynolds numbers. Sakamoto et al. (1991) [8] and 
Sakamoto and Haniu (1994) [9] studied the suppression of the 
fluid force acting on a square cylinder and a circular cylinder, 
respectively, at high Reynolds number in subcritical regime. 
Dalton et al. (2001) also simulated the suppression of lift force 
on a circular cylinder by a small cylinder numerically [10].  

Recently, there were numerical studies directed towards the 
flow past two cylinders of different diameter (Zhao et al., 2005 
[11], Delaunay and Kaiktsis, 2001 [12], and Yang et al., 2001 
[13]). These numerical studies were either based on the finite 
element method or finite volume method with body fitted grids. 
In this study, flow past two circular cylinders of different 
diameters is investigated numerically. The Navier-Stokes 
equations are solved using present nested grid method. The aim 
of this study is to investigate the ability of the present numerical 
method by solving the suppression of the vortex shedding flow 
behind the two-cylinder system which was kind of difficult to 
reach by a Cartesian grid method. The two cylinders considered 
in this study are shown in Fig. 7. The diameter ratio between 
the small cylinder and the large cylinder is 0.2. The Reynolds 
number based on the diameter of the cylinders is 100(80) for 
the large cylinder and 20(16) for the small cylinder. The gap 
between the small cylinder and the large cylinder is 2.0 times 
the diameter of the large cylinder. The position angle of the 
small cylinder relative to the flow direction ranges from 20o to 
40o. In all computations, a rectangular computational domain is 
used. The large cylinder is located at 5D from the inflow 
boundary. The distance between the large cylinder and the 
outgoing boundary is 20D. The two lateral boundaries are 
located at 7D away from the large cylinder. The effects of the 
position angle of the small cylinder on drag and lift 
coefficients, pressure distributions around the cylinders, the 
vortex shedding frequencies from the two cylinders and flow 
characteristics are investigated. 

 

θ
2D G3

G2

G1

D

5D 15D

7D

 
Fig. 7 Configuration of flow past two circular cylinders with different 
diameters. 

To validate the numerical model, uniform flow past a 
singular cylinder for the Reynolds number ranging from 10 to 
200 is first simulated. The computational domain of 25D × 14D 

was divided into two blocks. In the outer block, G1 grids with 
D.yx 10=Δ=Δ  were used to compute the outer flow. In the 

inner block of DD 46 ×  (please see Fig. 9(a)), G2 grids with 
D.yx 050=Δ=Δ  were used to compute the flow around the 

cylinder. In Fig. 8, the computed time averaged drag 
coefficients for Reynolds number from 10 to 100 are compared 
with the finite difference results by Lei et al. [14] and the finite 
element results by Ghao et al. [11]. The difference between the 
numerical results in Fig. 8 is small. 

The numerical model is then applied to study the flow past 
two circular cylinders as shown in Fig. 9. Before we discuss the 
computational results of the suppression of vortex shedding 
flow, a typical computational mesh for the flow is shown in Fig. 
9(b), the computational domain of 25D × 14D is herein divided 
into three blocks. In the outer block, G1 grids with 

D.yx 10=Δ=Δ  were used to compute the flow. In the middle 
block of DD 46 × , G2 grids with D.yx 050=Δ=Δ  were used to 
compute the flow around the main cylinder. In the inner block 
of DD. 152 × , G3 grids with D.yx 0250=Δ=Δ  were used to 
compute the flow around the control cylinder. The total cell 
number is 45200.  
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Fig. 8 Comparison of the computed mean drag coefficient, square 
symbols: this study, circular symbols: Lie et al. (2000), triangle 

symbols: Zhao (2005). 
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Fig. 9 Computed iso-vorticity plots and nested grid of the flow past (a) 
a single cylinder and (b) two cylinders with different diameters. 
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Fig. 10 Computational Cl of flow past two cylinders of different 
diameters at Re=100 with various position angles. 
 

Fig. 10 shows the computed lift coefficient history on the 
main cylinder at Reynolds number equals to 100. For the 
purpose of comparison, the lift coefficient on a single cylinder 
is also plotted. It can be seen from Fig. 10 that the effect of the 
small cylinder on the mean force coefficients is significant. 
Specifically, the suppression of the mean lift on the large 
cylinder is significant for all the computed cases with 

oo 4020 ≤≤ θ (Fig. 10). The maximum suppression ratio of 
Cl,Amp on the main cylinder is found around o25=θ . The mean 
lift and drag coefficients, amplitude of lift coefficients, and St 
of the main cylinder as functions of the position angle of the 
small cylinder were collected and listed on Table 3. From Table 
3, it is seen that the maximum suppression ratio of Cl,Amp on the 
main cylinder is about 4%.  
    To investigate the effect of the control cylinder on the 
suppression of the vortex shedding clearly, Fig. 11 showed 
vortisity distributions at Re=80 and o30=θ . It is clear that 
when there is control cylinder exist availably, the vortex 
shedding pattern is suppressed apparently. 
    This numerical study investigated the suppression of vortex 
shedding of the main cylinder on the effect of a small control 
cylinder in the wake. The application gave reasonable and 
satisfactory results comparable with the available experimental 
and numerical results in literature and showed the feasibility of 
the present model.  
 

TABLE III COMPUTATIONAL RESULTS OF FLOW PAST TWO CYLINDERS OF 
DIFFERENT DIAMETERS AT RE=80 WITH VARIOUS POSITION ANGLES 
θ  

dC  lC  lC   
glesin,l

l
C

C

 

St 

20 1.335 -0.008 0.0127 5.4% 0.142 
25 1.337 -0.008  0.0 0.0%  0.0 
30 1.349 -0.005

3 
0.0035 1.5% 0.152 

35 1.371 -0.004
3 

0.0377 16.2% 0.160 

40 1.389 -0.005
8 

0.0540 23.1% 0.166 

single 1.465 0.0 0.2333 100% 0.166 
 

(a)

 
(b)

 
Fig. 11 Iso-vorticity plots of the flow past (a) a single cylinder and (b) 

two cylinders with different diameters at Re=80 and o30=θ . 
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