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Abstract—In high powered dense wavelength division 

multiplexed (WDM) systems with low chromatic dispersion, 
four-wave mixing (FWM) can prove to be a major source of noise. 
The MultiCanonical Monte Carlo Method (MCMC) and the Split 
Step Fourier Method (SSFM) are combined to accurately evaluate the 
probability density function of the decision variable of a receiver, 
limited by FWM. The combination of the two methods leads to more 
accurate results, and offers the possibility of adding other optical 
noises such as the Amplified Spontaneous Emission (ASE) noise.  
 

Keywords—Monte Carlo, Nonlinear optics, optical crosstalk, 
Wavelength-division Multiplexing (WDM).  

I. INTRODUCTION 
HE growth of the Internet in the last years in terms of 
traffic volume, number of users and commercial 

applications is unrivalled in history. IP traffic follows an 
exponential growth and almost doubles every six months. 
Both Internet and telecommunications service providers 
realized the obvious need for a scalable networking 
technology to meet this ever-growing demand. Optical 
networks [1] have been adopted as an efficient means to 
accommodate this traffic increase, especially in the backbone 
and metro part of the network. State-of-the-art, Wavelength 
Division Multiplexing (WDM) systems, are designed to have 
a large number of closely spaced channels operating at 10 to 
40Gb/s rates each. In such systems the linear and the non-
linear effects of the optical fibre can cause considerable 
performance degradation.  

Four-Wave Mixing (FWM) is  one of the most detrimental 
nonlinear effect in the case of non-zero dispersion fibers 
(NZDF) and narrow channel spacing (Δfch≤100GHz) [2]. The 
statistical analysis of the decision variable at the receiver of a 
WDM system is of great importance for the network design 
and modeling. Through such an analysis the performance of 
the system can be evaluated. 

 In the literature, one can find several methods for the 
evaluation of the performance of a WDM system, limited by 
nonlinear effects and especially the FWM noise. Among these 
methods, the most popular are the MultiCanonical Monte 
simulations [3]-[5] and the Split Step Fourier Method (SSFM) 
[6]. The SSFM is a numerical method for the solution of the 
 

 

nonlinear propagation equation governing the pulse evolution 
inside an optical fiber. According to this method, the fiber is 
segmented into small pieces of length h. In each piece, the 
linear and nonlinear effects are applied separately. The field at 
the end of each segment represents the input of the next 
segment. This technique is accurate since it can take into 
account all the propagation effects as well as the noise-noise 
interaction in the fiber without making any assumptions. 
However, the disadvantage of this method is that the obtained 
results can only give a first insight of the performance of the 
system. This is especially true when the distribution of the 
noise sources is not Gaussian. In this case the Q-factor 
evaluated from the eye diagrams obtained by the SSF can not 
be used for the estimation of the BER through the erfc 
function. The SSFM can ideally be used in order to estimate 
the PDF of the decision variable at the receiver. Due to the 
increased computational time, this method can not yield 
information about the tails of the PDF since the noise 
realizations in the simulation are picked in an unbiased 
manner. 

On the other hand, the Probability Density Function (PDF) 
of the FWM noise or the decision variable can be easily 
calculated using the MCMC method. Using the MCMC 
simulations, one can quickly reveal the tails of the 
corresponding PDF. The advantage of this method is that it 
automatically determines the bias with an iterative procedure. 
This requires the knowledge of the decision variable in closed 
form. Sometimes, this requirement comes at the expense of 
making assumptions. Furthermore, the inclusion of other 
noises at this model is not always easy since this imposes the 
transformation of the equations describing the decision 
variable.  

In this work the MMC method and the SSF method are 
combined to accurately evaluate the performance of a WDM 
system, limited by FWM noise. The rest of the paper is 
organized as follows: In section II.A, some basic 
considerations are given concerning the origin of the FWM 
phenomenon which will be used in section II.B to derive an 
expression for the photocurrent at the receiver. In section III 
the system under investigation is illustrated. The transmission 
model used to study the system under consideration is 
described in section IV. The MCMC method is presented in 
section V. The obtained results are shown and discussed in 
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section VI. The work is concluded in section VII. 

II. THEORETICAL BACKGROUND 

A. Four-Wave Mixing 
Four-Wave Mixing (FWM) is included in the category of 

the nonlinear effects known as Kerr effects. These nonlinear 
effects originate from nonlinear refraction, a phenomenon that 
refers to the intensity dependence of the refractive index. In 
detail, FWM is due to the existence of third-order nonlinear 
polarization that is to the contribution of the third order 
nonlinear susceptibility χ(3).  

Considering three optical waves oscillating at frequencies fi, 
fj and fk. According to the FWM process, new optical waves 
can be generated from the nonlinear interaction of the three 
optical waves. The new optical waves (FWM products) are 
positioned at frequencies fijk = fi + fj - fk. In a WDM system 
with equal channel spacing, the central frequency of the 
products will coincide with some of the central frequencies of 
the channels resulting to interchannel interference. 

The output power Ppqr of the FWM product is given by [7]: 

ηγ 2-2
2

9 eff
aL

rqppqrpqr LePPPdP =     (1) 

where Pi (i = p, q, r) represents the input peak power at the 
frequencies fi=ωi/2π in the mark state. Assuming a perfect 
extinction ratio, the average input power is Pav=Pi/2. It should 
be noted that equation (1) is an approximation that holds since 
the power of the FWM components is very small compared 
with the signal power at each channel [8]. In a WDM system 
it can be assumed that all the peak powers at the mark state are 
equal (Pi=Pin for i=1,2,…,N). In (1) γ is the nonlinear 
coefficient of the fiber [7], a is the fiber loss coefficient, L is 
the total fiber length, ( ) aeL aL

eff /-1 -=  is the effective 

length of the fiber, dpqr is the degeneracy factor (dpqr=3 when 
p=q, dpqr=6 when p≠q) and η is the mixing efficiency given 
by: 
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In (2a), Δβ represents the phase mismatch and may be 
expressed in terms of the channel frequencies fi : 

( )( )

( ) ( ) ( ) ( )( )

( )( )

( ) ( ) ( ) ( )( )
⎭
⎬
⎫

⎩
⎨
⎧

−+−Δ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⋅

⋅−−Δ=

⎭
⎬
⎫

⎩
⎨
⎧

−+−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⋅

⋅−−=Δ

oqopf
cd

dD
D

rqrpf
c

ffff
cd

dD
D

ffff
c

o

oqop
o

o

rqrp

2

2

2

2

2

2
2

2

2

λ
λ
λ

λ

πλ

λ
λ
λ

λ

πλβ

ο

  (2b) 

or approximately, 
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c

D
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In (2b), D is the fiber chromatic dispersion coefficient, λ is 
the wavelength of the signal and c is the speed of light in 
vacuum. Equation (2c) is derived using the fact that for typical 
values of D, dD/dλ and Δf, the second term in the brackets is 
much smaller than the first one [9]. 

The amplitude of the optical fields E(m) and E(s), in the mark 
and the space state respectively, at a given channel n is written 
as [10]: 
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where Pn and θn are the input peak power and the phase in the 
mark state, respectively, of the given channel n and 
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while Ppqr and θpqr=θp+θq-θr are the peak power and the phase 
of the FWM noise generated from a channel combination (p, 
q, r). The above sums run for all integers p, q, r that satisfy the 
condition p+q-r=n (which is imposed by an energy 
conservation requirement) and the restrictions shown in (4a) 
and (4b). These restrictions can be summarized as r≠p,q 
which guarantees that the corresponding term is not due to 
SPM or XPM. Furthermore, Bi=0 or Bi=1 is the bit value of 
channel i. These expressions for the electric field will be used 
in the next section in order to derive an expression for the 
photocurrent at the receiving photodiode. 

B. Calculation of the Photocurrent 
At the receiver, the photocurrent is proportional to the 

optical power and hence to |E|2 where E=E(m) or E=E(s) [11]. In 
practical applications, it can be assumed that Δβ>>a, which 
generally holds for D≥2ps/nm/Km and channel spacing 
Δf≥10GHz. For large L one can also use the fact that 
exp(-aL)<<1. Assuming a single fiber span without optical 
amplification, all other noises at the receiver except FWM can 
be ignored. This is especially true for high input powers and 
in this case the photocurrent at the detector is written as: 
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where k is the receiver responsivity and 
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Equations (5a) and (5b) provide an expression for the 
photocurrent in the mark and space state in terms of two new 
variables Im and Is given by (6b) and (6c) respectively. It is 
interesting to note that for a given number of channels, these 
new variables depend only on the bits and the phases of the 
optical signals. 

III. SYSTEM DESCRIPTION 
A WDM multi-span system consisting of Nx10Gb/s 

channels with channel spacing Δfch is assumed (figure 1). The 
transmission line is composed of four 80-km spans of G.655 
fiber, each followed by an in-line EDFA optical amplifier 
(having a noise figure of 4 dB) containing dispersion 
compensating fiber (DCF) module (0.8km each). The gain of 
the amplifiers is equal to the fiber losses in each span. The 
G.655 fiber is assumed to have D=2ps/nm/km, optical loss 
coefficient adB=0.2 dB/km and a non-linear coefficient 
γ=2(W×km)-1. The DCF has D=-200ps/nm/km, adB=0.5dB/km 
and γ=4.5(W×km)-1. At the receiver the signals are 
demultiplexed using a DEMUX with a Gaussian 
characteristic. Each signal is then detected using a direct 
detection receiver. 
 

 
Fig. 1 System under investigation 

 
The input optical power waveform representing a single 

“1”-bit, p1(t) is specified within the time interval [0, (1+b)Tp] 
as [12]: 
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where Pin denotes the peak input power, Tp represents the bit 
duration and b specifies the pulse shape. Note that p1(t) rises 
from 0 to Pin within [0,bTp], remains constant and equal to Pin 
within [bTp,Tp] and then falls from Pin to zero within 
[Tp,(1+b)Tp,]. Varying b from 1 to 0, the pulse shape changes 
from cos2(t)-like to rectangular. Throughout this work NRZ 
pulses are used with a value of b=0.4. Finally, the bit duration 
Tp, was taken to be 100ps corresponding to an ASK bit rate 
RASK=10Gbps. The central channel of the WDM system is 
assumed to be located around λ0=1.55μm. 

IV. THE TRANSMISSION MODEL 
In order to test the performance of the system, the fiber’s 

propagation equation can be numerically solved using the 
Split Step Fourier Method (SSFM) [6, pp. 51-53]. The basic 
propagation equation is written as: 
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where A=A(t,z) is the slowly varying complex envelope of the 
optical field at time t and position z along the fiber, β2 is the 
Group Velocity Dispersion (GVD) parameter, α=adB/4.343 is 
the fiber loss coefficient and γ is the nonlinear coefficient of 
the fiber.  

In an N-channel WDM system, the input signal (z=0) can be 
written as: 

∑
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where Ai(t,0) and  fi are the slowly varying envelope and the 
central frequency of the i-th channel respectively. Equation 
(8) under the initial condition (9), can be used to describe the 
signal propagation taking into account the optical losses, 
chromatic dispersion and the three Kerr-induced nonlinear 
phenomena, namely the SPM, XPM and FWM effects. 

In order to investigate the performance of a WDM system, 
the Q-factor can be calculated from the eye diagrams at the 
receiver. The Q-factor is a commonly used parameter in 
telecommunications and it is expressed as: 

o

oPP
Q

σσ +

−
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where <P1> and <Po> are the average optical power of bits 
“1” and “0” respectively and σ1 and σo are the corresponding 
standard deviations of the noise. In the case where the PDFs 
of the decision variable at the receiver, both at the mark and 
the space state, follow the Gaussian distribution the value of 
the Q-factor can be used to evaluate the BER of the system: 
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All channels are assumed aligned in time at the input 
(synchronous WDM system) and equally spaced. Under these 
conditions the strength of FWM effect is maximized, 
especially in the case of RZ pulses [13]-[14]. When NRZ 
pulses are used however, the synchronization of the bits does 
not seem to affect the system performance [14]. 

V. MULTICANONICAL MONTE CARLO METHOD 
The MCMC method can be used to numerically calculate 

the probability density function (PDF) of a random variable. 
MCMC is a fast and accurate statistical method useful for the 
evaluation of even very low error probabilities. MCMC 
simulations are Monte Carlo simulations with a-priori 
unknown weights. According to this method the interval K, in 
which the variable S of interest takes its values, is divided into 
small subintervals S0, …, SP and a histogram Hk is used to 
measure the occurrences of S that fall inside each subinterval 
Sk. For simplicity, the length of Sk can be taken constant and 
equal to Δs. On each iteration i of the MCMC method, the 
estimated PDF of S is stored in the variables i

kP , and, as the 

number of iterations increases, k
i

k PP →  where Pk=P(S∈Sk).  
In each iteration i, the occurrences of S inside each interval 

Sk are recorded in the histograms Hk
i. At the end of the 

iteration, the values of the Pk
i are updated according to the 

values of the Hk
i using the recurrence relations [15]: 
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where the exponents gk
j are given by 
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It should be noted that gk
i=0, if fk

i=0. Also, fk
h=0, if 

Hk
h+Hk+1

h=0. The i
kP are normalized so that their sum with 

respect to k is equal to unity. For i=1 the values of i
kP = 1

kP  
are all set equal to 1/P, which means that the first iteration 
corresponds to standard Monte Carlo sampling. As i increases, 
the information gained for the PDF of S through the i

kP , is 
used to bias the samples and increase the occurrence of the 
values of S at the tails of its PDF. After the final iteration i=Q, 
the values of Q

kP  provide an estimate for fS(s) and are 

normalized so that Δs∑k≥1Pk
Q=1. 

The random samples of S are generated by the Metropolis 
algorithm [5]. The BER is calculated by performing numerical 
integration of the corresponding PDFs using equation (10). 
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where Qth is the threshold at the receiver. The value of Qth is 
chosen so that the BER is minimized.  

VI. RESULTS AND DISCUSSION 

A. Application of the MCMC Method 
In this section, the MCMC method will be applied for the 

estimation of the PDFs of I=Is and I=Im of a WDM system. 
Once the PDF of Im and Is is determined, the PDF of S(m) and 
S(s) can also be determined, using the theorem of 
transformation of random variables [16]. The optical phases of 
all channels are assumed to be uniformly distributed within [0, 
2π], due to phase noise [11], and the data bits are assumed to 
be in the mark and space state with equal probability, 
P(Bi=0)=P(Bi=1)=1/2. The number of iterations used was 
Q=20 and each iteration involved the generation of 50000 
samples. 
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Fig. 2 The PDFs of a) Im and b) Is for N=16 calculated using the 
MCMC (solid lines) and conventional MC (dots) methods. Also 
shown with dotted lines in (a) is a Gaussian distribution with the 

same standard deviation as Im 
  
The results obtained by the MCMC method for the central 

channel (n=8), of a sixteen channel WDM system, are plotted 
with solid lines in Fig. 2 for the case where a) the signal bit Bn 
is “1” (I=Im) and b) the signal bit Bn is “0” (I=Is). Also shown 
with dots are the PDFs obtained by the conventional Monte-
Carlo method. For each PDF, it took the MCMC algorithm 
about 103 times less time than the conventional MC method to 
complete its calculations for values of the PDF up to 10-10. It 
is therefore deduced that the MCMC method can decrease the 
computation time by many orders of magnitude. It is also 
interesting to note that the MCMC method required only 106 
samples in order to evaluate the PDF values as low as 10-18. 
Conventional MC would require at least 1019 samples in order 
to evaluate these values of the PDF making the computation 
extremely time consuming. Hence, the MCMC method can be 
used to estimate even very low error probabilities (i.e. 10-14), 
which cannot be computed using conventional MC sampling. 
Finally the BER can be estimated using the PDFs Sm and Ss 
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and applying numerical integration. For example, in the case 
of a single span system with fiber length L=80km, chromatic 
dispersion D=2ps/nm/km, channel spacing Δf=50GHz, input 
peak power Pin=10dBm, fiber losses a=0.2dB/km and 
N=16channels the BER equals to 10-7. 

Another approach is to approximate the PDF with a 
Gaussian distribution. This is illustrated in figure 2(a) where a 
Gaussian PDF with the same standard deviation is plotted 
with dashed lines. It is evident that the Gaussian PDF fails to 
approximate the PDF of Im especially for values below 10-4 
and hence the Gaussian distribution cannot accurately 
describe the PDF. This is because the FWM noise is a sum of 
a large number of components (eqs. 5-6), dependent on each 
other. Hence, the central limit theorem, on which the Gaussian 
approximation is based, is not valid in this case. 

The MCMC can also be used in order to estimate the PDF 
of the FWM in both states in a multi-span WDM system. A 
more general approach is to carry out the MCMC simulations 
using the multi-span FWM efficiency formula given in [17]. 
According to this method, the efficiency of the FWM process 
must be multiplied by sin(MΔβL/2)/sin(ΔβL/2) where M is the 
total span number, Δβpqr is the phase mismatch factor of each 
product and L is the length of each span. However, this 
formula imposes that all the fiber spans must have the same 
length leading to limited accuracy. 

B. Application of the Split-Step Fourier Method 
To estimate the performance of the system, the input 

channels will be assumed modulated by a 28-1 pseudorandom 
bit streams and a series of simulations were carried out using 
the SSFM method. The bandwidth ΔB of the optical 
demultiplexer was optimized at the receiver using numerical 
simulations. 
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Fig. 3 Eye diagrams for the central channel of a single span eight-

channel WDM system. The transmission rate is 10Gb/s, the channel 
spacing is 50GHz and the input power is 10dBm 

 
In Fig. 3, the eye diagram for the 5th channel (central 

channel) of a single span eight-channel WDM system is 
shown. A 10Gb/s WDM system is assumed, with channel 
spacing equal to 50GHz, fiber length L=160km and input peak 
power 10dBm. This figure provides a first indication of the 
performance of the system. As depicted in Fig. 3, the 
eye-diagram is closed due to the effect of the FWM induced 
distortion. The Q-factor in this case is 3.4 resulting in a high 

error probability. If the FWM is assumed to follow Gaussian 
distribution, this Q-factor corresponds to an error probability 

of erfc(Q/ 2 )/2≅3x10-4. 
Using the transmission model and the SSF method, one can 

also include other noises such as the ASE noise due to optical 
amplifiers. The parameters of the transmission line are as 
follows: m=4 spans, L1=80km, L2=0.8km, noise figure 
(EDFA) 4 dB. The gain of the amplifiers is equal to the fiber 
losses in each span. 
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Fig. 4 Q factor as a function of input peak power 

 
Fig. 4 illustrates the Q factors of the worst channel which 

turns out to be one of the center channels (channels 4 and 5), 
which suffer the most due to FWM. In the low power region, 
the ASE noise limits the system performance. As the power 
rises the signal to noise is increased. At some point however, 
the nonlinear effects become important and begin to 
deteriorate the Q factor. Therefore, there is an optimum input 
power corresponding to the maximum Q factor. The 
maximum Q factor obtained by is 11. Assuming that the PDF 
of the FWM noise follows the Gaussian distribution, the 
optimum Q factor corresponds to BER=1.9×10-28. 
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Fig. 5 Probability density function of the photocurrent at the receiver in the 
case of a) single span system with Pin=5dBm and b) multispan system with 

Pin=2dBm 
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C. Combining the MCMC and the SSF Methods  
In this section the MCMC and the SSF method are used in 

order to evaluate the PDF of the photocurrent at the receiver 
as well as the BER of the system. In each iteration, a series of 
SSF simulations are performed. The SSFM is used in order to 
propagate the optical pulses. The received pulses are used to 
estimate the photocurrent. The photocurrent is calculated by 
averaging the field amplitude over a small area around the 
center of the middle pulse. At the end of each SSF simulation, 
the occurrences of the photocurrent values are recorded in a 
histogram which leads to the calculation of the PDF of the 
photocurrent. Two cases are investigated. The first one is a 
single span system with dispersion compensation and without 
amplification while the second one is a four span system with 
amplification. The parameters of the systems are as in section 
III.B. 

To estimate the performance of the system, the input 
channels will be assumed modulated by a pseudorandom bit 
stream of 16bits. The number of the transmitted pulses is 
sufficient, exhausting all the possible bit patterns around the 
signal bit. This is because there is a small shift of the channels 
due to the dispersion.  

Fig. 5 illustrates the PDFs of the photocurrent at the 
receiver based on many MCMC noise realizations a) single 
span system and b) multispan system. In both cases, the PDFs 
have the same shape as in the case of Fig. 3. This fact 
indicates that the FWM is the dominant noise source even if 
the ASE noise and the other nonlinearities are present. It is 
also interesting that the inclusion of more spans as well as the 
optical amplification enforces the effect of the FWM noise. 
This was expected since the FWM products, generated in a 
span, are amplified by the EDFA. Furthermore, these products 
constitute signals that participate in the FWM process of the 
next span. Finally, it can also be mentioned that the PDFs are 
far way from the Gaussian distribution. 
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Fig. 6 BER as a function of the photocurrent. The functions P1|0 and 

P0|1 are also shown. The BER equals half the sum of the two 
 
The knowledge of the PDFs of the mark and space state 

allows us to calculate the bit error probabilities (eq. 14). The 
two integrals correspond to the probability Pe0 (Pe1) of 
receiving a mark (space), when a space (mark) was 
transmitted. The BER becomes minimal at the optimal 
decision level Qth,opt. Figure 6  shows Pe0 and Pe1 as well as the 

BER as a function of the threshold. The optimum decision 
level lies at Qth,opt=5.59×10-6Amp near the intersection of the 
two curves (Pe0 and Pe1) and yields a BER of 1.736×10-3.  

VII. CONCLUSION 
The Split-Step Fourier method and the MultiCanonical 

Monte Carlo method are combined to evaluate the 
performance of a WDM system. MCMC is a fast statistical 
method useful for the evaluation of even very low error 
probabilities. On the other hand, the solution of the nonlinear 
propagation equation using the SSF method leads to very 
accurate results since it takes into account all the propagation 
effects as well as the noise-noise interaction in the fiber 
without making any assumption. Hence, the resultant method 
is able to accurately compute the complete PDF of the 
decision variable at the receiver. Finally, the BER of the 
system is estimated using numerical integration of the 
obtained PDFs.  
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